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ABSTRACT

We prove a generalization of the author’s work to show that any subset of the primes
which is ‘well distributed’ in arithmetic progressions contains many primes which are
close together. Moreover, our bounds hold with some uniformity in the parameters. As
applications, we show there are infinitely many intervals of length (logx)¢ containing
>, loglog x primes, and show lower bounds of the correct order of magnitude for the
number of strings of m congruent primes with py,1m — pn < €logx.

1. Introduction

Let £ = {Li1,..., L} be a set of distinct linear functions L;(n) = a;n + b; (1 < i < k) with
coefficients in the positive integers. We say such a set is admissible if Hle L;(n) has no fixed
prime divisor (that is, for every prime p there is an integer n, such that Hle Li(nyp) is coprime
to p). Dickson made the following conjecture.

CONJECTURE (Prime k-tuples conjecture). Let £ ={L1,..., L;} be admissible. Then there are
infinitely many integers n such that all L;(n) (1 <14 < k) are prime.

Although such a conjecture appears well beyond the current techniques, recent progress
([Zhal4, May15], and unpublished work of Tao) has enabled us to prove weak forms of this
conjecture, where instead we show that there are infinitely many integers n such that several
(rather than all) of the L;(n) are primes.

As noted in [May15], the method of Maynard and Tao can also prove such weak versions
of Dickson’s conjecture in various more general settings. This has been demonstrated in various
recent works [Thol4, CHLPT15, BFET15, Poll4, LP00]. In this paper we consider generalized
versions of Dickson’s conjecture, and prove corresponding weak versions of them.

Based on heuristics from the Hardy—Littlewood circle method, it has been conjectured that
the number of n < x such that all the L;(n) are prime should have an asymptotic formula
(&(L) + o(1))z/(log x)*, where &(L) is a constant depending only on £ (with &(£) > 0 if and
only if £ is admissible). Moreover, these heuristics would suggest that the formulae should hold
even if we allow the coefficients a;, b; and the number & of functions in £ to vary slightly with x.

One can also speculate that Dickson’s conjecture might hold for more general sets, where we
ask for infinitely many integers n € A such that all of L;(n) are primes in P, for some ‘nice’ sets
of integers A and of primes P, and provided L satisfies some simple properties in terms of A
and P. For example, Schinzel’s Hypothesis H would imply this if either A or P were restricted
to the values given by an irreducible polynomial, and a uniform version of Dickson’s conjecture
would give this if A or P were restricted to the union of short intervals.
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The aim of this paper is to show that the flexibility of the method introduced in [May15]
allows us to prove weak analogues of these generalizations of Dickson’s conjecture. In particular,
if A and P N L(A) are well distributed in arithmetic progressions, then we can obtain a lower
bound close to the expected truth for the number of n € A, n < z such that several of the L;(n)

are primes in P, and we can show this estimate holds with some uniformity in the size of a;, b;
and k.

2. Well-distributed sets

Given a set of integers A, a set of primes P, and a linear function L(n) = lyn + l2, we define

Alz)={ne A:x <n< 2z}, Alx;q,a)={n¢e€ Alx),n=a (mod q)},
L(A) ={L(n):n € A}, or(q) = ¢(|l]a)/e(|lL]), (2.1)
Pra(z) = L(A(x)) NP,  Pralx;q,a) = L(A(z;q,a)) NP,

This paper will focus on sets which satisfy the following hypothesis, which is given in terms of
(A,L,P,B,xz,0) for £ an admissible set of linear functions, B € N, = a large real number, and
0<6<1.

HyPOTHESIS 1. (A, L,P,B,z,0). Let k = #L.

(1) Ais well distributed in arithmetic progressions: we have

#A(x
5 o

g<af

#A(x)

#A(Q?, q, a) - (log $)100k2 .

(2) Primes in L(A) NP are well distributed in most arithmetic progressions: for any L € £ we

have ( ) ( )
#Pr.alz #Pra(z
max Pr alx;q,a) — : : .
q%:e (L(a),q)=1# £.A(4,a) vr(q) (log ) 100k
(¢.B)=1

(3) A is not too concentrated in any arithmetic progression: for any ¢ < z? we have

#A(z;q,0) < #é(x) :

We expect to be able to show this hypothesis holds (for all large z, some fixed § > 0 and
some B < 2°W) with few prime factors) for sets A, P where we can establish ‘Siegel-Walfisz’ type
asymptotics for arithmetic progressions to small moduli, and a large sieve estimate to handle
larger moduli.

