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Poiseuille flow of a Bingham fluid in a channel
with a superhydrophobic groovy wall
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Plane Poiseuille flow of a Bingham fluid in a channel armed with a superhydrophobic
(SH) lower wall is analysed via a semi-analytical model, accompanied by complementary
direct numerical simulations (DNS). The SH surface represents a groovy structure with
air trapped inside its cavities. Therefore, the fluid adjacent to the wall undergoes stick–slip
conditions. The model is developed based on introducing infinitesimal wall-induced
perturbations into the motion equations, followed by Fourier series expansions, and solving
the resulting equations as a boundary value problem. The Navier slip law accounts for
the slip at the liquid/air interface (assuming the Cassie state). The presented analysis is
fairly comprehensive, covering the creeping and inertial regimes for thick channels (via the
semi-analytical and DNS solutions). The main dimensionless numbers are the Reynolds
(Re), Bingham (Bi) and slip (b) numbers, as well as the groove periodicity length (�) and
the slip area fraction (ϕ). By increasing Bi, the perturbation and slip velocity fields grow.
As Re increases, the perturbation and slip velocity fields become asymmetric. For certain
flow parameters, an unyielded plug zone may appear on the SH wall liquid/air interface,
while its formation is accelerated by inertial effects. The results classify the regimes of
creeping and inertial flows via predicting the onset of the unyielded plug zone formation
at the SH wall.

Key words: plastic materials, microfluidics

1. Introduction

Viscoplastic materials are a branch of non-Newtonian fluids showing a threshold for the
applied stress, called the yield stress. For applied stresses larger than the yield stress,
the material deforms as a viscous fluid; when the applied stresses are smaller than the
yield stress, the material behaves as a rigid solid (Bonn et al. 2017). In this context,

† Email address for correspondence: Seyed-Mohammad.Taghavi@gch.ulaval.ca

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 948 A34-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:Seyed-Mohammad.Taghavi@gch.ulaval.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.700&domain=pdf
https://doi.org/10.1017/jfm.2022.700


H. Rahmani and S.M. Taghavi

the term ‘viscoplastic materials’ refers typically to those that exhibit only viscous and
plastic properties. On the other hand, as discussed in detail by Thompson, Sica & de
Souza Mendes (2018), the term ‘yield stress materials’ may refer to those that show
additional properties beside the yield stress threshold, such as elasticity, thixotropy and so
on. There are many fluids with proven yield stress behaviour, including waxy crude oils,
foamed cement and cement slurries, many food products (e.g. chocolate cream and jam),
cosmetic products (e.g. moisturizing cream) and so on (Balmforth, Frigaard & Ovarlez
2014). Biological materials (e.g. mucus and mammalian blood) also exhibit the yield stress
rheology, suggesting new problems in physiological sciences, biomedical applications and
microfluidic technologies (Balmforth et al. 2014; Burinaru et al. 2018; Horner, Wagner &
Beris 2021).

Superhydrophobic (SH) surfaces are created via adding micro- and nano-scale
protrusions onto hydrophobic surfaces, in order to decrease the surface wettability and,
hence, improve the slippery motion (Koch & Barthlott 2009). Groovy structures are among
most well-known protrusions, experimentally created on hydrophobic surfaces (Lee, Choi
& Kim 2016), allowing us to trap gas (usually air), causing a fluid slippage on these
surfaces (Rothstein 2010; Lee et al. 2016). Considering an SH wall, the condition at which
air is trapped between the liquid and the groovy wall is called the Cassie state. However, in
some conditions, the trapped air escapes and the liquid penetrates into the groove, fills the
cavity and forms the Wenzel state (Lee et al. 2016; Hardt & McHale 2022). In this context,
there are several possible scenarios for the liquid/air interface, summarized as follows: (i)
the liquid/air interface is nearly flat and pinned at the edges of the groove (ideal Cassie
state) (Hodes et al. 2017; Arenas et al. 2019; Tomlinson & Papageorgiou 2022); (ii) the
interface is deformed towards the groove or towards the main flow while it is pinned at the
groove edges (Crowdy 2017b; Game, Hodes & Papageorgiou 2019); (iii) the liquid partially
fills the groove and the liquid/air interface is in contact with the side and bottom walls of
the groove (and the interface is not anymore pinned to the groove edges) (Giacomello
et al. 2012; Papadopoulos et al. 2013; He et al. 2021). The occurrence of these situations is
mostly dependent on the flow parameters and the surface properties, including the system
pressure, surface tension and the fluid’s rheology (Tsai et al. 2009; Papadopoulos et al.
2013; Annavarapu et al. 2019; Rofman et al. 2020; He et al. 2021).

Several experimental studies (Manukyan et al. 2011; Papadopoulos et al. 2013) have
found large deformations and deflections of the liquid/air interface at the SH wall.
However, in several other experiments, small values for the deflection of the liquid/air
interface have been reported (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Kirk,
Hodes & Papageorgiou 2017). In a series of experiments conducted by Ou et al. (2004),
the pressure drop and flow rate have been measured for a pressure-driven flow through
a microchannel with one SH wall decorated with cubic micro-posts (30 μm tall, 30 μm
thick and spaced at 30 μm), with the channel height varying between 76 and 257 μm.
They have found the maximum deflection to be ∼3 μm for the liquid/air interface, i.e.
relatively small compared with the period of the micro-posts (which is 60 μm). Presenting
a universal law, Annavarapu et al. (2019) have demonstrated that the shape and geometry
of the SH microstructures can affect the deflection of the liquid/air interface. They have
shown that the deflection of the liquid/air interface is proportional to the second power of
the microstructure edge to the edge length. They have also proven that the critical Laplace
pressure at which the wetting transition occurs changes with the microstructure geometry
and shape (Annavarapu et al. 2019). In particular, the Cassie state can be stabilized with
having larger microstructure depths and smaller widths of the liquid/air interface (smaller
slip area fractions) (He, Patankar & Lee 2003; Zhao & Yuan 2015; Annavarapu et al. 2019).
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Poiseuille flow of a Bingham fluid

In another series of studies, the channel height has been carefully adjusted to maintain a
flat liquid/air interface in molecular dynamics simulations (Bao, Priezjev & Hu 2020; Ren
et al. 2021). Using certain microtrench SH surfaces, the Cassie state has been stabilized
for turbulent flows (Xu et al. 2020, 2021). In addition, Choi et al. (2021) have proposed
flexible overhangs of re-entrant structures to stabilize the Cassie state. Also, Zhang et al.
(2017) have tuned the roughness of a carbon nanotube surface, producing a new surface
showing SH properties with a stable Cassie state. It has also been demonstrated that
SH surfaces with low intrinsic wettability show high resistance to the undesired Wenzel
state; this is due to a weak attractive force between the fluid molecules and the substrate
atoms (Verplanck et al. 2007; Zhang, Wang & Wang 2019). These recent studies have
demonstrated the important role of the shape and geometry of the microstructures, the
surface intrinsic wettability and the channel height for confined flows in controlling the
deflection of the liquid/air interface and maintaining a stable Cassie state.

Considering numerous applications of SH surfaces in microfluidic technology (Belyaev
& Vinogradova 2010; Tsai 2013; Lee et al. 2016; Qi et al. 2019), in some scenarios,
the rheology of fluids flowing in microfluidic devices exhibits yield stress characteristics
(Burinaru et al. 2018; Gao et al. 2020). For example, human blood is a prevalent fluid
synthesized in microfluidic devices, e.g. for disease diagnosis (Choi et al. 2012; Burinaru
et al. 2018). Human blood’s yield stress originates from complex interactions between red
blood cells, leading to the formation of a three-dimensional network of rouleaux at low
shear rates. Rouleaux formation and break up is also responsible for blood’s thixotropy
(Giannokostas et al. 2020, 2021; Beris et al. 2021; Horner et al. 2021). New rheometers
have been designed by the use of microfluidic technologies, e.g. to analyse the rheology
of concentrated solutions of microgel particles in microchannels involving a yield stress
(Nghe et al. 2011).

Let us briefly mention some of the existing studies on viscoplastic fluid flows with
homogeneous slip boundary conditions, which can occur on a hydrophobic or hydrophilic
surface, assuming that the viscoplastic fluid slides on the solid wall. The flow of
Herschel–Bulkley fluids in channels with wall slip has been analytically studied for
symmetric (Ferrás, Nóbrega & Pinho 2012) and asymmetric (Panaseti & Georgiou 2017;
Panaseti et al. 2017) slip configurations. These works have analysed the viscoplastic fluid
velocity profile using different slip models, including the linear and nonlinear Navier,
empirical asymptotic and Hatzikiriakos slip models. The axial flow of a Bingham fluid
through concentric annulus with wall slip has been analytically addressed by Kalyon &
Malik (2012). Taghavi (2018) has studied multilayer flows of viscoplastic fluids in a narrow
channel with symmetric and asymmetric wall slip conditions, evaluating the role of the
different slip configurations on the overall flow picture. The stability of plane Poiseuille
flow of Bingham fluids with wall slip has been recently studied, revealing stabilizing
and destabilizing effects of the streamwise and spanwise slip conditions, respectively
(Rahmani & Taghavi 2020).

Regardless of the boundary conditions (e.g. slip or no slip), viscoplastic fluid flows
are numerically studied using two main approaches i.e. the regularization and augmented
Lagrangian methods, both of which are typically implemented in finite element/volume
discretizations (Saramito & Wachs 2017). Knowing the fact that, for an ideal viscoplastic
fluid, the effective viscosity becomes infinite at the yield surface and within the plug,
in the regularization approach the infinite viscosity is replaced by a very high value,
following a viscosity function (Frigaard 2019; Wachs 2019), e.g. as implemented in
the well-known Papanastasiou regularization model (Putz, Frigaard & Martinez 2009).
In the augmented Lagrangian method, on the other hand, the motion equations are

948 A34-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.700


H. Rahmani and S.M. Taghavi

formulated based on variational calculus and the flow solution is determined via an
optimization algorithm (Saramito & Roquet 2001). The augmented Lagrangian method
has been enhanced in recent years to provide a faster solution convergence (Saramito 2016;
Treskatis, Moyers-González & Price 2016; Dimakopoulos et al. 2018). For instance, a fast
converging and efficient algorithm based on a monolithic Newton solver for the augmented
Lagrangian is proposed by Dimakopoulos et al. (2018) and tested via solving for five
benchmark problems. Recently proposed accelerated augmented Lagrangian methods have
been evaluated by Treskatis et al. (2018) and practical guides for efficient simulation of
viscoplastic fluid flows have been presented.

While the augmented Lagrangian method is more accurate in capturing yield surfaces
(Putz et al. 2009; Balmforth et al. 2014), the regularization method is generally faster
(Muravleva et al. 2010; Dimakopoulos, Pavlidis & Tsamopoulos 2013; Saramito & Wachs
2017), making it suitable to deal with a large number of simulations. The Papanastasiou
regularization model has been successfully used in numerous studies, e.g. to address
the Poiseuille flow of viscoplastic fluids in ducts with wall slip (Damianou et al. 2014;
Damianou & Georgiou 2014; Damianou, Kaoullas & Georgiou 2016); in these works,
the yield surfaces appearing at the centre and corners of the duct have been accurately
captured.

