A Dimension-Free Weak-Type Estimate for Operators on UMD-Valued Functions

Brian P. Kelly

Abstract

Let \mathbb{T} denote the unit circle in the complex plane, and let X be a Banach space that satisfies Burkholder's UMD condition. Fix a natural number, $N \in \mathbb{N}$. Let \mathcal{P} denote the reverse lexicographical order on \mathbb{Z}^{N}. For each $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$, there exists a strongly measurable function \widetilde{f} such that formally, for all $\mathbf{n} \in \mathbb{Z}^{N}, \widehat{\widetilde{f}}(\mathbf{n})=-i \operatorname{sgn}_{\mathcal{P}}(\mathbf{n}) \widehat{f}(\mathbf{n})$. In this paper, we present a summation method for this conjugate function directly analogous to the martingale methods developed by Asmar and Montgomery-Smith for scalar-valued functions. Using a stochastic integral representation and an application of Garling's characterization of UMD spaces, we prove that the associated maximal operator satisfies a weak-type $(1,1)$ inequality with a constant independent of the dimension N.

1 Introduction

Fix $N \in \mathbb{N}$, and let X be a UMD space. We will use \mathbb{T} to denote the unit circle in the complex plane \mathbb{C}. For $\mathbb{T}^{N}=\prod_{k=1}^{N} \mathbb{T}$ we consider harmonic conjugation on $L^{1}\left(\mathbb{T}^{N}, X\right)$ with respect to a certain order on the discrete dual group \mathbb{Z}^{N}. If $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$, we define a maximal operator, $M(f)$, which corresponds to a pointwise summation method for the harmonic conjugate of f. We first show that the maximal function for a related continuous parameter martingale satisfies a "Good- λ " inequality. We then obtain that $M f$ satisfies a weak-type $(1,1)$ estimate with constant independent of the dimension N. Our approach is similar to that used in [3] for scalar-valued functions. However, there is an important difference in the analysis of vector-valued functions, at which point Garling's characterization of UMD spaces [9] will play a crucial role.

We begin by reviewing the terminology and notation required to define these operations. Let X be a Banach space with norm $\|\cdot\|_{X}$. Suppose $(\Omega, \mathcal{F}, \mu)$ is a general measure space. For each $p \in[1, \infty), L^{p}(\Omega, X)$ denotes the Banach space of strongly measurable functions $f: \Omega \rightarrow X$ such that $\int_{\Omega}\|f\|_{X}^{p} d \mu<\infty$ with norm $\|f\|_{p}=\left(\int_{\Omega}\|f\|_{X}^{p} d \mu\right)^{1 / p}$. When X is the field of scalars, we simply write $L^{p}(\Omega)$. Also, whenever $f: \Omega \rightarrow X$ is strongly measurable, we define $\|f\|_{1, \infty}^{*}=\sup _{y>0} y \mu\left(\left\{\|f\|_{X}>y\right\}\right)$.

In the spirit of [1], [2], [3], [4], and [10], we consider harmonic conjugation on $L^{1}\left(\mathbb{T}^{N}, X\right)$ defined with respect to the reverse lexicographical order $\mathcal{P} \subseteq \mathbb{Z}^{N}$:

$$
\mathcal{P}=\{0\} \cup\left(\bigcup_{i=1}^{N}\left\{\left(n_{1}, \ldots, n_{i}, 0, \ldots, 0\right): n_{i}>0\right\}\right)
$$

Define $\operatorname{sgn}_{\mathcal{P}}(\mathbf{n})$ to be 1,0 , or -1 according as $\mathbf{n} \in \mathcal{P} \backslash\{0\}$, $\mathbf{n}=0$, or $\mathbf{n} \in(-\mathcal{P}) \backslash\{0\}$. We

[^0]can define \tilde{f} for each X-valued trigonometric polynomial by requiring
\[

$$
\begin{equation*}
\widehat{\tilde{f}}\left(n_{1}, \ldots, n_{N}\right)=-i \operatorname{sgn}_{\mathcal{P}}\left(n_{1}, \ldots, n_{N}\right) \widehat{f}\left(n_{1}, \ldots, n_{N}\right) \tag{1.1}
\end{equation*}
$$