We note that the recent work of Benatar [Ben00] showed the existence of small gaps between
primes for sets which satisfy similar properties to those considered here.

3. Main results

THEOREM 3.1. Let « > 0 and 0 < 6 < 1. Let A be a set of integers, P a set of primes, L = {L,
..., Ly} an admissible set of k linear functions, and B,z integers. Let the coefficients L;(n) =
ain +b; € L satisfy 0 < a;,b; < z® for all 1 < i <k, and let k < (logx)® and 1 < B < z“.
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There is a constant C' depending only on « and 6 such that the following holds. If k > C
and (A, L, P, B, x,0) satisfy Hypothesis 1, and if § > (log k)~! is such that

;wg_f) Z Qpiji)#'PL,A(x) L s7A@)

= b
log x
Lec 8

then
#A(x)
(log z)k exp(Ck)"

Moreover, if P =P, k < (logz)"/® and all L € £ have the form an + b; with |b;| < (logz)k~2 and
a < 1, then the primes counted above can be restricted to be consecutive, at the cost of replacing
exp(Ck) with exp(Ck®) in the bound.

#{n € Alx) : #({L1(n),...,Ly(n)} NP) > C '5logk} >

All implied constants in Theorem 3.1 are effectively computable if the implied constants in
Hypothesis 1 for (A, L, P, B,z,0) are.

We note that Theorem 3.1 can show that several of the L;(n) are primes for sets A, P where
it is not the case that there are infinitely many n € A such that all of the L;(n) are primes in
P. For example, if P = {pa, : n € N} is the set of primes of even index and A = N, then we
would expect P to be equidistributed in the sense of Hypothesis 1. However, there are clearly
no integers n such that n,n + 2 € P, and so the analogue of the twin prime conjecture does
not hold in this case. Similarly if P is restricted to the union of arithmetic progressions in short
intervals.! Therefore without extra assumptions on our sets A, P we cannot hope for a much
stronger statement than that several of the L;(n) are primes in P.

We also note that Theorem 3.1 can apply to very sparse sets A, and no density assumptions
are required beyond the estimates of Hypothesis 1. Of course, for such sets the major obstacle
is in establishing Hypothesis 1.

We give some applications of this result.

THEOREM 3.2. For any x,y > 1 there are > x exp(—+/log x) integers x¢ € [z,2z] such that
m(zo +y) — m(zo) > logy.

Theorem 3.2 is non-trivial in the region y = o(log ) (and y sufficiently large), when typically
there are no primes in the interval [z, + y]. For such values of y, it shows that there are
many intervals of length y containing considerably more than the typical number of primes. By
comparison, a uniform version of the prime k-tuples conjecture would suggest that for small y
there are intervals [z, z + y| containing > y/logy primes. For large fixed y, we recover the main
result of [May15], that lim inf,, (pp1m — Pn) <Km 1 for all m.

THEOREM 3.3. Fix e > 0 and let x > xo(€,q). There is a constant c¢. > 0 (depending only on €)
such that uniformly for m < c.loglogz, ¢ < (logz)!=¢ and (a,q) = 1 we have

m(x)

#{pn <T:pp =+ = Pppim = a (mod q), Pntm — Pn < €logz} >, (g (@

Here C > 0 is a fixed constant.

! For example, one could take P = J,_,; Uicar/a ol + (20 — Da¥* < p < a+2iz®* :n =i (mod 5)}. This set
is equidistributed in the sense of Hypothesis 1, but also has no gaps of size 2.
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Theorem 3.3 extends a result of Shiu [Shi00] who showed the same result but with a lower
bound > 1@ for ¢(z) ~ Cym(loglogz) /%9 in the shorter range m < (loglogz)/#(@)=¢
and without the constraint pym — pn < €logx.

We see that for fixed m, ¢, Theorem 3.3 shows a positive proportion of primes p, are counted
(and so our lower bound is of the correct order of magnitude). In particular, for a positive
proportion of primes p,, we have p, = ppr1 =+ = Ppim = a (mod q) and pp4m — pn < €log py,.
This disproves the conjecture of Knapowski and Turdan [KT77] that #{p, <  : pp = pp+1 =
1 (mod 4)} = o(m(x)). It also extends a result of Goldston et al. [GPY11], who showed a positive
proportion of primes p, have p,+1 — p, < €logp,, and of Freiberg [Frell] who showed at least
gl=e/loglog s nrimes p, < @ have ppy1 — pp < €logpn and ppi1 = pp = a (mod q).