The slip modelling for Newtonian fluid flows over SH groovy surfaces has been typically
studied for two special cases, i.e. longitudinal and transverse groove configurations. In
the former case, the flow direction is the same as that of the grooves and the effective
slip length is given typically by b̂‖

eff . However, in the transverse groove configuration,
the flow direction is perpendicular to that of the grooves and the effective slip length is
usually symbolized by b̂⊥

eff . For an ideal slippery condition on a liquid/gas interface (the
Cassie state with no meniscus curvature), the pressure-driven flow has been studied by
several researchers (Philip 1972; Lauga & Stone 2003; Cottin-Bizonne et al. 2004) and
the effective slip length has been formulated as b̂⊥

eff = (L̂/2π) ln[sec(πϕ/2)] (Belyaev &

Vinogradova 2010), where L̂ is the periodicity length of the grooves and ϕ is the fraction
of the liquid/gas interface. A more realistic model called the gas cushion model has been
originally presented by Vinogradova (1995) to predict the local slip at the slipping area
(i.e. the liquid/gas interface), in the form of b̂ = ê(μ̂/μ̂a − 1) ≈ ê(μ̂/μ̂a), where ê is the
gas layer thickness, and μ̂ and μ̂a represent the liquid and gas viscosities, respectively.
An effective slip length model for the pressure-driven flow of Newtonian fluids over
rectangular stripes has been presented by Belyaev & Vinogradova (2010), solving the
Poisson and Laplace equations for the slip-induced perturbations of the streamfunction
and vorticity, respectively, leading to formulas for the longitudinal and transverse slip
lengths. The limits of thick and thin channels have been considered in the modelling
of flows over groovy surfaces, albeit mainly for Newtonian fluids. For thick channels,
Asmolov et al. (2013b) have developed an effective slip length model for a Newtonian
shear-driven flow over weakly slipping rectangular stripes. Assuming the local slip length
to be small in comparison with the scale of the heterogeneities, they have perturbed
the Stokes equation, considered a linear Navier slip model, and developed a Fourier
series solution for the perturbation velocity, eventually allowing them to calculate the slip
velocity and lengths using a stick–slip boundary condition. Schmieschek et al. (2012) have
generalized a tensorial effective slip theory, initially developed for thick channels, to any
channel thickness. They have considered an asymmetric flow (i.e. no slip at the upper wall
and groovy structures at the lower wall), along with the perturbed Stokes equation and the
Navier slip law, as the governing equations; this has led to a Fourier series solution yielding
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trigonometric dual series (with exact solutions at the limit of thin and thick channels),
describing the complete physics of the slip. Several other analytical efforts have been made
to address the flow of Newtonian fluids over SH surfaces, to which an interested reader can
refer (Asmolov & Vinogradova 2012; Asmolov et al. 2013a; Schönecker, Baier & Hardt
2014; Asmolov, Nizkaya & Vinogradova 2020).

Using computational fluid dynamics tools (e.g. in-house codes, Fluent, COMSOL
Multiphysics, OpenFOAM, etc.), there are several numerical studies addressing the flow
of Newtonian fluids over SH textures. For instance, Cheng, Teo & Khoo (2009) have
addressed a pressure-driven flow through channels with SH surfaces (patterned with
square posts), using a combined finite volume–finite difference method. Davies et al.
(2006) have performed numerical simulations of the flow through microchannels with
SH walls having transverse ribs, reporting a significant decrease in the frictional pressure
drop and an increase in the slip velocity compared with the classical Poiseuille flow with
smooth walls. Ou & Rothstein (2005) have analysed similar flows over SH surfaces,
finding good agreement between the results of their numerical simulations and those
of micro-particle image velocimetry experiments. Priezjev, Darhuber & Troian (2005)
have simulated Newtonian Couette flow with an SH patterned stationary wall, using both
the finite element method (for solving the Navier–Stokes equations) and the molecular
dynamics method (to quantify the effective slip length). They have reported a reasonable
agreement between the results of these simulation methods when the ratio of the slip
region width to the molecular diameter is large. A few studies have also considered
shear-thinning flows over SH surfaces. For instance, using the Carreau–Yasuda model,
Patlazhan & Vagner (2017) have numerically studied the apparent slip of shear-thinning
fluids in microchannels with SH groovy walls. They have simplified the flow into three
regions, i.e. the core region as well as the stick and slip thin regions, each with a different
viscosity, resulting in an estimation of the effective slip length. Haase et al. (2017) have
performed numerical simulations of a pressure-driven flow of a shear-thinning fluid over
a bubble mattress, representing an SH surface on which no-slip walls and no-shear gas
bubbles are transversely positioned. They have found a general increase in the effective
slip length for their shear-thinning fluid in comparison with a Newtonian fluid. In addition
to the aforementioned numerical studies, there are several other works attempting to
numerically model the slip phenomenon over SH surfaces using molecular dynamics
simulations (Cottin-Bizonne et al. 2004), dissipative particle dynamics methods (Asmolov
et al. 2013b) and lattice Boltzmann simulations (Schmieschek et al. 2012).

Our brief review of the relevant studies so far has revealed that the literature of fluid
flows over SH surfaces is well developed for Newtonian fluids, covering various flow
scenarios and SH surface configurations, using analytical, numerical and experimental
approaches. However, in spite of numerous applications of non-Newtonian fluids over SH
surfaces (Crowdy 2017a; Haase et al. 2017; Kim et al. 2021), the relevant literature is
limited only to a few shear-thinning fluid studies. In fact, to the best of our knowledge,
the flow of viscoplastic materials over SH surfaces, as an important category of
non-Newtonian fluids, has not yet been fundamentally studied, despite its existing and
potential applications (Burinaru et al. 2018; Gao et al. 2020; Ijaola, Farayibi & Asmatulu
2020; Li et al. 2021). Via analysing plane Poiseuille flow of a Bingham fluid in a channel
with an SH groovy lower wall, in the current work, we attempt to address this problem
for the first time. In particular, assuming a flat liquid/air interface (i.e. the Cassie state),
we develop a semi-analytical model based on considering infinitesimal wall-induced
perturbations in the flow system and, then, solving the resulting equations using the Fourier
series expansion method. We also use complementary OpenFOAM direct numerical
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2Ĥ
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Figure 1. Schematic of the flow configuration. In this figure, dimensional geometrical parameters are shown.
Here, and throughout the text, the dimensional parameters and variables are marked with ‘ˆ’ and the
dimensionless ones without.

simulations (DNSs), to validate our semi-analytical model results and elucidate the flow
details and physics. Our analysis, including a combination of semi-analytical and DNS
solutions, is fairly comprehensive, as it considers a range of thicknesses for thick channels
and both creeping and inertial flow regimes, while providing regime classifications. In our
analysis, the channel thickness is defined using the ratio between the dimensional values
of the groove period (L̂) and the half-channel height (Ĥ, see figure 1); when Ĥ � L̂ the
channel is assumed to be thick, while for Ĥ � L̂ the channel is thin.

The outline of the present work is as follows. Section 2 introduces the governing
equations of our flow system. In § 3, the semi-analytical model is first developed for the
perturbation fields of the creeping and inertial flow regimes, for the thick channel limit.
The total flow profile is then calculated at the end of this section. Section 4 presents
the method for the complementary DNSs, including the numerical schemes and set-up
(the computational mesh is presented in § 3 of online supplementary material available at
https://doi.org/10.1017/jfm.2022.700). The results of our analysis are presented in § 5, for
the thick channel limit (via the semi-analytical and DNS solutions). Afterwards, a criterion
for the unyielded plug zone formation at the SH wall, followed by a regime classification,
are presented. Finally, § 6 presents the summary and concluding remarks of the paper.

2. Governing equations

This section presents the governing equations for our plane Poiseuille flow of a Bingham
fluid, in a two-dimensional (2-D) channel with an SH lower wall. This asymmetric flow
configuration (with the lower boundary as an SH groovy wall and the upper wall with the
no-slip condition) is studied due to practical considerations: in practice, a channel with
two symmetrically aligned groovy walls (typically micro-nano sized grooves) is difficult
to construct (Schmieschek et al. 2012). At the SH wall, the transverse groovy structure is
considered, while the main flow direction is normal to the groove direction. The schematic
of the flow under study is presented in figure 1. Based on this figure, L̂ is the periodicity
length of the grooves, δ̂ represents the width of the liquid/air interface, ĥ and ĥu are the
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SH wall distances from the lower and upper yield surfaces (i.e. the boundaries between the
yielded zones and the unyielded centre plug zone), respectively, and Ĥ is the half-channel
height. The coordinate origin is placed at the centre of the liquid/air interface on the SH
wall.

The dimensionless continuity and momentum balance equations in two dimensions are
presented as

∇ · U = 0, (2.1)

Re
[
∂U
∂t

+ (U · ∇)U
]

= −∇P + ∇ · τ , (2.2)

where t is the time and U = Uex + Vey is the dimensionless velocity vector for which
U and V are the velocity components in the ex and ey directions, respectively. In
addition, the other variables are the pressure (P) and the deviatoric stress tensor (τ ). To
obtain the dimensionless form of the equations of motion, the half-channel height (Ĥ)
has been considered as the characteristic length and the average velocity (Ûave) as the
characteristic velocity; the pressure and stress fields have been made dimensionless using
the characteristic viscous stress, i.e. τ̂ch = μ̂p(Ûave/Ĥ), where μ̂p is the plastic viscosity.
Subsequently, the Reynolds number is defined as

Re = ρ̂ÛaveĤ
μ̂p

, (2.3)

where ρ̂ is the fluid density.
To model the viscoplastic fluid rheology, the Bingham constitutive equation is used. The

dimensionless form of the Bingham model is presented as

τ =
(

1 + Bi
γ̇

)
γ̇ , τ > Bi,

γ̇ = 0, τ ≤ Bi,

⎫⎪⎬
⎪⎭ (2.4)

where γ̇ = ∇u + (∇u)T is the strain-rate tensor, and τ = √
τijτij/2 and γ̇ = √

γ̇ ijγ̇ ij/2 are
the magnitudes of the stress and strain-rate tensors, respectively. The Bingham number,
representing the ratio of the yield stress (τ̂0) to the characteristic viscous stress (τ̂ch), is
defined as

Bi = τ̂0Ĥ

μ̂pÛave
. (2.5)

2.1. No-slip Poiseuille–Bingham flow profile
For a laminar 2-D channel Poiseuille flow with no-slip conditions at both walls, the flow
pressure (P0) and velocity (U0) can be analytically obtained, by solving the dimensionless
equations (2.1) and (2.2). Due to the symmetry with respect to the channel axis in the
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no-slip condition case, it suffices to derive the solution for the lower half of the channel

P0 = −τwx + const., (2.6)

U0( y) =
{

C1y + C2y2, 0 ≤ y ≤ h,
C3, h ≤ y ≤ 1, (2.7)

where C1 = τw − Bi, C2 = −τw/2 and C3 = (τw − Bi)2/2τw. Here, h is the location of
the lower yield surface with respect to the lower wall. The wall shear stress, τw (at y = 0),
is the largest positive root of the following equation (refer to Frigaard & Ryan (2004) for a
similar equation):

2τ 3
w − (3Bi + 6)τ 2

w + Bi3 = 0. (2.8)

After finding the wall shear stress (τw), the location of the lower yield surface (h),
representing the boundary between the lower yielded zone and the unyielded centre plug
zone, can be calculated by

h = 1 − Bi
τw
. (2.9)

2.2. Slip modelling

2.2.1. Slip origin
In our flow configuration, a layer of air trapped inside the wall grooves causes the bulk flow
slippage on the liquid/air interface. On the other hand, the no-slip condition is considered
for the liquid/solid contact at the SH wall and the upper wall. Shear stress at the flat
liquid/air interface (i.e. the Cassie state assumption) is obtained as

τ̂la = μ̂a
ûs

ε̂
, (2.10)

where τ̂la and ûs are the shear stress and the slip velocity at the liquid/air interface,
respectively. Also, μ̂a is the dynamic viscosity of air and ε̂ represents an average
characteristic length for the air layer through which the air velocity reaches zero. Based on
(2.10), the linear Navier slip law at the liquid/air interface is retrieved

ûs = b̂τ̂la, where b̂ = ε̂

μ̂a
. (2.11)

In our study, b̂ is called the dimensional slip number and, as a parameter, it is generally
dependent on the air flow dynamics inside the grooves. In particular, the slip number
is strongly dependent on the value of ε̂, while this value is under the influence of the
Poiseuille flow dynamics inside the channel. To be more specific, the shear stress at the
liquid/air interface affects the air flow dynamics inside the grooves; thus, it changes the
values of ε̂ and, eventually, the slip number. Considering a groove as a cavity inside which
air flows, ε̂ can be affected by the groove dimensions as well. Throughout our study, we
simply work with the slip number and use a wide range of values for it, to be able to cover
any possible scenario regarding the values/ranges of ε̂.
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2.2.2. Slip model
Considering the continuity of the shear stress at the liquid/air interface, we rewrite
equation (2.11) based on the shear stress of the Bingham fluid at the liquid/air interface,
i.e. τ̂la = μ̂la ˆ̇γxy, to find the following equation:

