METALLICITY DISTRIBUTION OF ELLIPTICAL GALAXIES THROUGH A QUANTITATIVE CALIBRATION OF THE MAGNESIUM Mg ${ }_{2}$ INDEX

Alberto Buzzoni, Giorgio Gariboldi
Osservatorio Astronomico di Brera Via Brera, 2820121 Milano, Italy
Luciano Mantegazza
Dip. di Fisica Nucleare e Teorica Università di Pavia
Via Bassi, 627100 Pavia, Italy

In this contribution we give a progress report for our work intending to approach in a more complete way the problem of a quantitative calibration of the Mg_{2} index (Faber et al. 1977, A.J., 82, 941; Buzzoni, Gariboldi \& Mantegazza 1991 submitted to $A . J$.$) . We have first investigated$ empirically the relationship between the index and the fundamental parameters for a wide set of Galactic standard stars deriving a detailed calibration for dwarfs and giants. This allowed to build up synthetic models for stellar populations exploring Mg_{2} in the galaxies with varying overall distinctive parameters of the populations.

The global dependence of Mg_{2} on $[\mathrm{Fe} / \mathrm{H}]$ is found to be $\partial M g_{2} / \partial[\mathrm{Fe} / \mathrm{H}]=0.135$, in agreement with the empirical estimate derived by Brodie \& Huchra (1990, Ap.J., 362, 503) considering both Galactic and M31 globular clusters. When applying our calibration to the exaustive sample of local ellipticals observed by Davies et al. (1987 Ap.J. Suppl., 64, 581) as shown in Fig. 1, we find that galaxies display a mean metallicity enhanced by $20-60 \%$ respect to the solar value spanning over one order of magnitude at the extreme edges of their assumed fiducial distribution.

Fig. 1 - Metallicity calibration for elliptical galaxies in the Davies et al. (1987) sample. Galaxies are assumed 15 Gyr old with a canonical Salpeter IMF.