\]

Naturally, the question arises whether one can obtain the analogs of the classical theorems for harmonic conjugation on \mathbb{T} due to M . Riesz, Kolmogorov, and Privalov. For each $p, 1<p<\infty, f \mapsto \widetilde{f}$ extends to $L^{p}\left(\mathbb{T}^{N}, X\right)$ as a strong-type (p, p) operator, i.e, the generalized M. Riesz theorem holds (see [5], [6], and [2]). By adapting the methods of [11], one can prove that $f \mapsto \widetilde{f}$ is weak-type (1, 1), thereby extending Kolmogorov's theorem. However, the problem of developing a summation procedure which would define \tilde{f} pointwise a.e. on \mathbb{T}^{N} for all $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$ was not solved. This paper proves a generalization of Privalov's theorem for $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$.

2 The Martingale Representations and The Maximal Operator

Let $\mathcal{F}_{0}=\left\{\varnothing, \mathbb{T}^{N}\right\}$ while for $1 \leq k \leq N$, let $\mathcal{F}_{k}=\sigma\left\{e^{i \theta_{1}}, \ldots, e^{i \theta_{k}}\right\}$, the σ-algebra generated by the first k coordinate functions. Whenever \mathcal{F} is a sub- σ-algebra of \mathcal{F}_{N}, we denote the conditional expectation with respect to \mathcal{F} by $\mathbb{E}(\cdot \mid \mathcal{F})$. Let $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$. For $k=0,1,2, \ldots, N$, define $f_{k}=\mathbb{E}\left(f \mid \mathcal{F}_{k}\right)$. Letting $d_{0}=f_{0}=\int_{\mathbb{T}^{N}} f d m$ while $d_{k}=f_{k}-f_{k-1}$ for $k=1, \ldots, N$ gives a martingale difference decomposition, $f=\sum_{k=0}^{N} d_{k}$. Suppose f is an X-valued trigonometric polynomial given by

$$
f=\sum_{j_{1}, \ldots, j_{N}} x_{j_{1}, \ldots, j_{N}} e^{i j_{1} \theta_{1}} \cdots e^{i j_{k} \theta_{N}}
$$

where $x_{j_{1}, \ldots, j_{k}}$ is nonzero for only finitely many indices. Then, for $k=1, \ldots, N$ we have the following Fourier expansion for d_{k} :

$$
\begin{equation*}
d_{k}=\sum_{\substack{j_{1}, \ldots, j_{k} \\ j_{k} \neq 0}} x_{j_{1}, \ldots, j_{k}} e^{i j_{1} \theta_{1}} \cdots e^{i j_{k} \theta_{k}} \tag{2.1}
\end{equation*}
$$

If one applies the martingale decomposition to \widetilde{f}, the terms \widetilde{d}_{k} have Fourier expansion

$$
\begin{equation*}
\widetilde{d_{k}}=\sum_{\substack{j_{1}, \ldots, j_{k} \\ j_{k} \neq 0}}-i \operatorname{sgn}\left(j_{k}\right) x_{j_{1}, \ldots, j_{k}} e^{i j_{1} \theta_{1}} \cdots e^{i j_{k} \theta_{k}} \tag{2.2}
\end{equation*}
$$

where $\operatorname{sgn}(\cdot)$ denotes the usual signum on \mathbb{Z}. For an arbitrary $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$, one can interpret the expansions (2.1) and (2.2) as formal representations of d_{k} and \widetilde{d}_{k} respectively.

We now define the maximal operator we wish to study:

$$
\begin{equation*}
M f=\sup _{1 \leq m \leq N}\left\|\sum_{k=1}^{m} \widetilde{d}_{k}\right\|_{X} \tag{2.3}
\end{equation*}
$$

In the natural manner, the proof of a weak-type $(1,1)$ estimate for this maximal function will imply corresponding pointwise convergence results. The remainder of this paper is devoted to proving such an estimate.