ûs = b̂μ̂la ˆ̇γxy, (2.12)

where ˆ̇γxy is the flow shear strain rate at the liquid/air interface for the Bingham fluid.
In addition, μ̂la is the general viscosity of the Bingham fluid at the liquid/air interface,
defined as

μ̂la =
(
μ̂p + τ̂ 0

ˆ̇γ la

)
, (2.13)

where ˆ̇γla is the magnitude of the flow strain rate at the liquid/air interface (for the Bingham
fluid). Substituting equation (2.13) into (2.12), the following relation is obtained:

ûs = b̂

(
μ̂p + τ̂ 0

ˆ̇γ la

)
ˆ̇γxy. (2.14)

Making the above equation dimensionless, one can obtain

us = b
(

1 + Bi
γ̇ la

)
γ̇xy, (2.15)

where the dimensionless slip number, b, is defined as:

b = b̂μ̂p

Ĥ
. (2.16)

3. Semi-analytical model

In this section, our semi-analytical model is developed, at the steady-state condition, for
plane Poiseuille flow of a Bingham fluid, considering an SH groovy lower wall. The model
is developed for the flow in the thick channel limit, where the lower yield surface is
assumed to be flat. The solution is obtained based on perturbing the lower yielded zone,
via infinitesimal perturbations. Consequently, the perturbed governing equations for the
lower yielded zone are solved. To be comprehensive and systematic, a semi-analytical
model is first developed for the creeping flow regime (§ 3.1), where the inertial terms are
negligible in the momentum balance equation. Then, the semi-analytical model is extended
to include the inertial flow regime (§ 3.2), where a simplified version of the momentum
balance equation is assumed to govern the flow physics. After presenting the perturbation
fields in both creeping and inertial regimes, the total velocity profile is presented (§ 3.3).
For the simplicity of the analysis, throughout our semi-analytical derivation, the Bingham
fluid is assumed to have only a single unyielded region, i.e. the plug formed around the
channel centreline. Therefore, the solutions derived in §§ 3.1 and 3.2 concern the yielded
region only, while § 3.3 gives the total velocity for both yielded and unyielded regions.

3.1. Creeping flow
At small Reynolds numbers (Re � 1), the momentum balance equation governs a creeping
flow motion. The SH groovy wall induces infinitesimal perturbations in the flow, which
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eventually vanish at the lower yield surface (which is assumed to be flat for the thick
channel limit). The flow field can be perturbed based on the no-slip Poiseuille flow, i.e.
U = U0 + εu and P = P0 + εp, where u and p are the perturbation velocity and pressure,
respectively, and U and P are the total velocity and pressure, respectively. The perturbation
velocity vector, i.e. u = uex + vey, has two components in the x and y directions, i.e. u and
v, respectively. For the thick channel limit, the perturbation parameter can be defined as
ε = κ−1, where κ is the wavenumber of the groovy SH wall (κ = 2π/� and � = L̂/Ĥ).

Considering infinitesimal wall-induced perturbations, an anisotropic perturbation stress
tensor for the Bingham fluid can be derived, for which the components are shown at the
leading order as (Frigaard, Howison & Sobey 1994; Nouar et al. 2007)

τ ′
ij = μ(U0)γ̇ij(u) =

(
1 + Bi

|dU0/dy|
)
γ̇ij(u) if ij /= xy, yx, (3.1)

τ ′
ij = γ̇ij(u) if ij = xy, yx, (3.2)

where d is the ordinary derivative operator and i, j refer to the components of the
coordinate system.

Imposing infinitesimal wall-induced perturbations in the momentum balance equation
and having the perturbation stress components for the Bingham fluid (shown in (3.1) and
(3.2)), we can derive the perturbation equations in the x and y directions. We should recall
that the perturbation parameter is dropped in the obtained perturbation equations; thus,
we do not consider it in the following formulations and calculations. Taking the curl of
the perturbed equations and using the definition of the streamfunction for the perturbation
field (u = ∂ψ/∂y and v = −∂ψ/∂x), we obtain a fourth-order partial differential equation
for the perturbation streamfunction

∂4ψ

∂x4 + ∂4ψ

∂y4 +
(

2 + 4Bi
|dU0/dy|

)
∂4ψ

∂x2∂y2 − 4Bi
d2U0/dy2

(dU0/dy)2
∂3ψ

∂x2∂y
= 0. (3.3)

It is assumed that the perturbation field is periodic in the x direction, with the period
of the SH wall, i.e. � = L̂/Ĥ; thus, the solution for the perturbation streamfunction can be
written in a Fourier series form for the x component

ψ(x, y) =
∞∑

n=−∞
Anψ̂(n, y) einκx, (3.4)

where κ = 2π/�, representing the wavenumber for the SH groovy wall and An are the
unknown coefficients.

Before proceeding, note that in our analysis we have assumed that the period of the
perturbed flow is the same as the period of the SH surface. This assumption follows
several previous studies through the literature regarding the flow of Newtonian fluids over
SH surfaces with periodic microstructures (Lauga & Stone 2003; Belyaev & Vinogradova
2010; Asmolov & Vinogradova 2012; Schmieschek et al. 2012; Schnitzer & Yariv 2017).
However, we should also mention that this assumption may not be always valid. In
other words, considering the flow period to be the same as the period of geometry is
an assumption that requires further examination, e.g. through the Floquet–Bloch theory
(Pettas et al. 2019; Marousis et al. 2021; Rohan, Nguyen & Naili 2021).
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Poiseuille flow of a Bingham fluid

Substituting equation (3.4) into (3.3), while substituting for dU0/dy and d2U0/dy2 from
(2.7), we obtain a fourth-order ordinary differential equation for ψ̂

d4ψ̂

dy4 −
(

2 + 4Bi
C1 + 2C2y

)
n2κ2 d2ψ̂

dy2 + 8Bin2κ2 C2

(C1 + 2C2y)2
dψ̂
dy

+ n4κ4ψ̂ = 0. (3.5)

To close the boundary value problem, the following boundary conditions are considered
(n /= 0):

ψ̂(n, 0) = 0, ψ̂(n, h) = 0,
dψ̂
dy
(n, h) = 0,

d2ψ̂

dy2 (n, h) = 0. (3.6a–d)

Let us clarify the boundary conditions introduced above in (3.6a–d), which are
derived for non-zero modes of the Fourier expansion, i.e. n /= 0. Generally, the boundary
conditions for our problem originate from the following: (i) the no-penetration condition
at the SH wall (i.e. v = 0 at y = 0); (ii) the zero perturbation velocity at the lower
yield surface, i.e. u = 0 and v = 0 at y = h (Frigaard et al. 1994; Nouar et al. 2007);
(iii) the slip–stick condition at the SH wall. For n = 0, (3.5) reduces to d4ψ̂/dy4 = 0,
which has a quadratic function solution, the general form of which can be obtained
using the no-penetration condition at y = 0 and the zero perturbation velocities at
y = h, as boundary conditions. The first condition in (3.6a–d) satisfies the no-penetration
requirement at the SH wall for the non-zero Fourier terms. Since the zero-term solution
of ψ is only a function of y, the zero-term solution of v is always zero. Therefore, the
first condition that is applied to the non-zero Fourier modes is sufficient to satisfy the
no-penetration requirement at the SH wall. In a same way, the second boundary condition
ensures having v = 0 at the lower yield surface. The third boundary condition also ensures
a zero streamwise perturbation velocity (u = 0) at the lower yield surface. Finally, the
fourth boundary condition implies that the perturbation field rapidly decays away from
the SH wall in the y direction for the flow in the thick channel limit, consistent with the
assumption of a flat lower yield surface. In other words, assuming a flat lower yield surface
and a zero strain-rate magnitude at the yield surface for the Bingham fluids (see (2.4))
implies that each single non-zero Fourier mode of the perturbation shear gradient at the
lower yield surface must vanish (as the yield surface is flat and its location is independent
of x).

Equation (3.5) with the boundary conditions (3.6a–d) can be solved numerically for
thick channels. For the numerical scheme, a system of nonlinear equations is set up
and solved using a Runge–Kutta collocation method combined with a Newton method,
which is a fourth-order integration scheme to solve boundary value problems. The bvp4c
routine in MATLAB R2020a is used to implement the method and discretize our system
of nonlinear equations. Note that, as explained further below, in our flow configuration, h
is generally unknown and it is found based on an iterative method, using an initial value
based on the no-slip Poiseuille–Bingham channel flow.

Considering ψ̂n( y) = fn( y) (for n > 0) and combining the zero and non-zero Fourier
mode solutions, we write the simplified closed form solution of the perturbation
streamfunction and velocities as

ψ(x, y) = A0

(
y − y2

2h

)
+

∞∑
n=1

Anfn( y) cos(nκx), (3.7)
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u(x, y) = A0

(
1 − y

h

)
+

∞∑
n=1

Anf ′
n( y) cos(nκx), (3.8)

v(x, y) =
∞∑

n=1

Annκfn( y) sin(nκx), (3.9)

where ′ denotes the first derivative with respect to y; also, An(n = 0, 1, 2, . . .) are unknown
coefficients, which are obtained based on the slip–stick boundary condition.

The linear Navier slip law with a local slip number (b) is considered for the liquid/air
interface at the groovy wall, while the no-slip condition is assumed for the liquid/solid
interface. Consequently, the following boundary conditions are obtained at the groovy
wall:

u(x, 0)− b
(

Bi + dU0

dy
+ ∂u
∂y

)
y=0

= 0, 0 ≤ x ≤ ϕ�

2
, (3.10)

u(x, 0) = 0,
ϕ�

2
≤ x ≤ �

2
, (3.11)

where ϕ = δ̂/L̂ represents the fraction of one groove that is exposed to slip (also called the
slip area fraction). Substituting equations (2.7) and (3.8) into (3.10) and (3.11), we have

A0

(
1 + b

h

)
+

∞∑
n=1

An[f ′
n(0)− bf ′′

n (0)] cos(nκx) = b(Bi + C1), 0 ≤ x ≤ ϕ�

2
, (3.12)

A0 +
∞∑

n=1

Anf ′
n(0) cos(nκx) = 0,

ϕ�

2
≤ x ≤ �

2
, (3.13)

where ′′ refers to the second derivative with respect to y.
Equations (3.12) and (3.13) represent a dual series problem and, in contrast to their

corresponding dual series for Newtonian fluids in the thick and thin channel limits,
they have no closed form solution in their present form (see Sneddon 1966; Belyaev &
Vinogradova 2010). However, (3.12) and (3.13) can be solved using a similar technique to
that used in Schmieschek et al. (2012):

(i) Equation (3.12) is integrated in [0 x] and then multiplied by sin(mκx), where m is a
positive integer. Afterwards, the obtained equation is integrated in [0 ϕ�/2].

(ii) Equation (3.13) is multiplied by cos(mκx) and then integrated in [ϕ�/2 �/2].

Subsequently, a system of linear equations is obtained

N∑
n=0

PmnAn = Mm, (3.14)

in which An(n = 0, . . . ,N) are the unknown coefficients. The coefficient and constant
matrices for (3.14) are obtained as follows:

Pm0 =
(

1 + b
h

)∫ ϕ�/2

0
x sin(mκx) d x +

∫ �/2

ϕ�/2
cos(mκx) d x, (3.15)
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Poiseuille flow of a Bingham fluid

Pmn = 1
nκ

[f ′
n(0)− bf ′′

n (0)]
∫ ϕ�/2

0
sin(nκx) sin(mκx) d x

+f ′
n(0)

∫ �/2

ϕ�/2
cos(nκx) cos(mκx) d x, (3.16)

Mm = b(Bi + C1)

∫ ϕ�/2

0
x sin(mκx) d x. (3.17)

Solving the system of linear equations (3.14), we can calculate the unknown coefficients
of the solution, i.e. An. However, for our viscoplastic flow configuration, we need an extra
iterative approach in order to calculate the location of the lower yield surface (h), which
is affected by the slip condition at the SH wall; as we increase the slip number, we may
expect the yield surface to move towards the SH wall.

