High Accuracy Numerical Methods for Ordinary Differential Equations with Discontinuous Right-hand Side

David E. Stewart

Ordinary Differential Equations (ODEs) with discontinuous right-hand side, where the discontinuities occur in the state variables arise in a number of applications.

The appropriate formulation of such a problem (Filippov [4]) is to replace the ODE " $x^{\prime}=f(x)$ " by a differential inclusion $x^{\prime} \in F(x)$ where F is a set-valued function with nonempty compact convex values and is upper semi-continuous. Solutions exist, although they are not necessarily unique.

Numerical methods to compute solutions of differential inclusions have already been developed and convergence results proven by Taubert [6, 7], Elliott [3] and Niepage and Wendt [5]. However, these methods are no better than 1st order accurate, and 1st order accuracy holds only with additional assumptions. Further, unless solutions are unique, these methods only guarantee that a sub-sequence of the numerical solutions converge.

It is assumed that the structure of the discontinuous ODE is as follows: there is a collection of disjoint open sets R_{i} with dense union in \mathbf{R}^{n}, such that $x \in R_{i}$ implies that $f(x)=f_{i}(x)$ with f_{i} smooth, and the R_{i} can be described by functions: $R_{i}=\left\{x \mid h_{i}(x)<h_{j}(x), j \neq i\right\}$. The active set at x is $I(x)=\left\{i \mid x \in \overline{R_{i}}\right\}$. The Filippov formulation becomes $x^{\prime} \in \operatorname{co}\left\{f_{i}(x) \mid i \in I(x)\right\}$. We suppose that $I(x(t))$ is a piecewise constant function. Where $I(x(t))$ is constant, we can select elements of the above differential inclusion that keep the active set constant. At a switching point the set of possible new values for $I(x(t))$ are determined by means of a Linear Complementarity Problem. Given a new active set from this set, we can continue by solving a new smooth ODE to maintain the new active set, until another switching point occurs.

A complete algorithm using this approach has been developed and convergence results proven. In particular, if a particular solution has only finitely many switching points and some non-degeneracy conditions are satisfied, then by suitable choices of new active sets, a sequence of numerical solutions can be generated that converge to the given solution with the same order of accuracy the smooth ODE solver used.

[^0]This algorithm has been implemented and numerical results obtained.
A "decomposition" extension to the main algorithm is described and convergence results are given for this extension. This extension has been implemented and numerical results obtained for a friction problem with multiple friction surfaces.

References

[1] Frank H. Clarke, 'Optimal control and the true Hamiltonian', SIAM Rev. 21 (1979), 157-166.
[2] Frank H. Clarke, Optimization and Nonsmooth Analysis: Canadian Mat. Soc. Ser. \#1 (Wiley-Interscience, New York, 1983).
[3] Charles M. Elliott, 'On the convergence of a one-step method for the numerical solution of ordinary differential inclusions', IMA J. Numer. Anal. 5 (1985), 3-21.
[4] A.F. Filippov, 'Differential equations with discontinuous right-hand side', Amer. Math. Soc. Transl. (Orig. in Russian in Math. Sbornik 5 pp.99-127 (1960) 42 (1964), 199-231.
[5] H-D. Niepage and W. Wendt, 'On the discrete convergence of multistep methods for differential inclusions', Numer. Funct. Anal. Optim. 9 (1987), 591-617.
[6] Klaus Taubert, 'Differenzverfahren für Schwingungen mit trockener und zäher Reibung und für Regelungssysteme', Numer. Math. 26 (1976), 379-395.
[7] Klaus Taubert, 'Converging multistep methods for initial value problems involving multivalued maps', Computing 27 (1981), 123-136.

Department of Mathematics
The University of Queensland
Queensland 4072 Australia

[^0]: Received 6th April, 1990. Thesis submitted to the University of Queensland, July 1989. Degree approved March 1990. Supervisor Professor L. Bass.

