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A Dimension-Free Weak-Type Estimate for
Operators on UMD-Valued Functions
Brian P. Kelly

Abstract. Let T denote the unit circle in the complex plane, and let X be a Banach space that satisfies
Burkholder’s UMD condition. Fix a natural number, N ∈ N. Let P denote the reverse lexicographical or-
der on ZN . For each f ∈ L1(TN ,X), there exists a strongly measurable function f̃ such that formally, for all

n ∈ ZN ,
̂̃
f (n) = −i sgnP(n) f̂ (n). In this paper, we present a summation method for this conjugate function

directly analogous to the martingale methods developed by Asmar and Montgomery-Smith for scalar-valued
functions. Using a stochastic integral representation and an application of Garling’s characterization of UMD
spaces, we prove that the associated maximal operator satisfies a weak-type (1, 1) inequality with a constant
independent of the dimension N.

1 Introduction

Fix N ∈ N, and let X be a UMD space. We will use T to denote the unit circle in the complex
plane C. For TN =

∏N
k=1 T we consider harmonic conjugation on L1(TN ,X) with respect

to a certain order on the discrete dual group ZN . If f ∈ L1(TN ,X), we define a maximal
operator, M( f ), which corresponds to a pointwise summation method for the harmonic
conjugate of f . We first show that the maximal function for a related continuous parameter
martingale satisfies a “Good-λ” inequality. We then obtain that M f satisfies a weak-type
(1,1) estimate with constant independent of the dimension N . Our approach is similar to
that used in [3] for scalar-valued functions. However, there is an important difference in
the analysis of vector-valued functions, at which point Garling’s characterization of UMD
spaces [9] will play a crucial role.

We begin by reviewing the terminology and notation required to define these opera-
tions. Let X be a Banach space with norm ‖ · ‖X . Suppose (Ω,F, µ) is a general measure
space. For each p ∈ [1,∞), Lp(Ω,X) denotes the Banach space of strongly measurable
functions f : Ω → X such that

∫
Ω
‖ f ‖p

X dµ < ∞ with norm ‖ f ‖p = (
∫
Ω
‖ f ‖p

X dµ)1/p.
When X is the field of scalars, we simply write Lp(Ω). Also, whenever f : Ω→ X is strongly
measurable, we define ‖ f ‖∗1,∞ = supy>0 yµ({‖ f ‖X > y}).

In the spirit of [1], [2], [3], [4], and [10], we consider harmonic conjugation on
L1(TN ,X) defined with respect to the reverse lexicographical order P ⊆ ZN :

P = {0} ∪
( N⋃

i=1

{(n1, . . . , ni, 0, . . . , 0) : ni > 0}
)
.

Define sgnP(n) to be 1, 0, or−1 according as n ∈ P \ {0}, n = 0, or n ∈ (−P) \ {0}. We
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can define f̃ for each X-valued trigonometric polynomial by requiring

̂̃
f (n1, . . . , nN) = −i sgnP(n1, . . . , nN) f̂ (n1, . . . , nN).(1.1)

Naturally, the question arises whether one can obtain the analogs of the classical theo-
rems for harmonic conjugation on T due to M. Riesz, Kolmogorov, and Privalov. For each

p, 1 < p < ∞, f �→ f̃ extends to Lp(TN ,X) as a strong-type (p, p) operator, i.e, the gen-
eralized M. Riesz theorem holds (see [5], [6], and [2]). By adapting the methods of [11],

one can prove that f �→ f̃ is weak-type (1, 1), thereby extending Kolmogorov’s theorem.

However, the problem of developing a summation procedure which would define f̃ point-
wise a.e. on TN for all f ∈ L1(TN ,X) was not solved. This paper proves a generalization of
Privalov’s theorem for f ∈ L1(TN ,X).