Considering the total flow obtained for the lower yielded zone, the magnitude of the
strain rate is now calculated as

γ̇ =
√(

∂U
∂y

+ ∂V
∂x

)2

+ 4
(
∂U
∂x

)2

, (3.18)

where U = U0 + u and V = v.
According to the Bingham model, at the yield surface, γ̇ must vanish. Having zero

perturbation velocities at the lower yield surface implies that ∂U/∂x and ∂V/∂x are always
zero at y = h. Therefore, the only requirement at the yield surface is to have ∂U/∂y = 0. To
obtain this, in every iteration we start the solution process from (3.5) and, after solving the
followed system of linear equations (3.14), we then check for the new location of the yield
surface (new h) at which ∂U/∂y = 0; we subsequently update the value of h. This iterative
approach continues until reaching a converged value for h such that |hnew − hold| < eps.
We realize that for eps = 10−6, only five to six iterations and for eps = 10−4 only two to
three iterations are required in most cases to obtain the converged solution.

Before we proceed, let us note that certain flow assumptions may allow us to develop
an approximate solution for the thick channel flows, presented in § 1 of the online
supplementary material, for the sake of completeness of the current study.

3.2. Inertial flow
In this section, we extend the semi-analytical model to account for inertial flows in the
thick channel limit. To do so, we take advantage of the same method developed for
the creeping flow regime (§ 3.1) to calculate the perturbation field. Therefore, we again
consider the solution to be a superposition of the no-slip profile and the infinitesimal
perturbation field induced by the SH groovy wall. Perturbing equations (2.1) and (2.2) with
infinitesimal wall-induced perturbations and solving for the leading-order terms (i.e. by
ignoring the nonlinear perturbed advection terms), we end up with the following equation
for the perturbation streamfunction in the (x, y) coordinate:

Re
(

U0

(
∂3ψ

∂x∂y2 + ∂3ψ

∂x3

)
− d2U0

dy2
∂ψ

∂x

)
= ∂4ψ

∂x4 + ∂4ψ

∂y4

+
(

2 + 4Bi
|dU0/dy|

)
∂4ψ

∂x2∂y2 − 4Bi
d2U0/dy2

(dU0/dy)2
∂3ψ

∂x2∂y
. (3.19)
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Assuming a periodic flow in the x direction (with the same period as that of the SH wall),
we rely on a Fourier series solution in the form of (3.4). Therefore, (3.19) is converted to
an ordinary differential equation

d4ψ̂

dy4 −
[(

2 + 4Bi
C1 + 2C2y

)
n2κ2 + inκRe(C1y + C2y2)

]
d2ψ̂

dy2

+ 8Bin2κ2 C2

(C1 + 2C2y)2
dψ̂
dy

+ [n4κ4 + in3κ3Re(C1y + C2y2)+ i2nκC2Re]ψ̂ = 0.

(3.20)

Equation (3.20) together with the boundary conditions of (3.6a–d) is solved using
the same algorithm explained earlier (see § 3.1). For n = 0, we have the same quadratic
solution for ψ̂ as in the previous section. For n > 0, we assume that the solution of (3.20)
can be written as ψ̂n( y) = fn( y)+ ign( y); therefore, we obtain the function ψ

ψ(x, y) = A0

(
y − y2

2h

)
+

∞∑
n=1

An(fn( y)+ ign( y)) einκx

+
∞∑

n=1

A∗
n[fn( y)− ign( y)] e−inκx. (3.21)

The rightmost term in the right-hand side of (3.21) represents the negative modes of the
Fourier series solution (see (3.4)), written for simplicity based on the positive values of n.
Based on this simplification, one can easily show that A∗

n must be the complex conjugate
of An. Therefore, the following solution can be derived for ψ :

ψ(x, y) = A0

(
y − y2

2h

)
+

∞∑
n=1

Ar
n[fn( y) sin(nκx)+ gn( y) cos(nκx)]

+
∞∑

n=1

Ai
n[gn( y) sin(nκx)− fn( y) cos(nκx)], (3.22)

where A0, Ar
n and Ai

n are unknown coefficients. Therefore, the perturbation velocities (u, v)
are obtained as

u(x, y) = A0

(
1 − y

h

)
+

∞∑
n=1

Ar
n[f ′

n( y) sin(nκx)+ g′
n( y) cos(nκx)]

+
∞∑

n=1

Ai
n[g′

n( y) sin(nκx)− f ′
n( y) cos(nκx)]. (3.23)

v(x, y) =
∞∑

n=1

Ar
nnκ[gn( y) sin(nκx)− fn( y) cos(nκx)]

−
∞∑

n=1

Ai
nnκ[gn( y) cos(nκx)+ fn( y) sin(nκx)]. (3.24)

By comparing the streamwise perturbation velocity (u) for the inertial flow regime,
shown in (3.23), with the corresponding solution for the creeping flow regime, shown in
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Poiseuille flow of a Bingham fluid

(3.8), we can realize that the inertial effects (amplified by increasing Re) are responsible for
an asymmetry of the velocity profile in x ∈ [−�/2 �/2]; i.e. u(x, y0) /= u(−x, y0), where y0
represents a fixed value of y. Consequently, we can separate the flow profiles into even and
odd functions, in x ∈ [−�/2 �/2], which for the streamwise perturbation velocity leads to

ue(x, y) = A0

(
1 − y

h

)
+

∞∑
n=1

[Ar
ng′

n( y)− Ai
nf ′

n( y)] cos(nκx), (3.25)

uo(x, y) =
∞∑

n=1

[Ar
nf ′

n( y)+ Ai
ng′

n( y)] sin(nκx), (3.26)

where the subscripts e and o refer to even and odd functions, respectively. Since the no-slip
shear stress (Bi + dU0/dy) is always an even function in x ∈ [−�/2 �/2], we can write the
Navier slip law separately for the even and odd contributions of the velocity profile as

ue(x, 0)− b
(

Bi + dU0

dy
+ ∂ue

∂y

)
y=0

= 0, 0 ≤ x ≤ ϕ�

2
, (3.27)

ue(x, 0) = 0,
ϕ�

2
≤ x ≤ �

2
. (3.28)

uo(x, 0)− b
(
∂uo

∂y

)
y=0

= 0, 0 ≤ x ≤ ϕ�

2
, (3.29)

uo(x, 0) = 0,
ϕ�

2
≤ x ≤ �

2
. (3.30)

Substituting equations (3.25) and (3.26) in (3.27) to (3.30), we find

A0

(
1 + b

h

)
+

N∑
n=1

[Ar
n(g

′
n(0)− bg′′

n(0))− Ai
n(f

′
n(0)− bf ′′

n (0))] cos(nκx)

= b(Bi + C1), 0 ≤ x ≤ ϕ�

2
, (3.31)

0 = A0 +
N∑

n=1

(Ar
ng′

n(0)− Ai
nf ′

n(0)) cos(nκx),
ϕ�

2
≤ x ≤ �

2
, (3.32)

and
N∑

n=1

[Ar
n(f

′
n(0)− bf ′′

n (0))+ Ai
n(g

′
n(0)− bg′′

n(0))] sin(nκx) = 0, 0 ≤ x ≤ ϕ�

2
, (3.33)

N∑
n=1

(Ar
nf ′

n(0)+ Ai
ng′

n(0)) sin(nκx) = 0,
ϕ�

2
≤ x ≤ �

2
, (3.34)

where the series are truncated to the Nth terms.
Based on (3.33) and (3.34), a relation between the coefficients Ar

n and Ai
n is calculable.

To do so, the same method as used in § 3.1 is employed: (3.33) is integrated with respect
to x in [0 x] and, then, the resulting equation is multiplied with cos(mκx) (where m is
a positive integer) and again integrated in x ∈ [0 ϕ�/2]. Equation (3.34) is multiplied
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by sin(mκx) and, then, it is integrated in x ∈ [ϕ�/2 �/2]. The combination of the
resulting equations and some algebra leads to the following relation between the unknown
coefficients:

Ai
m =

N∑
n=1

[(Pi)
−1

Pr]m,nAr
n, (3.35)

where the matrices Pr and P i are obtained as:

Pr
mn = 1

nκ
(f ′

n(0)− bf ′′
n (0))

[∫ ϕ�/2

0
cos(mκx) d x −

∫ ϕ�/2

0
cos(nκx) cos(mκx) d x

]

+ f ′
n(0)

∫ �/2

ϕ�/2
sin(nκx) sin(mκx) d x, (3.36)

Pi
mn = − 1

nκ
(g′

n(0)− bg′′
n(0))

[∫ ϕ�/2

0
cos(mκx) d x −

∫ ϕ�/2

0
cos(nκx) cos(mκx) d x

]

− g′
n(0)

∫ �/2

ϕ�/2
sin(nκx) sin(mκx) d x. (3.37)

Having the relation between the coefficients Ar
n and Ai

m, we can solve the dual series
problem in (3.31) and (3.32), with the same method used to find the unknown coefficients
of (3.12) and (3.13). Eventually, after completing the iterative procedure on the solution to
find the converged value for h, we can have the final solution for the inertial flow regime.

Before we proceed, let us note that in the present analysis the Reynolds number is
defined using a characteristic viscous stress in the form μ̂pÛave/Ĥ. However, in some
other studies (Güzel et al. 2009; Rosti et al. 2018), a characteristic total stress in the form
μ̂gÛave/Ĥ, where μ̂g represents the general viscosity, is used instead. The choice of the
characteristic stress in defining the Reynolds number is still an open discussion in the
community (Rosti et al. 2018). For instance, a modified Reynolds number (Re∗) based
on the characteristic total stress (μ̂gÛave/Ĥ) can be defined using our current Reynolds
and Bingham numbers as Re∗ = Re/(1 + Bi). Employing Re∗ may help the reader in the
evaluation of inertial effects on the flow, since the yield stress contribution is also taken
into account (refer to Thompson & Soares (2016) for a detailed discussion).

Before moving further, note that, for the sake of completeness of our analysis, the order
of the inertial terms (including the neglected nonlinear terms) in (3.19) is evaluated in
§ 2 of the online supplementary material. Also note that the analysis and treatment of the
inertial terms in our work are consistent with those in previous studies (Moradi & Floryan
2016, 2019; Jiao & Floryan 2021), which have solved their problem for the base flow at
large Reynolds numbers and, similar to our work, they have obtained converged results.

3.3. Total flow profile
After solving for the perturbation field in the lower yielded zone and finding the location of
the lower yield surface iteratively, it becomes possible to calculate the total velocity field
for the thick channel limit. The total velocity field at the lower yielded zone equals the
summation of the base flow and the perturbation velocities. The upper yielded zone has a
quadratic velocity profile satisfying the no-slip condition at the upper wall. The velocity of
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Poiseuille flow of a Bingham fluid

the unyielded centre plug zone is equal to that of the lower yield surface, which is known.
Therefore, the total velocity profile for −�/2 ≤ x ≤ �/2 can be written as

U(x, y) =
⎧⎨
⎩

C1y + C2y2 + u(x, y), 0 ≤ y ≤ h,
C1h + C2h2, h ≤ y ≤ hu,

C5(2 − y)+ C6(2 − y)2, hu ≤ y ≤ 2,
(3.38)

V(x, y) =
⎧⎨
⎩
v(x, y), 0 ≤ y ≤ h,
0, h ≤ y ≤ hu,
0, hu ≤ y ≤ 2,

(3.39)

where u and v are obtained earlier based on (3.23) and (3.24). Here, hu (the location of
the upper yield surface) and the coefficients C5 and C6 are the unknowns. Therefore, there
are three unknowns in the above equations, requiring three conditions to solve. The first
condition comes from the uniformity of the velocity of the unyielded plug zone. Therefore,
the velocity of the upper yield surface can be obtained from the relations of the unyielded
centre plug zone and the upper yielded zone

C5(2 − hu)+ C6(2 − hu)2 = C1h + C2h2. (3.40)

The zero velocity gradient (zero strain-rate magnitude) at the upper yield surface leads to
the following condition:

C5 + 2C6(2 − hu) = 0. (3.41)

Finally, choosing the average velocity as the characteristic velocity dictates having a
fixed flow rate. The boundary conditions ψ̂(0) = 0 and ψ̂(h) = 0 in (3.6a–d) ensure the
continuity of the flow rate in the lower yielded zone∫ h