THEOREM 3.4. Fixm € N and € > 0. There exists a k = k,,, < exp(Cm) such that for x > xy(e, m)
and 7/'?*¢ <y < x and for any admissible set £ = {Ly,..., Ly} where L;i(n) = a;n + b; with
a; < (logz)'/¢ and b; < x, we have

Y

#{n € [x,z +y] : at least m of L;(n) are prime} > oz 2)F

Here C > 0 is a fixed constant.

Theorem 3.4 relies on a Bombieri—Vinogradov type theorem for primes in intervals of length
27/12+¢ the best such result being due to Timofeev [Tim87]. By adapting Hypothesis 1 to allow
for weighted sums instead of #P, 4(z), we could presumably use the results of [HWWO04] and
[Kum02] to extend this to the wider range 29°%° < y < .

Theorem 3.4 explicitly demonstrates the claim from [May15] that the method also shows the
existence of bounded gaps between primes in short intervals, and for linear functions. We note
that we would expect the lower bound to be of size y/(log z)™, and so our bound is smaller than
the expected truth by a factor of a fixed power of log x. It appears such a loss is an unavoidable
feature of the method when looking at bounded length intervals.

Our final application uses Theorem 3.1 to apply to a subset P of the primes. This extends
the result of Thorner [Thol4] to sets of linear functions, and with an explicit lower bound.

THEOREM 3.5. Let K/Q be a Galois extension of Q with discriminant A . There exists a
constant Ci depending only on K such that the following holds. Let C C Gal(K/Q) be a
conjugacy class in the Galois group of K/Q, and let

P = {p prime : pfAf, [K;Q] = C},

where [K—/Q} denotes the Artin symbol. Let m € N and k = exp (Cxgm). For any fixed admissible
set L ={L,..., L} of k linear functions L;(n) = a;n+ b; with (a;, Ax) =1 for each 1 <1i < k,
we have

x

#{.CL‘ <n<2z:at least m Ole(’I’L), Ce ,Lk(n) are in 7)} > W,

provided x > xo(K, L).

Thorner gives several arithmetic consequences of finding such primes of a given splitting
type; we refer the reader to the paper [Thol4] for such applications.
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As with Theorem 3.4, we only state the result for fixed m, because it relies on other work
which establishes the Bombieri—Vinogradov type estimates of Hypothesis 1, and these results
only save an arbitrary power of logxz. One would presume these results can be extended to
save exp(—cy/log x) or similar (having excluded some possible bad moduli), which would allow
uniformity for m < eloglogx, but we do not pursue this here. Similarly, the implied constant
in the lower bounds of Theorems 3.4 and 3.5 is not effective as stated, but presumably a small
modification to the underlying results would allow us to obtain an effective bound.

4. Notation

We shall view 0 < 8 < 1 and o > 0 as fixed real constants. All asymptotic notation such
as O(+),0(+),<,> should be interpreted as referring to the limit x — oo, and any constants
(implied by O(-) or denoted by ¢, C' with subscripts) may depend on 6, & but no other variable,
unless otherwise noted. We will adopt the main assumptions of Theorem 3.1 throughout. In
particular, we will view A, P as given sets of integers and primes respectively and k = #.L will
be the size of L ={Ly,..., Ly} an admissible set of integer linear functions, and the coefficients
ai,bj € Z of Li(n) = ajn+b; will satisfy |a;], |b;] < 2 and a; # 0. B < 2 will be an integer, and
x, k will always be assumed sufficiently large (in terms of 0, «).

All sums, products and suprema will be assumed to be taken over variables lying in the
natural numbers N = {1,2,...} unless specified otherwise. The exception to this is when sums
or products are over a variable p (or p’), which instead will be assumed to lie in the prime
numbers P = {2,3,... }.

Throughout the paper, ¢ will denote the Euler totient function, 7,(n) the number of ways
of writing n as a product of r natural numbers, and p the Mdébius function. We let #.A4 denote
the number of elements of a finite set A, and 1 4(x) the indicator function of A (so 1 4(z) =1 if
z € A, and 0 otherwise). We let (a,b) be the greatest common divisor of integers a and b, and
[a, b] the least common multiple of integers a and b. (For real numbers x,y we also use [z,y] to
denote the closed interval. The usage of [, -] should be clear from the context.)

To simplify notation we will use vectors in a way which is somewhat non-standard. d will
denote a vector (di,...,dy) € N*. Given a vector d, when it does not cause confusion, we
write d = Hle d;. Given d, e, we will let [d,e] = Hle[d,-, ei] be the product of least common
multiples of the components of d, e, and similarly let (d,e) = Hle(di, e;) be the product of
greatest common divisors of the components, and d|e denote the k conditions d;|e; for each
1 <4 < k. An unlabelled sum 4 should be interpreted as being over all d € NF.