A priori, the operator $f \mapsto M f$ may be considered as a collection of N ergodic Hilbert transforms composed with a maximal martingale operator. However, this perspective is not productive since it is not necessarily true that a composition of weak-type operators will satisfy a weak-type estimate. Using an adaptation of techniques from [3] we will prove the following theorem.

Theorem 2.4 Suppose X is a UMD space. For all $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$ let $M f$ be defined as in (2.3). Then, there exists $C>0$ such that for all $f \in L^{1}\left(\mathbb{T}^{N}, X\right)$,

$$
\begin{equation*}
\|M f\|_{1, \infty}^{*} \leq C\|f\|_{1} \tag{2.4.1}
\end{equation*}
$$

Furthermore, the constant C is independent of N.

Proof It suffices to consider the case where f is a finite sum of characters with coefficients in X such that $d_{0}=0$. Thus f has the expansion

$$
f\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)=\sum x_{j_{1}, \ldots, j_{N}} e^{i j_{1} \theta_{1}} \cdots e^{i j_{N} \theta_{N}}=\sum_{k=1}^{N} d_{k}
$$

only finitely many of the coefficients $x_{j_{1}, \ldots, j_{N}}$ are nonzero. In this case, we extend f and \tilde{f} to \mathbb{C}^{N} as follows:

$$
\begin{gathered}
f\left(r_{1} e^{i \theta_{1}}, \ldots, r_{N} e^{i \theta_{N}}\right)=\sum x_{j_{1}, \ldots, j_{N}} r_{1}^{\left|j_{1}\right|} e^{i j_{1} \theta_{1}} \cdots r_{N}^{\left|j_{N}\right|} e^{i j_{N} \theta_{N}} \\
\widetilde{f}\left(r_{1} e^{i \theta_{1}}, \ldots, r_{N} e^{i \theta_{N}}\right)=\sum-i \operatorname{sgn}_{\mathcal{P}}\left(j_{1}, \ldots, j_{N}\right) x_{j_{1}, \ldots, j_{N}} r_{1}^{\left|j_{1}\right|} e^{i j_{1} \theta_{1}} \cdots r_{N}^{\left|j_{N}\right|} e^{i j_{N} \theta_{N}}
\end{gathered}
$$

Thus, we take f and \tilde{f} to be functions harmonic on \mathbb{C}^{N}.
We now introduce two continuous parameter martingales with continuous paths. For $1 \leq n \leq N$, let $c_{n, t}=a_{n, t}+i b_{n, t}$ where $\left\{a_{n, t}\right\}_{n=1}^{N} \cup\left\{b_{n, t}\right\}_{n=1}^{N}$ denote $2 N$ independent Brownian motions starting at 0 such that $\mathbb{E}\left(a_{n, t}^{2}\right)=\mathbb{E}\left(b_{n, t}^{2}\right)=t$ for $n=1, \ldots, N$. Define stopping times by $\tau_{n}=\inf \left\{t:\left|c_{n, t}\right| \geq 1\right\}$. We will say $(n, t)<(m, s)$ if either $n<m$ or $n=m$ while $t<s$. In this case, the following equations define stochastic processes with time parameter $\mathcal{T}=\{1, \ldots, N\} \times[0, \infty)$,

$$
\begin{align*}
& F_{n, t}=\sum_{k=0}^{n-1} d_{k}\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{k, \tau_{k}}\right)+d_{n}\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{n, t \wedge \tau_{n}}\right) \\
& \widetilde{F}_{n, t}=\sum_{k=0}^{n-1} \widetilde{d}_{k}\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{k, \tau_{k}}\right)+\widetilde{d}_{n}\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{n, t \wedge \tau_{n}}\right) \tag{2.4.2}
\end{align*}
$$