0
u(x, y) dy =

∫ h

0

∂ψ(x, y)
∂y

dy =ψ(x, h)− ψ(x, 0) = A0h
2
. (3.42)

Eventually, the last condition, which dictates the fixed flow rate, is obtained∫ h

0
(C1y + C2y2) dy +

∫ 2

hu
(C5(2 − y)+ C6(2 − y)2) dy

+ (C1h + C2h2)(hu − h) = 2 − A0h
2
. (3.43)

Solving the above equations, the unknowns are obtained as

C5 = 4h2(C2h + C1)
2

−4C2h3 − 3C1h2 + 12C2h2 + 3A0h + 12C1h − 12
, (3.44)

C6 = −4h3(C2h + C1)
3

(−4C2h3 − 3C1h2 + 12C2h2 + 3A0h + 12C1h − 12)2
, (3.45)

hu = −(−4C2h3 − 3C1h2 + 8C2h2 + 3A0h + 8C1h − 12)
2h(C2h + C1)

. (3.46)

Note that the asymmetry (with respect to the axis y = 1) observed in the total velocity
field and the location of yield surfaces is due to the asymmetric wall slip condition.
Herein, the lower wall is the only SH wall and the upper wall has the no-slip condition. A
similar situation has been considered in a study by Panaseti & Georgiou (2017), analysing
a Poiseuille channel flow of viscoplastic fluids with a homogeneous slip condition only at
one wall.
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4. Direct numerical simulations

4.1. Numerical schemes and set-up
To validate the developed semi-analytical model and also provide a further understanding
about the flow, the OpenFOAM computational fluid dynamics package is used to obtain
our DNS results for the Bingham flow in a 2-D channel, with the SH groovy lower
wall condition. We employed the simpleFoam solver, where the coupling between the
velocity and pressure fields is obtained through the semi-implicit method for pressure
linked equations (SIMPLE) algorithm. The computational mesh details are provided in
§ 3 of the online supplementary material. Transient simulations are conducted based
on the pressure-implicit with splitting of operators (PISO) algorithm and using the
backward temporal scheme. In these simulations, the maximum Courant number (max Co)
is fixed at three values of 0.2, 0.5 and 0.7, to evaluate the role of the time step in the
numerical results (Komen et al. 2014, 2017; Montecchia et al. 2019). It is found that
the transient simulations with different Courant numbers (max Co = 0.2, 0.5, 0.7) are
numerically stable and eventually converge to the steady-state solutions. In addition, an
excellent agreement is found between the transient (based on the PISO algorithm) and
steady-state (based on the SIMPLE algorithm) simulations, when the former reaches the
steady condition; therefore, only the steady-state results are presented in this study.

In our DNS approach, the Papanastasiou regularization method is used to model the
Bingham fluid, in which the general viscosity is defined as

μ̂g = μ̂p + τ̂ 0(1 − exp(−m̂ ˆ̇γ ))
ˆ̇γ , (4.1)

where m̂ is the regularization parameter. The choice of the value of m̂ is important in
viscoplastic flow simulations based on the regularization approach (Putz et al. 2009;
Damianou et al. 2014; Franci & Zhang 2018). The regularization parameter m̂ must be
carefully chosen to obtain accurate DNS results, while maintaining the computational
costs as reasonable. Prior to performing the simulations, the effects of the regularization
parameter on the velocity profile are evaluated (see figure S3 in § 4 of the online
supplementary material) and, finally, the value of m̂ = 1000 (s) is chosen. This provides
us with reasonably accurate velocity field calculations and it is also compatible with the
previous studies in the literature (Damianou et al. 2014; Mitsoulis & Tsamopoulos 2017;
Franci & Zhang 2018). In some cases, however, larger values of m̂ are used, as mentioned
and explained for the corresponding results.

5. Results

In this section, we present the results for plane Poiseuille flow of a Bingham fluid in a
channel with a SH groovy lower wall. To do so, we present the creeping and inertial flow
results for the thick channel limit (using the semi-analytical and DNS solutions) in § 5.1.
In § 5.2, we focus on classifying different regimes for the creeping and inertial flows.

In § 5 of the online supplementary material, we discuss the possible ranges of the
dimensional and dimensionless parameters of our flow, from an experimental perspective.
To clarify the scope of the analysis presented in our study, table 1 is produced, showing
the ranges of the dimensionless parameters studied and the main variables of interest. In
this section, the effects of the key parameters, i.e., Re, Bi, b, � and ϕ, on the variables are
evaluated comprehensively. The total, perturbation and slip velocity fields are among the
typical variables presented, along with the effective slip length and the magnitude of the
strain rate.
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Poiseuille flow of a Bingham fluid

Parameter Name Definition Typical range

Re Reynolds number ρ̂ÛaveĤ
μ̂p

10−2−3.6 × 103

Bi Bingham number τ̂0Ĥ
μ̂pÛave

0−5 × 102

b Slip number
b̂μ̂p

Ĥ
10−4−10

� Groove periodicity length L̂
Ĥ

5 × 10−3−5 × 10−1

ϕ Slip area fraction δ̂

L̂
0–1

Variable Name

U = (U,V) Total velocity field
u = (u, v) Perturbation velocity field
p Perturbation pressure field
ω Perturbation vorticity field
us Slip velocity
h Location of the lower yield surface
γ̇ Strain-rate magnitude
χ Effective slip length

Table 1. Dimensionless parameters, their range and the main variables of interest studied in the present work.

5.1. Thick channel results
In this section, using the semi-analytical and DNS solutions, we analyse the effects
of the Bingham number (Bi, representing the yield stress), the Reynolds number (Re,
representing the inertial effects), the slip area fraction (ϕ) and the slip number (b) on the
flow physics. In most cases, we fix � = 0.2, which can be considered as a thick channel.

In figure 2, the total streamwise velocity (U), which is obtained from (3.38), is shown for
two creeping cases and one inertial flow case, at the middle of the slip region (x = 0). First
of all, this figure reveals excellent agreement between the semi-analytical model and DNS
results for different scenarios. Also, as shown in this figure, an increase in the slip number
leads to larger wall slip velocities, even approaching a zero-shear condition at larger b.
In this thick channel limit (� = 0.2), the velocity variation mostly occurs near the groovy
wall and, for the other regions away from the groovy wall, the velocity profiles almost
mimic their no-slip velocity counterparts. In addition, despite having large slip numbers
in some cases, resulting in zero-shear conditions at the wall, the yield surface location
at y = h seems to be almost unaffected by the change in the slip number. Figure 2 also
shows that, for the inertial cases, the slip velocities are smaller compared with those of
the creeping flow cases at equal slip numbers (e.g. compare figures 2a and 2c). Moreover,
for the large slip number of b = 0.04 at Bi = 1 and Re = 3600, a slight deviation between
the semi-analytical model and DNS results near the SH wall is observable, which may be
attributed to the effects of the ignored nonlinear advection terms in the semi-analytical
model. Taken as a whole, figure 2 implies that the semi-analytical model is reasonably
accurate for the creeping and inertial flow regimes in their validity ranges, i.e. before the
unyielded plug zone formation at the SH wall, the onset of which may be the zero-shear
condition at the SH wall.

948 A34-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.700


H. Rahmani and S.M. Taghavi

2

1

0

0 0.15

0.03

0.5

y

U U

U

1.0 1.5

b = 0.002
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(a) (b)

(c)

Figure 2. Semi-analytical model and DNS results. Total streamwise velocity profiles at x = 0 and 0 ≤ y ≤ 2,
for � = 0.2 and ϕ = 0.5. Coloured lines represent the semi-analytical solution while the corresponding DNS
results are shown by dots. The insets are zoomed at the middle of the slip region, i.e. x = 0.

The wall slip velocity distributions for different Reynolds and slip numbers, at a fixed
Bingham number, are plotted in figure 3(a–d). Four different Reynolds numbers, from
Re = 0.01 to Re = 3600, are studied in order to cover a wide range of inertial flows. The
Bingham number is fixed to be Bi = 1, while three slip numbers are used. For the sake of
comparison, the total streamwise velocity profiles for the creeping (Re = 0.01) and inertial
(Re = 3600) cases, with b = 0.01, are shown in figure 2. The first observation in figure 3
is that the semi-analytical solution is capable of predicting both creeping and inertial flow
regime profiles. Even for the largest Reynolds number, i.e. Re = 3600, good agreement
between the semi-analytical model and DNS results is obtained. Therefore, at least for
the selected slip numbers (which are relatively large), the contributions of the ignored
nonlinear advection terms in the semi-analytical results are indeed negligible. Based on
figure 3, an interesting effect of inertia (as Re increases) is in making the slip velocity
profile asymmetric, with respect to the y axis, such that the location of the maximum slip
velocity progressively shifts towards positive values of x (i.e. the streamwise direction).
Furthermore, an increase in Re causes a general decrease in the slip velocity, as the viscous
effects become less significant.

Figure 3 also shows the effects of the slip area fraction (ϕ) and the channel thickness (�),
at the thick channel limit (smaller �) on the slip velocity profiles (see figures 3e and 3f ). As
expected, decreasing the slip area fraction leads to a decrease in the slip velocity profile. In
addition, an increase in the channel height, which is equivalent to a decrease in �, causes
a decrease in the slip velocity.

Figure 4 further highlights the effects of Re on the slip velocity profile, for two large
slip numbers, at Bi = 1 (b = 0.04) and Bi = 10 (b = 0.007), and four Reynolds numbers,
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Figure 3. Semi-analytical model and DNS results. Slip velocity profiles at one period of the wall grooves, for
� = 0.2, ϕ = 0.5 (a–d) and Bi = 1. Slip velocity profiles at Re = 0.01, Bi = 1 and b = 0.01 for � = 0.2 (e)
and ϕ = 0.5 ( f ). The solid lines represent the semi-analytical profiles, while the dots mark the corresponding
DNS results.

0.09

0.06

0.03

0
–�/2 –�/4 0

Bi = 1

Re = 0.01
400
1600
3600
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�/4 �/2
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Figure 4. Semi-analytical model and DNS results. Variation of the slip velocity profiles with respect to an
increase in the Reynolds number for large slip numbers, for � = 0.2 and ϕ = 0.5. The circles with the colours
matching the lines represent the corresponding DNS results.

i.e. Re = 0.01, 400, 1600, 3600. The selected slip numbers are slightly smaller than their
corresponding values for which the zero-shear conditions and, thus, the unyielded plug
zones start to form at the SH wall. In this slip number range, the semi-analytical model still
accurately predicts the creeping flow slip profile; however, as Re increase, the discrepancy
between the semi-analytical model and DNS results becomes more significant. This
observation implies that, for the range of large slip numbers approaching the zero-shear
conditions, the nonlinear advection terms neglected in the semi-analytical model become
important and effective. In addition, figure 4 clearly illustrates the effects of Re (inertia) in
inducing asymmetric profiles while decreasing the slip velocity.

Regarding the analysis presented above about the effects of inertia, similar results and
discussions based on the dimensionless variables for Newtonian fluids are available in the
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literature (Davies et al. 2006; Cheng et al. 2009; Teo & Khoo 2014; Ren et al. 2018). For
example, in a study of Poiseuille flow through microchannels with SH walls, Teo & Khoo
(2014) have demonstrated a decrease in the normalized slip velocity with an increase in
the Reynolds number from Re = 0.1 to Re = 1000. Similar results have been obtained by
Davies et al. (2006) when increasing the Reynolds number from Re = 0.4 to Re = 1000. In
a recent study, Ren et al. (2018) have conducted numerical simulations to analyse the heat
transfer and drag reduction for a Newtonian fluid flow through microchannels with groovy
SH walls. Their results have shown that the dimensionless slip velocity decreases with an
increase in the Reynolds number (from Re = 1 to Re = 1000). Cheng et al. (2009) have
conducted numerical simulations for Newtonian fluid flows in channels with SH walls,
showing that, for the transverse grooves, the dimensionless effective slip length decreases
with an increase in the Reynolds number (i.e. similar to our results).

