SOME FORMULAS INVOLVING RAMANUJAN SUMS

C. A. NICOL

Introduction. The purpose of this note is to establish an identity involving the cyclotomic polynomial and a function of the Ramanujan sums. Some consequences are then derived from this identity.

For the reader desiring a background in cyclotomy, (2) is mentioned. Also, (4) is intimately connected with the following discussion and should be consulted.

Preliminaries. The cyclotomic polynomial $F_{n}(x)$ is defined as the monic polynomial whose roots are the primitive nth roots of unity. It is well known that

$$
F_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)} .
$$

For the proof of Corollary 3.2 it is mentioned that $F_{n}(0)=1$ if $n>1$ and that $F_{n}(x)>0$ if $|x|<1$ and $1<n$.

The Ramanujan sums are defined by

$$
C_{n}(k)=\sum_{(r, n)=1} \exp (2 \pi i r k / n)
$$

where the sum is taken over all positive integers r less than or equal to n and relatively prime to n. It is also well known that

$$
C_{n}(k)=\sum_{d|n, d| k} d \mu(n / d)
$$

where the sum is taken over all positive divisors d common to n and k.
Hereafter p shall denote a prime.
Theorem 3.1. If $F_{n}{ }^{\prime}(x)$ is the derivative of $F_{n}(x)$, then

$$
\sum_{k=1}^{n} C_{n}(k) x^{k-1}=\left(x^{n}-1\right) F_{n}^{\prime}(x) / F_{n}(x) .
$$

Proof. Differentiating equation 2.1 we have

$$
F_{n}^{\prime}(x) / F_{n}(x)=\sum_{d!n} \mu(n / d) d x^{d-1} /\left(x^{d}-1\right) .
$$

Multiplying both sides of this equation by $x^{n}-1$ and expressing the right side as "polynomial we have

$$
\left(x^{n}-1\right) F_{n}^{\prime}(x) / F_{n}(x)=\frac{1}{x} \sum_{d \mid n} d \mu(n / d) \sum_{n=0}^{n / d-1} x^{n-h d}
$$

[^0]The coefficient of x^{k} will consist of all those terms for which $k=n-h d$ where $d \mid n$ and $0 \leqslant h<n / d$. Since $d \mid n$, then $d \mid k$ and as d ranges over all divisors of n only those d will appear which also divide k so that the coefficient of x^{k} will be simply

$$
\sum_{d|k, d| n} d \mu(n / d)
$$

But from 2.3 this is $C_{n}(k)$ and our proof is complete.
Corollary 3.1. If x is an integer, then

$$
x\left(x^{p-1}-1\right) F_{p-1}^{\prime}(x) / F_{p-1}(x) \equiv\left\{\begin{array}{r}
-1 \\
0
\end{array} \quad \bmod p\right.
$$

according as x is or is not a primitive root modulo p.
Proof. Vandiver and the author (3) have shown the following:
The only incongruent integral roots of the congruence

$$
\sum_{t=1}^{p-1} x^{t} C_{p-1}(t)+1 \equiv 0 \quad \bmod p
$$

are the $\phi(p-1)$ incongruent primitive roots $\bmod p$ and the only incongruent integral roots of the congruence

$$
\sum_{t=1}^{p-1} x^{t} C_{p-1}(t) \equiv 0 \quad \bmod p
$$

are the integers in the least positive residue class modulo p which are not primitive roots of p.

This result with Theorem 3.1 finishes our proof.
Corollary 3.2. If $|x|<1$ and $1<n$, then

$$
F_{n}(x)=\exp \left(-\sum_{k=1}^{\infty} C_{n}(k) x^{k} / k\right)
$$

Proof. From equation 3.1 we write

$$
-\sum_{k=1}^{n} C_{n}(k) x^{k-1} /\left(1-x^{n}\right)=F_{n}^{\prime}(x) / F_{n}(x)
$$

If $|x|<1$ and $1<n$ expand $x^{k-1} /\left(1-x^{n}\right)$ into a power series and integrate both sides of the last equation. This yields

$$
-\log F_{n}(x)=\sum_{k=1}^{n} C_{n}(k) \sum_{n=0}^{\infty} x^{h n+k} /(h n+k)
$$

Finally noting that $C_{n}(k)=C_{n}(h n+k)$ for $h=0,1,2, \ldots$, the proof is complete.
O. Hölder (1) has shown that the series $\sum_{k=1}^{\infty} C_{n}(k) x^{k} / k$ converges for
$x=1$ and thus 3.3 is true for $x=1$. Using the fact that $\log F_{n}(1)=\Lambda(n)$ a proof of Ramanujan's classical result (5)
3.4

$$
\sum_{k=1}^{\infty} C_{n}(k) / k=-\Lambda(n)
$$

for $n>1$ is immediate.

References

1. O. Hölder, Zur Theorie der Kreisteilungsgleichung, Prace. Mat.-Fiz., 43 (1936), 13-23.
2. Trygve Nagell, Introduction to number theory (New York, 1951).
3. C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Nat. Acad. Sci., 40 (1954), 825-835.
4. K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sums $\mathrm{C}_{\mathrm{m}}(\mathrm{n})$, Proc. Indian Acad. Sci., 20 (1944), 62-69.
5. S. Ramanujan, On certain trigonometrical sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc., 22, no. 13 (1918), 259-276.

University of Oklahoma
and
University of South Carolina

[^0]: Received July 5, 1961. This research was supported by NSF-G13561.

