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High Accuracy Numerical Methods for Ordinary Differential
Equations with Discontinuous Right-hand Side

DAVID E. STEWART

Ordinary Differential Equations (ODEs) with discontinuous right-hand side, where
the discontinuities occur in the state variables arise in a number of applications.

The appropriate formulation of such a problem (Filippov [4]) is to replace the ODE
ux' = f(x)" by a differential inclusion x' £ F(x) where F is a set-valued function
with nonempty compact convex values and is upper semi-continuous. Solutions exist,
although they are not necessarily unique.

Numerical methods to compute solutions of differential inclusions have already been
developed and convergence results proven by Taubert [6, 7], Elliott [3] and Niepage and
Wendt [5]. However, these methods are no better than 1st order accurate, and 1st order
accuracy holds only with additional assumptions. Further, unless solutions are unique,
these methods only guarantee that a sub-sequence of the numerical solutions converge.

It is assumed that the structure of the discontinuous ODE is as follows: there
is a collection of disjoint open sets Ri with dense union in R n , such that x 6 Ri
implies that f(x) = fi(x) with fi smooth, and the Ri can be described by functions:
Ri = {x | hi(x) < hj(x), j ^ i} . The active set at x is I(x) = {i | x € R~}. The
Filippov formulation becomes x' 6 co{ fi(x) \ i € I(x)}. We suppose that I(x(t))
is a piecewise constant function. Where I(x(t)) is constant, we can select elements
of the above differential inclusion that keep the active set constant. At a switching
point the set of possible new values for I(x(t)) are determined by means of a Linear
Complementarity Problem. Given a new active set from this set, we can continue by
solving a new smooth ODE to maintain the new active set, until another switching
point occurs.

A complete algorithm using this approach has been developed and convergence
results proven. In particular, if a particular solution has only finitely many switching
points and some non-degeneracy. conditions are satisfied, then by suitable choices of
new active sets, a sequence of numerical solutions can be generated that converge to
the given solution with the same order of accuracy the smooth ODE solver used.
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This algorithm has been implemented and numerical results obtained.

A "decomposition" extension to the main algorithm is described and convergence
results are given for this extension. This extension has been implemented and numerical
results obtained for a friction problem with multiple friction surfaces.

REFERENCES

[1] Frank H. Clarke, 'Optimal control and the true Hamiltonian', SIAM Rev. 21 (1979),
157-166.

[2] Frank H. Clarke, Optimization and Nonsmooth Analysis: Canadian Mat. Soc. Ser. #1
(Wiley-Interscience, New York, 1983).

[3] Charles M. Elliott, 'On the convergence of a one-step method for the numerical solution
of ordinary differential inclusions', IMA J. Numer. Anal. 5 (1985), 3-21.

[4] A.F. Filippov, 'Differential equations with discontinuous right-hand side', Amer. Math.

Soc. Transl. (Orig. in Russian in Math. Sbornik 5 pp.99-127 (1960) 42 (1964), 199-231.

[5] H-D. Niepage and W. Wendt, 'On the discrete convergence of multistep methods for
differential inclusions', Numer. Fund. Anal. Optim. 9 (1987), 591-617.

[6] Klaus Taubert, 'Differenzverfahren fur Schwingungen mit trockener und zaher Reibung
und fur Regelungssysteme', Numer. Math. 26 (1976), 379-395.

[7] Klaus Taubert, 'Converging multistep methods for initial value problems involving mul-
tivalued maps', Computing 27 (1981), 123-136.

Department of Mathematics
The University of Queensland
Queensland 4072 Australia

https://doi.org/10.1017/S000497270002829X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002829X