Note that because $d_{0}=\widetilde{d}_{0}$ we may start these summations at $k=0$ for notational convenience. Since the two dimensional Browninan motion meets the boundary of the circle almost surely, we may also define

$$
F_{\infty}=\sum_{k=0}^{N} d_{k}\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{k, \tau_{k}}\right)=f\left(c_{1, \tau_{1}}, c_{2, \tau_{2}}, \ldots, c_{N, \tau_{N}}\right) .
$$

We can consider these as processes with continuous time parameter by using the order preserving bijection $\phi:(\mathcal{T} \cup\{\infty\}) \rightarrow[0, N]$ given by $\phi((n, t))=n-1+\frac{t}{t+1}$ while $\phi(\infty)=N$. Thus, each process has a continuous parameter and because f is harmonic, the processes have continuous paths. As in the corresponding case for scalar-valued harmonic conjugation treated in [3], the processes $F_{n, t}$ and $\widetilde{F}_{n, t}$ are martingales with respect to the filtration generated by $\left\{c_{n, t}\right\}_{n=1}^{N}$.

Now consider maximal functions for these continuous parameter objects,

$$
\begin{equation*}
F^{*}=\sup _{s \in[0, N)}\left\|F_{\phi^{-1}(s)}\right\|_{X}, \quad \text { and } \quad \widetilde{F}^{*}=\sup _{s \in[0, N)}\left\|\widetilde{F}_{\phi^{-1}(s)}\right\|_{X} \tag{2.4.3}
\end{equation*}
$$

With this notation, the remainder of the proof divides into proving the following estimates:

$$
\begin{gather*}
\|M f\|_{1, \infty}^{*} \leq\left\|\widetilde{F}^{*}\right\|_{1, \infty}^{*} ; \tag{2.4.4}\\
\left\|\widetilde{F}^{*}\right\|_{1, \infty}^{*} \leq C\left\|F^{*}\right\|_{1, \infty}^{*} ; \tag{2.4.5}\\
\left\|F^{*}\right\|_{1, \infty}^{*} \leq\left\|F_{\infty}\right\|_{1} ; \tag{2.4.6}\\
\left\|F_{\infty}\right\|_{1}=\|f\|_{1} . \tag{2.4.7}
\end{gather*}
$$

The inequality (2.4.6) follows from Doob's Maximal inequality for continuous time martingales [8]. Observe the following lower estimate for \widetilde{F}^{*} :

$$
\widetilde{F}^{*}=\sup _{(n, t) \in \mathcal{T}}\left\|\widetilde{F}_{n, t}\right\|_{X} \geq \sup _{1 \leq n \leq N}\left\|\widetilde{F}_{k, \tau_{k}}\right\|_{X}=\sup _{n}\left\|\sum_{k=1}^{n} \widetilde{d}_{k}\left(c_{1, \tau_{1}}, \ldots, c_{m, \tau_{m}}\right)\right\|_{X} .
$$

From this, (2.4.4) follows directly using the uniform distribution of complex Brownian motion starting at the origin and hitting \mathbb{T}. Similarly, (2.4.7) follows from the uniform distribution of complex Brownian motion starting at the origin and hitting \mathbb{T}. All that remains is the proof of (2.4.5).

3 A Good- λ Inequality and the Proof of (2.4.5)

Remark 3.1 Lemma (3.4) is our version of a "Good- λ " inequality. In the case of scalarvalued functions treated in [7] and [3], if F is real-valued, one uses the complex analytic function $G=F+i \widetilde{F}$, and the identity $|G|^{2}=|F|^{2}+|\widetilde{F}|^{2}$. However, for vector-valued functions there is no corresponding relation between F and G. Thus, our approach uses