2 The Martingale Representations and The Maximal Operator

Let F0 = {∅,TN} while for 1 ≤ k ≤ N , let Fk = σ{eiθ1 , . . . , eiθk}, the σ-algebra gen-
erated by the first k coordinate functions. Whenever F is a sub-σ-algebra of FN , we de-
note the conditional expectation with respect to F by E(·|F). Let f ∈ L1(TN ,X). For
k = 0, 1, 2, . . . ,N , define fk = E( f |Fk). Letting d0 = f0 =

∫
TN f dm while dk = fk − fk−1

for k = 1, . . . ,N gives a martingale difference decomposition, f =
∑N

k=0 dk. Suppose f is
an X-valued trigonometric polynomial given by

f =
∑

j1,..., jN

x j1,..., jN ei j1θ1 · · · ei jkθN ,

where x j1,..., jk is nonzero for only finitely many indices. Then, for k = 1, . . . ,N we have the
following Fourier expansion for dk:

dk =
∑

j1,..., jk
jk �=0

x j1,..., jk ei j1θ1 · · · ei jkθk .(2.1)

If one applies the martingale decomposition to f̃ , the terms d̃k have Fourier expansion

d̃k =
∑

j1,..., jk
jk �=0

−i sgn( jk)x j1 ,..., jk ei j1θ1 · · · ei jkθk(2.2)

where sgn(·) denotes the usual signum on Z. For an arbitrary f ∈ L1(TN ,X), one can

interpret the expansions (2.1) and (2.2) as formal representations of dk and d̃k respectively.
We now define the maximal operator we wish to study:

M f = sup
1≤m≤N

∥∥∥ m∑
k=1

d̃k

∥∥∥
X
.(2.3)
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In the natural manner, the proof of a weak-type (1, 1) estimate for this maximal function
will imply corresponding pointwise convergence results. The remainder of this paper is
devoted to proving such an estimate.

A priori, the operator f �→ M f may be considered as a collection of N ergodic Hilbert
transforms composed with a maximal martingale operator. However, this perspective is
not productive since it is not necessarily true that a composition of weak-type operators
will satisfy a weak-type estimate. Using an adaptation of techniques from [3] we will prove
the following theorem.

Theorem 2.4 Suppose X is a UMD space. For all f ∈ L1(TN ,X) let M f be defined as in
(2.3). Then, there exists C > 0 such that for all f ∈ L1(TN ,X),

‖M f ‖∗1,∞ ≤ C‖ f ‖1.(2.4.1)

Furthermore, the constant C is independent of N.

Proof It suffices to consider the case where f is a finite sum of characters with coefficients
in X such that d0 = 0. Thus f has the expansion

f (eiθ1 , . . . , eiθN ) =
∑

x j1,..., jN ei j1θ1 · · · ei jNθN =

N∑
k=1

dk,

only finitely many of the coefficients x j1,..., jN are nonzero. In this case, we extend f and f̃
to CN as follows:

f (r1eiθ1 , . . . , rNeiθN ) =
∑

x j1,..., jN r| j1|
1 ei j1θ1 · · · r| jN |

N ei jNθN ;

f̃ (r1eiθ1 , . . . , rNeiθN ) =
∑
−i sgnP( j1, . . . , jN)x j1,..., jN r| j1|

1 ei j1θ1 · · · r| jN |
N ei jNθN .

Thus, we take f and f̃ to be functions harmonic on CN .
We now introduce two continuous parameter martingales with continuous paths. For

1 ≤ n ≤ N , let cn,t = an,t + ibn,t where {an,t}N
n=1 ∪ {bn,t}N

n=1 denote 2N independent
Brownian motions starting at 0 such that E(a2

n,t ) = E(b2
n,t ) = t for n = 1, . . . ,N . Define

stopping times by τn = inf{t : |cn,t | ≥ 1}. We will say (n, t) < (m, s) if either n < m or
n = m while t < s. In this case, the following equations define stochastic processes with
time parameter T = {1, . . . ,N} × [0,∞),

Fn,t =

n−1∑
k=0

dk(c1,τ1 , c2,τ2 , . . . , ck,τk ) + dn(c1,τ1 , c2,τ2 , . . . , cn,t∧τn )

F̃n,t =

n−1∑
k=0

d̃k(c1,τ1 , c2,τ2 , . . . , ck,τk ) + d̃n(c1,τ1 , c2,τ2 , . . . , cn,t∧τn ).

(2.4.2)
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Note that because d0 = d̃0 we may start these summations at k = 0 for notational con-
venience. Since the two dimensional Browninan motion meets the boundary of the circle
almost surely, we may also define

F∞ =
N∑

k=0

dk(c1,τ1 , c2,τ2 , . . . , ck,τk ) = f (c1,τ1 , c2,τ2 , . . . , cN,τN ).