Before proceeding, let us emphasize that the presented analysis and the comparison
between the creeping and inertial flows are based on the dimensionless parameters and
variables, following the relevant studies in the literature (Davies et al. 2006; Cheng et al.
2009; Teo & Khoo 2014; Ren et al. 2018). Of course, the dimensional quantities (e.g. the
bulk and slip velocities) can be different for the creeping (e.g. Re = 0.01) and inertial
(e.g. Re = 3600) flows. However, such a difference is related to how the Reynolds number
increases. For example, to increase Re, one can assume a fixed flow geometry (fixed Ĥ) and
increase the average velocity (Ûave); thus, clearly the flow with a larger Re ends up with
a larger dimensional velocity. On the other hand, assuming that the flow average velocity
(Ûave) is fixed, one can also use a channel with larger height (larger Ĥ) to increase Re.
In this case, the dimensional velocities would follow the same trend as that presented
for the dimensionless velocities and they would have smaller values for larger Reynolds
numbers. Therefore, the analysis of the inertial effects on the dimensional quantities should
be performed with caution.

The change in the location of the yield surface (h) vs the slip number (b) is depicted in
figure 5. In the selected slip number range, the flow at the SH groovy wall is yielded (i.e.
there is no unyielded plug zone formation). As discussed earlier, the increase in b causes
the yield surface to slightly move towards the groovy wall, thus decreasing the values of
h. This decrease in h is slightly more significant as the slip area fraction (ϕ) increases. In
the inertial flow (Re = 1000), the decrease in h is slightly less than that in the creeping
flow (Re = 0.01), implying smaller values of the slip velocity at the groovy wall for the
inertial flow. This implication originates from the fact that, for the flow with a larger slip
velocity, the yield surface comes closer towards the slippery wall (Panaseti & Georgiou
2017). Although figure 5 shows that the change in h is generally very small compared with
its corresponding no-slip condition value, it must be noted that the iterative approach in
finding the exact location of h is still vital for the model robustness, to ensure maintenance
of the zero value for the strain-rate magnitude at the yield surface.

To evaluate the role of the yield stress in the perturbation field, the perturbation velocity
contours for the creeping flow are plotted, for different values of Bi, in figure 6(a–f ). The
increase in Bi intensifies the growth of the wall-induced perturbations, towards the lower
yield surface located at y = h. This observation is attributed to the increase in the wall
shear stress as Bi increases, leading to larger slip velocities. Another fact to be considered
is that the increase in Bi causes a decrease in the height of the yielded area ( y ∈ [0 h]).
The effects of Re on the perturbation field are also illustrated in figure 6(g–l). As already
discussed, the increase in Re results in a flow asymmetry, with respect to the y axis (x = 0),
and simultaneously hinders wall-induced perturbations. The combination of these effects
finally leads to a tendency of the flow away from the SH wall to form a new symmetric
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Figure 5. Semi-analytical model results. Location of the lower yield surface (h) vs the slip number b, for
� = 0.2 and Bi = 1.
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Figure 6. Semi-analytical model results. (a–f ) Effects of the Bingham number (yield stress) on the
wall-induced perturbation velocity field, for � = 0.2, ϕ = 0.5, Re = 0.01 and b = 0.007: (a,b) Bi = 0.01; (c,d)
Bi = 1; (e, f ) Bi = 10. (g–l) Effects of the Reynolds number on the wall-induced perturbation velocity field, for
� = 0.2, ϕ = 0.5, Bi = 1 and b = 0.01: (g,h) Re = 0.01; (i,j) Re = 400; (k,l) Re = 3600. The iso-lines of the
corresponding streamfunction are depicted with the black solid lines in the v/vmax contours.

shape, as the wall-induced perturbations become damped by inertia. However, for the
near SH wall regions, the inertia-induced flow asymmetry is still profound because the
perturbation field is large (due to the importance of viscous effects near the wall). The
combination of inertial and viscous effects near the wall causes a rightward (streamwise)
orientation of the perturbation field.

Before proceeding, let us clarify the damping effect of inertia in the thick channel limit,
as observed and discussed above. Here, the damping effect of inertia can be interpreted
through the fact that, for a larger Reynolds number, a stronger convection is expected. This
strong convection, which is larger than the momentum diffusion, causes the confinement
of the perturbation field near the SH wall and the decrease in the perturbation velocity.
Therefore, as discussed, increasing Re shows a damping effect on the perturbations, the
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only source of which in our flow configuration is the SH wall. However, if there were other
independent sources of perturbations in our flow, e.g. some inflow perturbations, inertial
effects could potentially cause an augmentation of such perturbations. Furthermore,
damping effects of inertia similar to those presented in our study have been previously
reported in the literature (Davies et al. 2006; Teo & Khoo 2014; Ren et al. 2018; Jiao
& Floryan 2021). For instance, based on a numerical simulation study, Ren et al. (2018)
have demonstrated that, when Re increases, the perturbation field is hindered in a channel
with SH walls and the flow becomes nearly parallel in the channel centre. In addition,
Jiao & Floryan (2021) have shown that wall-induced secondary flows in a channel with
transpiration patterns are hindered by the act of inertia when the Reynolds number
increases from Re = 10 to Re = 1000. They have also reported that, at larger Reynolds
number, a nearly parallel flow is observed in the channel centre.

Figure 7(a–c) presents the perturbation vorticity fields and the superimposed
perturbation velocity vectors (i.e. the superimposed vectors) for different values of Re.
The perturbation vorticity fields have positive values at the SH wall slip regions, while
they present negative values at the SH wall no-slip regions. Generally, at the thick channel
limit, the wall-induced perturbation vorticity fields are pronounced near the wall and they
decrease as Re increases, while forming asymmetric shapes. At Re = 0.01, the vorticity
magnitude is largest near the groove edges (x = ±�/4, singular points) where the flow
undergoes sharp gradients. By increasing Re, the largest value of the perturbation vorticity
field remains near the groove edge at x = �/4, while decreasing near the other edge at
x = −�/4. As figure 7 reveals, the perturbation velocity vectors are large near the wall slip
region, while they become smaller outward of the slip region and reach a nearly parallel
flow configuration. Near the SH wall, the perturbation velocity vectors deviate downward
(towards the slip region) when moving from the no-slip to slip zones; however, they deviate
upward when moving from the slip to no-slip zones. This is due to the periodic change in
the perturbation pressure field, especially near the SH wall (let us emphasize that this
effect is caused by the perturbation pressure since the primary (no-slip) pressure gradient
is in the flow (x) direction and, thus, cannot cause a redirection of the flow).

Regarding the velocity vector deviations near the SH wall discussed above, similar
results have been also found in the studies with deformed liquid/air interfaces (Li et al.
2016; Alinovi & Bottaro 2018; Ge et al. 2018). For instance, Ge et al. (2018) have
conducted numerical simulations of Newtonian fluids over an SH surface with a deformed
and depinned liquid/air interface (i.e. depinned from the groove edges). In their numerical
simulations, they have also demonstrated a deviated flow streamline near the SH surface.
As another example, Alinovi & Bottaro (2018) have modelled Newtonian fluid flows over
SH and lubricant-impregnated surfaces, using boundary element and DNS methods. In
the case of a deformed liquid/(gas, lubricant) interface, they have also observed that the
flow streamlines become deviated near the interface. Finally, our specific DNS simulation
assuming a deflected liquid/air interface for the same parameters as those of figure 7(a)
also reveals that the perturbation pressure fluctuations near the SH wall cause velocity
vector deviations (results omitted for brevity).

The effect of Re (inertia) on the magnitude of the total strain rate is also investigated
in the lower row of figure 7(d–f ). As expected, the strain rate approaches zero towards
the yield surface (y = h). In addition, the strain rate possesses smaller values at the slip
region compared with the no-slip region, due to the smaller shear gradients at the slip
region. An interesting finding may be that increasing Re leads to smaller values for the
magnitude of the total strain rate at the slip region. This means that, at fixed Bingham and
slip numbers, the increase in inertia accelerates the formation of an unyielded plug zone at
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Figure 7. Semi-analytical model results. (a–c) Perturbation vorticity fields and (d–f ) contours of the
magnitude of the total strain rate, for � = 0.2, ϕ = 0.5, Bi = 1 and b = 0.01: (a,d) Re = 0.01; (b,e) Re = 1600;
(c, f ) Re = 3600. In the upper row, the perturbation velocity vectors are also shown by the arrows.

the slip region on the SH wall. In other words, at larger Re, the unyielded plug zone at the
SH wall appears at a lower b compared with that at smaller Re. In figure 8, the streamwise
perturbation velocity (u), its gradient (∂u/∂y) and the corresponding total velocity shear
gradient (∂U/∂y) are plotted, for two different Bingham and Reynolds numbers. Based
on figure 8(a), an increase in Re more quickly hinders the perturbation field away from
the SH wall, while the perturbation field at the SH wall (the slip velocity) is still strong,
due to the dominant viscous effects near the wall. This implies that the inertia induces
larger magnitudes of the perturbation velocity shear gradient at the slip region of the
SH wall (larger |∂u/∂y|), as shown in figure 8(b). Since the perturbation velocity shear
gradient has negative values at the slip region of the SH wall, i.e. ∂u/∂y < 0 at y = 0 and
0 ≤ x < ϕ�/2, the total velocity shear gradient, i.e. ∂U/∂y = dU0/dy + ∂u/∂y, becomes
smaller for the inertial flow compared with the creeping flow, as shown in figure 8(c).
Consequently, based on (3.18), the total strain-rate magnitude at the slip region of the SH
wall becomes smaller for the inertial flow compared with the creeping flow.

To gain further insight into the flow dynamics before and after the unyielded plug zone
formation at the SH wall, the DNS results for the slip velocity and its gradient are depicted
in figure 9. Note that, when the unyielded plug is formed at the SH wall, the assumptions
behind the semi-analytical model are no longer generally valid; thus, it is indispensable to
rely on DNS results for such a condition. As expected, for the creeping flow regime, the
flow profiles are symmetric with respect to the y axis, while for the inertial case, there is
a strong asymmetry. The plateau in the slip velocity profiles implies the formation of an
unyielded plug zone at the slip region of the SH wall. When the slip number increases, the
total velocity gradient (∂U/∂y) becomes smaller all over the slip region and the zero-shear
condition is locally obtained. Figure 9 shows that, with an increase in Re, the velocity
gradient grows around the downstream singular point, i.e. x = �/4, and it decays around
the upstream one (x = −�/4), due to the asymmetry caused by inertia. Another important
point is that, due to the large values of ∂us/∂x (consequently large ∂v/∂y at y = 0) around
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Figure 8. Semi-analytical model results. (a) Streamwise perturbation velocity (u); (b) gradient of streamwise
perturbation velocity (∂u/∂y) and (c) gradient of streamwise total velocity (∂U/∂y), for regions close to the SH
wall, for � = 0.2 and ϕ = 0.5. The curves are plotted at the streamwise locations on the SH wall (y = 0) where
the maximum of slip velocity occurs; i.e. where ∂us/∂x = 0 for 0 ≤ x < �/4.
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Figure 9. DNS results. (a,c) Slip velocity and (b,d) gradient of total streamwise velocity (∂U/∂y), at the
groovy wall (y = 0), for � = 0.2, ϕ = 0.5 and Bi = 10.

the singular points, the unyielded plug zone at the SH wall cannot cover all of the slip
region and it eventually breaks at two different locations where the effects of normal
velocity gradients are remarkable.

In figure 10, some flow profiles similar to those of figure 9 are plotted. This figure
shows a plug-like behaviour for some flow profiles of certain distances from the SH wall,
implying the stretch of the unyielded plug zone away from the SH wall. As the distance
from the wall increases, the velocity gradient at the slip region, i.e. −�/4 ≤ x ≤ �/4, grows
and the flow starts to yield. This transition, from an unyielded to a yielded flow, seems to
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Figure 10. DNS results. (a,c) Total streamwise velocity profile and (b,d) its gradient (∂U/∂y) at different
transverse distances from the wall, for � = 0.2, ϕ = 0.5, Bi = 10 and b = 0.5. The area enclosing the velocity
maximum is zoomed-in on panels (a,c), while the slip region is zoomed-in on in panels (b,d).

occur faster for the inertial flow regime, where the inertial forces dominate the viscous
ones away from the wall.