Lemma (3.2) as a means to deal with \widetilde{F}^{*} directly. The proof of Lemma (3.2) is a natural adaptation of Garling's arguments in [9] for harmonic conjugation on \mathbb{T}. We include the details for the completeness of the exposition.
Lemma 3.2 Suppose that X is a UMD space and that ν_{1} and ν_{2} are stopping times taking values in $\mathcal{T} \cup\{\infty\}$ such that $\nu_{1} \leq \nu_{2}$ a.e. Letting F and \widetilde{F} be as above, then for each $1<p<\infty$ there exists C_{p} independent of N so that the following holds:

$$
\begin{equation*}
C_{p}^{-1}\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{p} \leq\left\|\widetilde{F}_{\nu_{2}}-\widetilde{F}_{\nu_{1}}\right\|_{p} \leq C_{p}\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{p} \tag{3.2.1}
\end{equation*}
$$

Proof of Lemma (3.2) By the construction of the process, when we apply Ito's formula for stochastic integrals, we obtain the following:

$$
\begin{aligned}
F_{n, t}= & \sum_{k=1}^{n-1}\left(\int_{(k, 0)}^{\left(k, \tau_{k}\right)} \frac{\partial d_{k}}{\partial x_{k}}\left(c_{1, \tau_{1}}, \ldots, c_{k, s_{k}}\right) d a_{k, s_{k}}+\int_{(k, 0)}^{\left(k, \tau_{k}\right)} \frac{\partial d_{k}}{\partial y_{k}}\left(c_{1, \tau_{1}}, \ldots, c_{k, s_{k}}\right) d b_{k, s_{k}}\right) \\
& +\int_{(n, 0)}^{\left(n, \wedge \wedge \tau_{n}\right)} \frac{\partial d_{n}}{\partial x_{n}}\left(c_{1, \tau_{1}}, \ldots, c_{n, s_{n}}\right) d a_{n, s_{n}}+\int_{(n, 0)}^{\left(n, t \wedge \tau_{n}\right)} \frac{\partial d_{n}}{\partial x_{n}}\left(c_{1, \tau_{1}}, \ldots, c_{n, s_{n}}\right) d b_{n, s_{n}} .
\end{aligned}
$$

Note that the second order terms vanish due to the harmonicity of f. Since $\nu_{2} \geq \nu_{1}$, we find the following representation:

$$
\begin{equation*}
F_{\nu_{2}}-F_{\nu_{1}}=\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial d_{k}}{\partial x_{k}} d a_{k, s_{k}}+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial d_{k}}{\partial y_{k}} d b_{k, s_{k}}\right) . \tag{3.2.2}
\end{equation*}
$$

Further note that the natural analog of (3.2.2) holds for \widetilde{F}. Observe that d_{k} and \widetilde{d}_{k} satisfy the Cauchy-Riemann equations applied to coordinate k, i.e,

$$
\begin{equation*}
\frac{\partial d_{k}}{\partial x_{k}}=\frac{\partial \widetilde{d}_{k}}{\partial y_{k}} \quad \text { and } \quad \frac{\partial d_{k}}{\partial y_{k}}=-\frac{\partial \widetilde{d}_{k}}{\partial x_{k}} \tag{3.2.3}
\end{equation*}
$$

Let $\left\{a_{k, t}^{\prime}\right\}_{k=1}^{N} \cup\left\{b_{k, t}^{\prime}\right\}_{k=1}^{N}$ denote a collection of $2 N$ independent real Brownian motions which are also independent of $\left\{a_{k, t}\right\}_{k=1}^{N} \cup\left\{b_{k, t}\right\}_{k=1}^{N}$ and satisfy $\mathbb{E}\left(a_{n, t}^{\prime}{ }^{2}\right)=\mathbb{E}\left(b_{n, t}^{\prime}{ }^{2}\right)=t$ for $k=1, \ldots, N$. From Garling's characterization of UMD spaces, [9 , Theorem 2^{\prime}], and (3.2.3) it follows that there exists a constant c_{p}^{\prime} which depends only upon X and p such that the following inequalities hold:

$$
\begin{aligned}
\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{p} & =\left\|\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial d_{k}}{\partial x_{k}} 1_{\left[\nu_{1}, \nu_{2}\right]} d a_{k, s_{k}}+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial d_{k}}{\partial y_{k}} 1_{\left[\nu_{1}, \nu_{2}\right]} d b_{k, s_{k}}\right)\right\|_{p} \\
& =\left\|\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial y_{k}} 1_{\left[\nu_{1}, \nu_{2}\right]} d a_{k, s_{k}}+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}}-\frac{\partial \widetilde{d}_{k}}{\partial x_{k}} 1_{\left[\nu_{1}, \nu_{2}\right]} d b_{k, s_{k}}\right)\right\|_{p} \\
& \leq c_{p}^{\prime}\left\|\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial y_{k}} d a_{k, s_{k}}^{\prime}+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}}-\frac{\partial \widetilde{d}_{k}}{\partial x_{k}} d b_{k, s_{k}}^{\prime}\right)\right\|_{p} \\
& =c_{p}^{\prime}\left\|\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial x_{k}} d\left(-b_{k, s_{k}}^{\prime}\right)+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial y_{k}} d a_{k, s_{k}}^{\prime}\right)\right\|_{p} .
\end{aligned}
$$

But, $\left\{a_{k, t}^{\prime}\right\}_{k=1}^{N} \cup\left\{-b_{k, t}^{\prime}\right\}_{k=1}^{N}$ is again a collection of real Brownian motions which are independent of $\left\{a_{k, t}\right\}_{k=1}^{N} \cup\left\{b_{k, t}\right\}_{k=1}^{N}$. Thus, [9, Theorem $\left.2^{\prime}\right]$ further implies the following:

$$
\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{p} \leq\left(c_{p}^{\prime}\right)^{2}\left\|\sum_{k=1}^{N}\left(\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial x_{k}} d a_{k, s_{k}}+\int_{(k, 0) \vee \nu_{1}}^{\left(k, \tau_{k}\right) \wedge \nu_{2}} \frac{\partial \widetilde{d}_{k}}{\partial y_{k}} d b_{k, s_{k}}\right)\right\|_{p}
$$

Thus, we have proved the left-hand inequality in (3.2.1) with $C_{p}=\left(c_{p}^{\prime}\right)^{2}$; the right-hand inequality follows from a virtually identical argument.

Remark 3.3 That (2.4.1) holds with constant independent of N will depend heavily on the fact that C_{p} in (3.2.1) is independent of N. This is because the constants which arise in the sequel will be determined by C_{p} for $p=2$ and $p=4$.
Lemma 3.4 With the notation as above, let $\alpha \geq 1$ and $\beta>1$. Then there exists $c=c(\alpha, \beta)$ such that whenever $\lambda>0$ satisfies

$$
\begin{equation*}
P\left(\widetilde{F}^{*}>\lambda\right) \leq \alpha P\left(\widetilde{F}^{*}>\beta \lambda\right) \tag{3.4.1}
\end{equation*}
$$

then,

$$
\begin{equation*}
P\left(\widetilde{F}^{*}>\lambda\right) \leq c P\left(c F^{*}>\lambda\right) \tag{3.4.2}
\end{equation*}
$$

Proof of Lemma (3.4) Let ν_{1} and ν_{2} be given by

$$
\nu_{1}=\inf \left\{(k, t):\left\|\widetilde{F}_{k, t}\right\|_{X}>\lambda\right\} \quad \text { and } \quad \nu_{2}=\inf \left\{(k, t):\left\|\widetilde{F}_{k, t}\right\|_{X}>\beta \lambda\right\}
$$

respectively, with the convention that $\inf (\varnothing)=0$. Using the notation of (3.2), we find that if λ satisfies (3.4.1), then