We can consider these as processes with continuous time parameter by using the order
preserving bijection φ : (T ∪ {∞}) → [0,N] given by φ

(
(n, t)

)
= n − 1 + t

t+1 while
φ(∞) = N . Thus, each process has a continuous parameter and because f is harmonic, the
processes have continuous paths. As in the corresponding case for scalar-valued harmonic
conjugation treated in [3], the processes Fn,t and F̃n,t are martingales with respect to the
filtration generated by {cn,t}N

n=1.
Now consider maximal functions for these continuous parameter objects,

F∗ = sup
s∈[0,N)

‖Fφ−1(s)‖X, and F̃∗ = sup
s∈[0,N)

‖F̃φ−1(s)‖X.(2.4.3)

With this notation, the remainder of the proof divides into proving the following esti-
mates:

‖M f ‖∗1,∞ ≤ ‖F̃
∗‖∗1,∞;(2.4.4)

‖F̃∗‖∗1,∞ ≤ C‖F∗‖∗1,∞;(2.4.5)

‖F∗‖∗1,∞ ≤ ‖F∞‖1;(2.4.6)

‖F∞‖1 = ‖ f ‖1.(2.4.7)

The inequality (2.4.6) follows from Doob’s Maximal inequality for continuous time mar-
tingales [8]. Observe the following lower estimate for F̃∗:

F̃∗ = sup
(n,t)∈T

‖F̃n,t‖X ≥ sup
1≤n≤N

‖F̃k,τk‖X = sup
n

∥∥∥ n∑
k=1

d̃k(c1,τ1 , . . . , cm,τm )
∥∥∥

X
.

From this, (2.4.4) follows directly using the uniform distribution of complex Brownian
motion starting at the origin and hitting T. Similarly, (2.4.7) follows from the uniform
distribution of complex Brownian motion starting at the origin and hitting T. All that
remains is the proof of (2.4.5).

3 A Good-λ Inequality and the Proof of (2.4.5)

Remark 3.1 Lemma (3.4) is our version of a “Good-λ” inequality. In the case of scalar-
valued functions treated in [7] and [3], if F is real-valued, one uses the complex analytic
function G = F + iF̃, and the identity |G|2 = |F|2 + |F̃|2. However, for vector-valued
functions there is no corresponding relation between F and G. Thus, our approach uses
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Lemma (3.2) as a means to deal with F̃∗ directly. The proof of Lemma (3.2) is a natural
adaptation of Garling’s arguments in [9] for harmonic conjugation on T. We include the
details for the completeness of the exposition.

Lemma 3.2 Suppose that X is a UMD space and that ν1 and ν2 are stopping times taking
values in T∪{∞} such that ν1 ≤ ν2 a.e. Letting F and F̃ be as above, then for each 1 < p <∞
there exists C p independent of N so that the following holds:

C−1
p ‖Fν2 − Fν1‖p ≤ ‖F̃ν2 − F̃ν1‖p ≤ C p‖Fν2 − Fν1‖p.(3.2.1)

Proof of Lemma (3.2) By the construction of the process, when we apply Ito’s formula for
stochastic integrals, we obtain the following:

Fn,t =
n−1∑
k=1

(∫ (k,τk)

(k,0)

∂dk

∂xk
(c1,τ1 , . . . , ck,sk ) dak,sk +

∫ (k,τk)

(k,0)

∂dk

∂yk
(c1,τ1 , . . . , ck,sk ) dbk,sk

)

+

∫ (n,t∧τn)

(n,0)

∂dn

∂xn
(c1,τ1 , . . . , cn,sn ) dan,sn +

∫ (n,t∧τn)

(n,0)

∂dn

∂xn
(c1,τ1 , . . . , cn,sn ) dbn,sn .

Note that the second order terms vanish due to the harmonicity of f . Since ν2 ≥ ν1, we
find the following representation:

Fν2 − Fν1 =
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂dk

∂xk
dak,sk +

∫ (k,τk)∧ν2

(k,0)∨ν1

∂dk

∂yk
dbk,sk

)
.(3.2.2)

Further note that the natural analog of (3.2.2) holds for F̃. Observe that dk and d̃k satisfy
the Cauchy-Riemann equations applied to coordinate k, i.e,

∂dk

∂xk
=
∂d̃k

∂yk
and

∂dk

∂yk
= −
∂d̃k

∂xk
.(3.2.3)

Let {a ′k,t}
N
k=1 ∪ {b

′
k,t}

N
k=1 denote a collection of 2N independent real Brownian motions

which are also independent of {ak,t}N
k=1 ∪ {bk,t}N

k=1 and satisfy E(a ′n,t
2) = E(b ′n,t

2) = t
for k = 1, . . . ,N . From Garling’s characterization of UMD spaces, [9, Theorem 2 ′], and
(3.2.3) it follows that there exists a constant c ′p which depends only upon X and p such that
the following inequalities hold:

‖Fν2 − Fν1‖p =

∥∥∥∥∥
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂dk

∂xk
1[ν1,ν2] dak,sk +

∫ (k,τk)∧ν2

(k,0)∨ν1

∂dk

∂yk
1[ν1,ν2] dbk,sk

)∥∥∥∥∥
p

=

∥∥∥∥∥
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂yk
1[ν1,ν2] dak,sk +

∫ (k,τk)∧ν2

(k,0)∨ν1

−
∂d̃k

∂xk
1[ν1,ν2] dbk,sk

)∥∥∥∥∥
p

≤ c ′p

∥∥∥∥∥
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂yk
da ′k,sk

+

∫ (k,τk)∧ν2

(k,0)∨ν1

−
∂d̃k

∂xk
db ′k,sk

)∥∥∥∥∥
p

= c ′p

∥∥∥∥∥
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂xk
d(−b ′k,sk

) +

∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂yk
da ′k,sk

)∥∥∥∥∥
p

.
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But, {a ′k,t}
N
k=1 ∪ {−b ′k,t}

N
k=1 is again a collection of real Brownian motions which are inde-

pendent of {ak,t}N
k=1 ∪ {bk,t}N

k=1. Thus, [9, Theorem 2 ′] further implies the following:

‖Fν2 − Fν1‖p ≤ (c ′p)2

∥∥∥∥∥
N∑

k=1

(∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂xk
dak,sk +

∫ (k,τk)∧ν2

(k,0)∨ν1

∂d̃k

∂yk
dbk,sk

)∥∥∥∥∥
p

.

Thus, we have proved the left-hand inequality in (3.2.1) with C p = (c ′p)2; the right-hand
inequality follows from a virtually identical argument.

Remark 3.3 That (2.4.1) holds with constant independent of N will depend heavily on the
fact that C p in (3.2.1) is independent of N . This is because the constants which arise in the
sequel will be determined by C p for p = 2 and p = 4.

Lemma 3.4 With the notation as above, let α ≥ 1 and β > 1. Then there exists c = c(α, β)
such that whenever λ > 0 satisfies

P(F̃∗ > λ) ≤ αP(F̃∗ > βλ),(3.4.1)

then,

P(F̃∗ > λ) ≤ cP(cF∗ > λ).(3.4.2)

Proof of Lemma (3.4) Let ν1 and ν2 be given by

ν1 = inf{(k, t) : ‖F̃k,t‖X > λ} and ν2 = inf{(k, t) : ‖F̃k,t‖X > βλ},

respectively, with the convention that inf(∅) = 0. Using the notation of (3.2), we find that
if λ satisfies (3.4.1), then

E(1F̃∗>λ‖Fν2 − Fν1‖
2
X) = ‖Fν2 − Fν1‖

2
2 ≥ C−2

2 ‖F̃ν2 − F̃ν1‖
2
2

≥ C−2
2 (βλ− λ)2P(F̃∗ > βλ)

≥ C ′λ2P(F̃∗ > λ).

(3.4.3)

On the other hand,

E(1F̃∗>λ‖Fν2 − Fν1‖
4
X) = ‖Fν2 − Fν1‖

4
4 ≤ C4

4‖F̃ν2 − F̃ν1‖
4
4 ≤ C ′′λ4P(F̃∗ > λ).(3.4.4)

Hence, by [12, V.8.26] there exists c > 0 satisfying

P(F̃∗ > λ) ≤ cP(c‖Fν2 − Fν1‖X > λ).

At this point, (3.4.2) follows by noting that ‖Fν2 − Fν1‖X ≤ 2F∗.

Proof of (2.4.5) We observe that since A = ‖F̃∗‖∗1,∞ < ∞, we may choose λ0 > 0 such

that 2λ0P(F̃∗ > 2λ0) ≥ A/2. Meanwhile, λ0P(F̃∗ > λ0) ≤ A. Thus, we have

P(F̃∗ > λ0) ≤
A

λ0
≤ 4P(F̃∗ > 2λ0).

Therefore, (3.4.1) holds with α = 4 and β = 2. Letting c = c(4, 2), one can show that
(3.4.2) implies that (2.4.5) holds with C = 4c2.
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