Calculating the effective slip length for our channel flow with an SH wall can be an
important outcome of this study (Belyaev & Vinogradova 2010; Schmieschek et al. 2012).
To do so, one can calculate the effective slip length as the ratio between the average slip
velocity and the average velocity gradient at the wall

χ = 〈u(x, 0)〉x〈(
dU0( y)

dy
+ ∂u(x, y)

∂y

)
y=0

〉
x

= A0

C1 − A0

h

, (5.1)

where 〈·〉x represents averaging in the x direction in [−�/2 �/2].
For a thick channel (� = 0.2), figure 11 presents the effective slip length χ vs the slip

number b, for two slip area fractions, three Bingham and two Reynolds numbers. In this
figure, the smallest value of the Bingham number is considered to be Bi = 0.01, to enable
a comparison between the results of our Bingham fluids and those of Newtonian fluids.
As already discussed in the introduction section, for Newtonian fluids, analytical closed
form relations for the effective slip length, in the range of thick and thin channels, are
developed. In the limit of a thick channel, we rewrite the equation developed in Belyaev &
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Figure 11. Semi-analytical model and DNS results. Effective slip length calculated vs slip number, for � = 0.2.
The red lines represent the semi-analytical model results while the black markers show the DNS results. The
blue dashed lines in panels (a,c) show the results for a corresponding Newtonian fluid, based on (5.2). On each
curve, the green diamonds represent the unyielded plug zone formation onset at the SH wall.

Vinogradova (2010), based on our flow dimensionless parameters, to reach

χN = 1
κ

ln
[
sec

(πϕ

2

)]
1 + 1

κb
ln
[
sec

(πϕ

2

)
+ tan

(πϕ

2

)] , κ � 1, (5.2)

which is used to calculate the effective slip length for the corresponding Newtonian
fluids in figure 11. As shown in figure 11, the curve for Bi = 0.01 is consistent with the
corresponding Newtonian curve. In addition, good agreement between the semi-analytical
and DNS results is observed. Also, for each Bi, the slip number increases until it reaches
a critical value at which an unyielded plug zone appears at the SH wall. In figure 11,
the onset of such a critical condition is marked by the green diamonds. Therefore, for
each Bi, our semi-analytical model is valid until reaching the green diamond marker. The
increase in Bi leads to an increase in the effective slip length, for a fixed slip number (before
the unyielded plug zone formation at SH wall). As illustrated, the effective slip length is
slightly smaller for the inertial flow (Re = 1000), in comparison with the creeping flow
(Re = 0.01).

Figure 11 delivers other valuable findings. Comparing the results for ϕ = 0.5 and
ϕ = 0.75, one can realize that, as the slip area fraction increases (i.e. larger ϕ), the effective
slip length increases (at fixed Reynolds, Bingham and slip numbers). In addition, the
increase in ϕ causes larger values of the critical slip number, implying a delay in the
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formation of the unyielded plug zone at the SH wall. Finally, the role played by the channel
thickness in the effective slip length is also evaluated in our work, showing that an increase
in � leads to larger effective slip lengths (results omitted for brevity).

5.2. Regime classification
In this section, we provide a regime classification based on the presence/absence of the
unyielded plug zone at the SH wall (for both the creeping and inertial flows). To do so,
using the developed semi-analytical model, we first present the critical effective slip length
vs the critical slip number and the Bingham number, for the range of thick channels in
figure 12. Considering a wide range of Bi, figure 12(a) reveals that flows with a larger
Bi have smaller values of the critical slip number and critical effective slip length. For a
small Bingham number such as Bi = 0.01, the critical effective slip length converges to the
saturation effective slip length corresponding to Newtonian fluids, which can be obtained
from (5.2) when b is relatively large

χ sat
N = 1

κ
ln
[
sec

(πϕ

2

)]
, κ � 1. (5.3)

The decrease in the critical effective slip length (χcr) and the critical slip number (bcr)
with increasing Bi is effectively shown in figure 12(b). Based on a wide range of Bi,
four different thick channel thicknesses (�), and three slip area fractions (ϕ), this figure
presents a power-law relation between χcr/χ

sat
N and Bi. Knowing the fact that for Bi → 0,

the critical effective slip length converges to the saturation value for the Newtonian fluids
and that for Bi → ∞ it approaches zero, the following power-law correlation may be
suggested:

χcr

χ sat
N

≈ (Bi + 1)−0.14, (5.4)

where for the range of thick channels, the power-law index of −0.14 provides the best fit;
the curve obtained from (5.4) presents good agreement with the semi-analytical data, as
shown in figure 12(b).

Based on the obtained correlation between the normalized critical effective slip length
and the Bingham number, let us develop a simplified closed form relation for the critical
slip number in the creeping flow regime, at which the unyielded plug zone appears at
the SH wall. To do so, we first integrate equation (3.10) in x ∈ [0 ϕ�/2] and (3.11) in
x ∈ [ϕ�/2 �/2] and, then, combine the resulting integration to find∫ �/2

0
u(x, 0) d x = b

∫ ϕ�/2

0

(
dU0

dy
+ ∂u
∂y

)
y=0

d x + bBi
ϕ�

2
. (5.5)

At the critical slip number, it can be shown that the second term on the right-hand side
of the equation above is dominant. In addition, knowing the fact that A0 represents the
average slip velocity (see (5.1)), (5.5) simplifies to the following equation at the critical
condition of the unyielded plug zone formation at the SH wall:

bcr ≈ A0

Biϕ
. (5.6)

Now, using (5.1), (5.3), (5.4) and (5.6), an explicit simplified closed form relation to
estimate the critical slip number in the thick channel limit of creeping flow is derived
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Figure 12. Semi-analytical model results. Critical effective slip lengths calculated at the critical slip numbers,
for Re = 0.01 and a wide range of Bi. (a) Case � = 0.2: the triangles, circles and squares represent the results for
ϕ = 0.25, ϕ = 0.5 and ϕ = 0.75, respectively. The markers are coloured based on their corresponding Bi. The
dashed lines from bottom to top represent the values of the saturation effective slip length for the Newtonian
fluid (χ sat

N ), for ϕ = 0.25, ϕ = 0.5 and ϕ = 0.75, respectively (see (5.3)). (b) Normalized critical effective slip
length (χcr/χ

sat
N ) vs Bi, for a wide range of thick channel thicknesses (�) and three slip area fractions (ϕ).

The data correspond to � = 0.005 with ϕ = 0.25 (pentagram), ϕ = 0.5 (diamond) and ϕ = 0.75 (hexagram);
� = 0.01 with ϕ = 0.25 (right-pointing triangle), ϕ = 0.5 (down-pointing triangle) and ϕ = 0.75 (left-pointing
triangle); � = 0.04 and ϕ = 0.25 (plus sign), ϕ = 0.5 (cross) and ϕ = 0.75 (asterisk); � = 0.2 and ϕ = 0.25
(upward-pointing triangle), ϕ = 0.5 (circle) and ϕ = 0.75 (square). The markers are coloured based on their
corresponding critical slip numbers (bcr). The red solid line shows the correlation between χcr/χ

sat
N and Bi

based on (5.4).

bcr ≈
(Bi + 1)−0.14(Bi − τw)

2 ln
[
sec

(πϕ

2

)]
(
τw(Bi + 1)−0.14 ln

[
sec

(πϕ

2

)]
− κ(Bi − τw)

)
Biϕ

, κ � 1. (5.7)

It is important to mention that, for simplicity in deriving equation (5.7), the value of h at
the no-slip condition is used (see (2.9)), considering that the lower yield surface location
at y = h only slightly deviates from its corresponding no-slip condition (where b = 0); see
figure 5. In addition, C1, which emerges in (5.1), is a function of Bi, as explained in § 2.1.

It is useful to obtain the limits of (5.7) for different situations. First, for the limit of
ϕ → 1, (5.7) shrinks to

bcr ≈ (Bi − τw)
2

Biτw
, κ � 1. (5.8)

On the other hand, for the limit of Bi → ∞, (5.7) simplifies to

bcr ≈ (Bi − τw)
2

Biτwϕ
, κ � 1, (5.9)

which is valid for 0 � ϕ ≤ 1 and typical values of κ . Finally, for a very thick channel
limit, where κ → ∞, (5.7) converts to

bcr ≈ (Bi + 1)−0.14
�

κϕ
ln
[
sec

(πϕ

2

)]
, κ → ∞, ϕ � 1, (5.10)

where � = h/(1 − h) represents the ratio between the thickness of the yielded zone and
that of the unyielded zone (for no-slip Poiseuille–Bingham flow).
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Figure 13. Semi-analytical model and simplified model relation results. Regime classification based the
appearance/absence of the unyielded plug zone at the SH wall. The critical slip number, bcr, vs (a,b) Bi and
(c) ϕ, for creeping flow (Re = 0.01). (a) The solid lines represent the results of (5.7) and the symbols represent
those of the semi-analytical model; � = 0.01 with ϕ = 0.25 (blue), ϕ = 0.5 (cyan) and ϕ = 0.75 (brown);
� = 0.2 with ϕ = 0.25 (black), ϕ = 0.5 (red) and ϕ = 0.75 (green); (b) bcr vs Bi, from (5.7), for � = 0.2
(solid lines) and � = 0.01 (dashed lines); from dark to light colour, ϕ increases as ϕ = 0.01, 0.1, 0.5, 0.9, 0.99,
respectively. The blue line represents the condition at which the lower yield surface reaches the lower wall
(h = 0) in a Poiseuille channel flow of Bingham fluids with a homogeneous slip condition at the lower wall
and no slip at the upper wall, based on equation (S18) in the online supplementary material. The magenta solid
line shows the asymptotic condition of ϕ → 1, based on (5.8); (c) bcr vs ϕ, for � = 0.2, from (5.7); from the
dark to light colour, Bi increases as Bi = 0.001, 0.01, 0.1, 1, 10, 50, respectively, while the circles represent bcr
extracted from equation (S18) in the online supplementary material.

Equation (5.7) can be employed to classify the flow regimes based on the unyielded
plug zone appearance at the SH wall, as presented in figure 13 for several slip area
fractions. In figure 13(a), the thick channels with � = 0.01 and � = 0.2 are considered
to calculate the critical slip numbers based on (5.7). The accurate semi-analytical model
values for the critical slip number at several Bingham numbers are also superimposed by
the symbols. The comparison between the accurate data and the estimated curves reveals
that the simplified closed form relation (5.7) is capable of accurately predicting the onset
of the unyielded plug zone formation at the SH wall, for thick channels.

Figure 13(b) shows the regime classification using (5.7) for a wider range of slip area
fractions (ϕ), for � = 0.2 and � = 0.01. For both channel thicknesses, as Bi increases, the
critical slip number decreases. In addition, at a fixed Bi, as ϕ increases, the critical slip
number grows. An interesting point implied by figure 13(b) is that, when the slip area
fraction tends to unity (ϕ → 1, i.e. when the wall slip condition becomes identical to a
homogeneous slip), the curves converge towards the results of (5.8).

The blue line in figure 13(b) is calculated as a corresponding result for a channel with
a homogeneous slip condition at the lower wall and no-slip condition at the upper wall,
and it corresponds to the condition at which the lower yield surface reaches the lower wall
(h = 0); thus, there would be only one yielded zone near the upper wall (see (S18) and
its derivation in § 6). The prediction by (5.8) (the magenta line) is consistent with that of
(S18) in the online supplementary material (the blue line), albeit predicting larger critical
slip numbers. Figure 13(b) also shows that, as � = 0.01 changes to � = 0.2, the critical
slip number increases. Figure 13(c) shows a growth in the critical slip number with an
increase in the slip area fraction. When ϕ → 1, a surge in the values of the critical slip
number is observed, towards the corresponding values obtained based on homogeneous
slip assumptions, i.e. (S18) in the online supplementary material. Figures 13(b) and 13(c)
confirm that the simplified relation (5.7) provides good predictions even for the critical
condition of ϕ → 1.
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Figure 14. Semi-analytical model results. The critical slip number and the critical effective slip length vs the
Reynolds number, for � = 0.2 and Bi = 10.