$$
\begin{align*}
\mathbb{E}\left(1_{\widetilde{F}^{*}>\lambda}\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{X}^{2}\right)=\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{2}^{2} & \geq C_{2}^{-2}\left\|\widetilde{F}_{\nu_{2}}-\widetilde{F}_{\nu_{1}}\right\|_{2}^{2} \\
& \geq C_{2}^{-2}(\beta \lambda-\lambda)^{2} P\left(\widetilde{F}^{*}>\beta \lambda\right) \tag{3.4.3}\\
& \geq C^{\prime} \lambda^{2} P\left(\widetilde{F}^{*}>\lambda\right)
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\mathbb{E}\left(1_{\widetilde{F}^{*}>\lambda}\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{X}^{4}\right)=\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{4}^{4} \leq C_{4}^{4}\left\|\widetilde{F}_{\nu_{2}}-\widetilde{F}_{\nu_{1}}\right\|_{4}^{4} \leq C^{\prime \prime} \lambda^{4} P\left(\widetilde{F}^{*}>\lambda\right) \tag{3.4.4}
\end{equation*}
$$

Hence, by [12, V.8.26] there exists $c>0$ satisfying

$$
P\left(\widetilde{F}^{*}>\lambda\right) \leq c P\left(c\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{X}>\lambda\right)
$$

At this point, (3.4.2) follows by noting that $\left\|F_{\nu_{2}}-F_{\nu_{1}}\right\|_{X} \leq 2 F^{*}$.
Proof of (2.4.5) We observe that since $A=\left\|\widetilde{F}^{*}\right\|_{1, \infty}^{*}<\infty$, we may choose $\lambda_{0}>0$ such that $2 \lambda_{0} P\left(\widetilde{F}^{*}>2 \lambda_{0}\right) \geq A / 2$. Meanwhile, $\lambda_{0} P\left(\widetilde{F}^{*}>\lambda_{0}\right) \leq A$. Thus, we have

$$
P\left(\widetilde{F}^{*}>\lambda_{0}\right) \leq \frac{A}{\lambda_{0}} \leq 4 P\left(\widetilde{F}^{*}>2 \lambda_{0}\right)
$$

Therefore, (3.4.1) holds with $\alpha=4$ and $\beta=2$. Letting $c=c(4,2)$, one can show that (3.4.2) implies that (2.4.5) holds with $C=4 c^{2}$.

References

[1] N. Asmar, E. Berkson and T. A. Gillespie, Distributional control and generalized analyticity. Integral Equations Operator Theory 14(1991), 311-341.
[2] N. Asmar, B. P. Kelly, and S. Montgomery-Smith, A note on UMD spaces and transference in vector-valued function spaces. Proc. Edinburgh Math. Soc. 39(1996), 485-490.
[3] N. Asmar and S. Montgomery-Smith, Dimension-free estimates for conjugate maximal functions and pointwise convergence. Studia Math., to appear.
[4] E. Berkson, T. A. Gillespie and P. S. Muhly, Generalized analyticity in UMD spaces. Ark. Mat. 27(1989), 1-14.
[5] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(1983), 163-168.
[6] D. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-spacevalued functions. In: Proceedings, Conference on Harmonic Analysis in Honor of A. Zygmund, Chicago, 1981 (eds. W. Becker et al.), Wadsworth, Belmont, CA, 1983, 270-286.
[7] D. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal characterization of the class H^{p}. Trans. Amer. Math. Soc. 157(1971), 137-153.
[8] J. L. Doob, Stochastic Processes. Wiley Publications in Statistics, New York, 1990.
[9] D. J. H. Garling, Brownian motion and UMD spaces. In: Probability and Banach spaces, Springer Lecture Notes in Math. 1221(1986), 36-49.
[10] H. Helson, Conjugate series in several variables. Pacific J. Math. 9(1959), 513-523.
[11] B. P. Kelly, Distributional controlled representations acting on vector-valued functions spaces. Doctoral Dissertation, University of Missouri, 1994.
[12] A. Zygmund, Trigonometric Series. 2nd edition (2 vols.), Cambridge University Press, 1959

Department of Mathematics
University of Louisiana at Monroe
Monroe, Louisiana 71211
USA

[^0]: Received by the editors October 1, 1997; revised November 25, 1999.
 AMS subject classification: 43A17, 60H30, 46B09.
 (C)Canadian Mathematical Society 2000.