In figure 14, the critical slip number (bcr) and the critical effective slip length (χcr) are
shown vs the Reynolds number (Re). This figure reveals that the increase in the Reynolds
number up to Re = 10 does not significantly affect bcr and χcr (i.e. consistent with the
analysis presented in § 2 of the online supplementary material). When Re further increases,
bcr and χcr decrease, confirming the previous analysis regarding a faster plug formation at
the SH wall for larger Re. In addition, on increasing ϕ = 0.5 to ϕ = 0.75, both bcr and χcr
increase, showing a delay in the plug formation at the SH wall with an increase in the slip
area fraction (ϕ). The increase in χcr with an increase in ϕ is expected since the average
slip velocity increases (see figure 3e). Based on figure 14, for b > bcr, an unyielded plug
appears at the SH wall, while for b < bcr, the lower zone is completely yielded with no
plug formation at the SH wall.

A regime classification is performed in figure 15, in the plane of b and �, for Re = 0.01,
Bi = 10 and ϕ = 0.5. For a range of channel thicknesses, 0.01 ≤ � ≤ 0.5, two flow
regimes are distinguished based on the formation/absence of the unyielded plug zone at
the SH wall. The red solid line represents the semi-analytical results for bcr at which the
unyielded plug zone appears at the SH wall, while the red dashed line shows the critical
slip number based on the simplified closed form relation (5.7), which is in reasonable
agreement with the semi-analytical model results. Regime I marks the flow condition
where there is no formation of the unyielded plug zone at the SH wall; on the other hand,
in regime II, the unyielded plug zone appears at the SH wall. In figure 15, the markers
represent the DNS results, showing excellent agreement with the semi-analytical model
and simplified relation results, in terms of the regime classification.

Figure 16 shows the DNS results for the total velocity contours, in which the unyielded
regions are shown by the grey colour; for the thick channel of � = 0.2 and three slip
numbers (b = 0.009, 0.011, 0.02), marked by the diamonds in figure 15. Figure 16 shows
a straight lower yield surface with no wavy deformations, confirming our assumption in
developing the semi-analytical model for the thick channels. As seen, the lower yield
surface remains flat, due to the rapid decay of the perturbation field in the y direction.
The insets zoom-in on the SH wall show the formation of an unyielded plug zone only for
b = 0.02, while no unyielded plug zone appears for b = 0.009 and b = 0.011. Note that
the unyielded plug zone appearing in the former case is very small, involving a limited
number of computational cells; thus, its shape is affected by the rectangular shape of those
cells. Nevertheless, the exact shape is not of our concern since our effort is only to confirm
the existence of such an unyielded plug zone at the SH wall.
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Figure 15. Semi-analytical model, simplified model relation and DNS results. Regime classification for
Re = 0.01, Bi = 10 and ϕ = 0.5. The red solid line represents the critical slip number for the unyielded plug
zone formation at the SH wall obtained by the semi-analytical model, while the red dashed line shows the
predictions of the relation (5.7). Two flow regimes are identified, based on the absence (regime I) and formation
(regime II) of an unyielded plug zone at the SH wall. For validation purposes and regime classification, the
markers represent the DNS results: regime I (green circles) and regime II (blue squares). In performing the
DNS, the regularization parameter is increased to m̂ = 107 (s) to obtain highly accurate results. The velocity
contours for the DNS data on which the diamonds are superimposed are presented/discussed in figure 16.
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Figure 16. DNS results. Towards the unyielded plug zone formation at the SH wall for � = 0.2 (as marked
by diamonds in figure 15). Here, ϕ = 0.5, Re = 0.01 and Bi = 10: (a) b = 0.009; (b) b = 0.011; (c) 0.02. The
small area adjacent to the SH wall (−0.01 ≤ x ≤ 0.01, 0 ≤ y ≤ 0.01) is zoomed-in on in the insets, to illustrate
the unyielded plug zone formation at the SH wall. The regularization parameter is chosen to be m̂ = 107 (s)
and the grey area marks the unyielded plug zone. The contours also show the values of U/Umax for the yielded
regions.

An interesting question that may arise regards the vertical extension of the plug at the
SH wall (in the y direction) in the thick channel limit, e.g. as observed in figure 16(c). In
fact, a rigorous response to this question would require an inclusive, comprehensive DNS
study of the flow in the regime of plug formation at the SH wall, which falls outside of the
scope of the current work. However, to have a general understanding, we have performed
DNS analyses for large Bingham numbers (e.g. Bi = 103) and large slip numbers (e.g.
b = 1). Based on our analysis (results omitted for brevity), we have found that an increase
in the Bingham number, for a typically large slip number, leads to a growth of the plug at
the SH wall in the vertical (y) direction; nevertheless, its extension in the flow (x) direction
remains limited to the slip area. At the same time, the centre plug also expands such
that the lower and upper yield surfaces move towards the walls. We believe that further
detailed DNS analyses would be necessary to provide a comprehensive understanding of
the vertical extension of the plug at the SH wall.
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6. Summary and concluding remarks

In the present work, plane Poiseuille flow of a Bingham fluid in a channel with an SH
groovy lower wall is studied, via development of a semi-analytical model together with
complementary DNSs, to address the flow physics for both creeping and inertial flow
regimes, for thick channels. The semi-analytical model is developed via incorporation
of infinitesimal wall-induced perturbations into the flow motion equations, using Fourier
series expansion, and, subsequently, solving the resulting perturbation streamfunction
equation as a boundary value problem. The liquid/air interface on the SH groovy wall
is treated with a Navier slip law, while the no-slip condition is assumed at the liquid/solid
contact. The flow analysis comes down to evaluating the effects of five dimensionless
numbers, i.e. the Reynolds (Re), Bingham (Bi) and slip (b) numbers, as well as the groove
periodicity length (�) and the slip area fraction (ϕ). The total, perturbation and slip velocity
profiles are studied for a wide range of the aforementioned dimensionless parameters.
The effective slip length is also calculated and studied for creeping and inertial flows. An
increase in Bi leads to a growth of the perturbation velocity field, in the lower yielded
zone. On the other hand, an increase in Re induces an asymmetry in the flow profiles and
hinders the perturbation field development in the lower yielded zone. The formation of
an unyielded plug zone at the liquid/air interface of the SH wall is predicted at a critical
slip number, the value of which is smaller for the inertial flow compared with that for the
creeping flow; this implies an interesting feature, i.e. a faster formation of the unyielded
plug zone at the SH wall for a larger Re. In addition, it is shown that the critical slip number
decreases with an increase in Bi. For the thick channel limit, a simplified closed form
relation is developed to estimate the critical slip number; these estimates show a reasonable
agreement with the accurate semi-analytical model solutions. Also, the complementary
DNS results exhibit great agreement with those of the semi-analytical model, in predicting
the total and slip velocity profiles and their gradients, and the onset of the unyielded
plug zone formation at the SH wall (i.e. the regime classification). Eventually, using
our analysis, two critical flow regimes are classified based on the unyielded plug zone
formation/absence at the SH wall.

Our results show that the asymmetric flow patterns for the inertial flow might exit
from the periodic outlet boundary (i.e. x = �/2) for large Reynolds numbers, where the
convection may be strong. However, these asymmetric patterns are allowed to appear in the
flow domain from the periodic inlet boundary (i.e. x = −�/2) in both the semi-analytical
and DNS solutions. Generally, the assumption of having the same period for the flow
and geometry would be more restrictive for large Reynolds numbers. On the other
hand, at large Reynolds numbers, a stability analysis of the flow may allow us to find
other stable solutions of the flow where the flow period could differ from that of the
geometry. For instance, recently, Marousis et al. (2021) have performed the stability
analysis of viscoelastic film flows over an inclined substrate with rectangular trenches.
In this flow, with periodic positioning of the rectangular trenches, the authors have used
the Floquet–Bloch theory to be able to examine the disturbances with wavelengths larger
than that of the trenches. In some other studies, the researchers have solved for the inertial
flow in confined geometries with periodic groovy walls, followed by flow stability analysis
(Floryan 2005; Szumbarski 2007; Moradi & Floryan 2016, 2019).

In the present study, we have assumed a flat liquid/air interface at the SH walls, following
the recent works in the relevant literature (Yu, Teo & Khoo 2016; Crowdy 2017a; Hodes
et al. 2017; Patlazhan & Vagner 2017; Arenas et al. 2019; Fairhall, Abderrahaman-Elena
& García-Mayoral 2019; Schnitzer & Yariv 2019; Vagner & Patlazhan 2019; Landel et al.
2020; Nayak et al. 2020; Baier & Hardt 2021; Tomlinson & Papageorgiou 2022). This
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simplifying assumption has enabled us to tackle the problem of a viscoplastic fluid flow
over the groovy SH wall, while addressing the complexities arising due to the yield stress
effects, in a systematic way. Although in the Cassie state the liquid/air interface can be,
in general, deflected and depinned from the groove edges, the assumption of having a flat
interface pinned at the groove edges is still reasonable, as a first attempt, to explore the
complex yield stress effects on the flow. In addition, based on the studies in the literature
(Ou et al. 2004; Carlborg & van der Wijngaart 2011; Lv et al. 2014; Annavarapu et al.
2019) and estimating the liquid pressure for our flow system, it is possible, in certain
conditions, to maintain the Cassie state through our analysis with no wetting transition;
for instance, based on the cited studies and for the critical case of Re = 3600, Bi = 1,
� = 0.2 and ϕ = 0.5 presented in our work, the maximum deflection of the liquid/air
interface can be estimated to be small, i.e. � 0.06� (at the middle of a typical channel
with 20 grooves). On the other hand, our work can be extended in the future to include
a deflected interface, following recent studies of Newtonian fluids (Crowdy 2017b; Game
et al. 2017, 2019; Ge et al. 2018). Regarding the deflected interface, the solution may rely
on the flow perturbation based on the flow small parameters, such as the small deflection
angle (Crowdy 2017b) or the groove pitch ratio (Game et al. 2019).

The semi-analytical solution presented in this work assumes a flat lower yield surface for
the viscoplastic fluid. Therefore, this makes the model more suitable for the thick channel
limit. In the thin channel limit, however, since the lower yield surface can be wavy and
deformed, its location may vary in the domain and it is generally unknown; thus, it is not
clear what the last three boundary conditions in (3.6a–d) must be for the thin channel
limit. On the other hand, it may be possible to solve for higher-order perturbation terms
to find the ‘true’ location of the lower yield surface in the thin channel limit, following
some relevant studies in the literature (Walton & Bittleston 1991; Szabo & Hassager 1992;
Frigaard & Ryan 2004; Putz et al. 2009). However, in such an analysis, finding appropriate
slip boundary conditions for the SH walls, which can be complex, is still a challenge that
one must deal with.

We should mention that our perturbation solution method has conceptual similarities
to the linear stability analysis conducted by Frigaard et al. (1994) and Nouar et al.
(2007), where the yielded zone of the Bingham fluid is perturbed infinitesimally and
zero perturbation velocity is considered at the yield surface. In these stability analyses,
an exponential form of the perturbation field is imposed on the base flow; however, in our
analysis, the SH wall induces the perturbations. Therefore, our perturbation equations are
only valid in the lower yielded zone and the perturbation field must vanish at the lower
yield surface.

A future direction of the current work can be the extension of the semi-analytical
model to account for the flow features within the regimes where the unyielded plug
zone forms at the SH wall or when the centre plug becomes wavy. On the other hand,
from an experimental perspective and for comparison purposes, it would be interesting
to conduct laser-induced fluorescence and micro-particle image velocimetry experiments;
these would allow one to measure flow velocity profiles, slip velocities and their gradients
and capture yielded and unyielded plug zones (Luu, Philippe & Chambon 2017). To do so,
one can rely on several experimental studies on velocity measurements for slippery flows
(Ou & Rothstein 2005; Aktas et al. 2014; Vayssade et al. 2014; Daneshi et al. 2019).

Finally, other future research directions of our work could include considering a
depinned interface at the SH wall, incorporating capillary forces at the SH wall, assuming
a generalized period of the flow (i.e. unrelated to the geometry period), etc.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2022.700.
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