Finally, for reference we list here the key quantities used in the proof (apart from the
previously introduced A, £, P, B, x, §) and where they are first introduced.

W, Yu, ©p(L):  equations (7.1)—(7.3),
W, why,: equations (7.4), (7.5),
Dy, Wj: equation (7.7),
Ad, Yr: equation (7.8),
R: inequality (7.9),
F, Ty, Ug: equation (7.10),
Fy, Fy: equation (7.12),
Y.: Lemma 8.2,
(), Ji(+): Lemma 8.6.
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5. Outline

The methods of this paper are based on the ‘GPY method’ for detecting primes. The GPY
method works by considering a weighted sum associated to an admissible set £ = {L1,..., L},

k

s= % ( 15(Li(n)) — m) 0, (5.1)
r<n<2z “i=1

where m and k are fixed integers, = is a large positive number and w,, are some non-negative

weights (typically chosen to be of the form of the weights in Selberg’s A? sieve).

If § > 0, then at least one integer n must make a positive contribution to S. Since the weights
wy, are non-negative, if n makes a positive contribution then the term in parentheses in (5.1)
must be positive at n, and so at least m + 1 of the L;(n) must be prime. Thus to show at least
m + 1 of the L;(n) are simultaneously prime infinitely often, it suffices to show that S > 0 for
all large x.

The shape of S means that one can consider the terms weighted by 1p(L;(n)) separately for
each L; € L, which makes these terms feasible to estimate accurately using current techniques. In
particular, the only knowledge about the joint behaviour of the prime values of the L; is derived
from the pigeonhole principle described above.

The method only succeeds if the weights w,, are suitably concentrated on integers n when
many of the L;(n) are prime. To enable an unconditional asymptotic estimate for S, the w,, are
typically chosen to mimic sieve weights, and in particular Selberg sieve weights (which tend to be
the best performing weights when the ‘dimension’ k of the sieve is large). One can then hope to
estimate a quantity involving such sieve weights provided one can prove suitable equidistribution
results in arithmetic progressions. The strength of concentration of the weights w, on primes
depends directly on the strength of equidistribution results available.

The original work of Goldston, Pintz and Yildirim [GPY09] showed that one could construct
weights w,, which would show that S > 0 for m = 1 (and for & sufficiently large) if one could prove
a suitable extension of the Bombieri—Vinogradov theorem. Zhang [Zhal4] succeeded in proving
such an extension,”? and as a consequence showed the existence of bounded gaps between primes.

The author’s work [May15] introduced a modification to the choices of the sieve weights wy,
(this modification was also independently discovered by Terence Tao at the same time). This
modification enables w,, to be rather more concentrated on n for which many of the L;(n) are
prime. This allows one to show S > 0 for any m € N, and moreover the method works even if
one has much more limited knowledge about primes in arithmetic progressions.

As remarked in [Mayl15], the fact that the method now works even with only a limited
amount of knowledge about primes in arithmetic progressions makes it rather flexible, and in
particular applicable to counting primes in subsets, where we have more limited equidistribution
results. Moreover, it is possible to exploit the flexibility of the pigeonhole principle set-up in (5.1)
to consider slightly more exotic combinations, which can ensure that the n making a positive
contribution to S also satisfy ‘typical’ properties.

Therefore we can consider modified sums of the form

s= Y (ilp@xn))—m—mg(n))wn

neA(z) “i=1

2 The actual form of Zhang’s extension is slightly weaker than that considered in the original conditional result of
Goldston, Pintz and Yildirim, although it is sufficient for the argument.
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for some set of integers A, set of primes P and set of ‘atypical’ integers B. Provided we have some
weak distribution results available (such as those asserted by Hypothesis 1), we can estimate all
the terms involved in this sum. Again, by the pigeonhole principle, we see that if n € A(x) makes
a positive contribution to S, then at least m + 1 of the L;(n) are primes in P, and that n ¢ B.
We expect that if B represents an ‘atypical’ set, and P is not too sparse (relative to A), then
we can choose w, similarly to before and show that S > 0 for k sufficiently large. Moreover,
by modifying some of the technical aspects of the method in [May15], we can obtain suitable
uniform estimates for such sums S even when we allow the coefficients a;, b; of L;(n) = a;n + b;,
the number & of functions and the number m of primes we find to vary with x in certain ranges.

Our work necessarily builds on previous work in [May15], and a certain degree of familiarity
with [May15] is assumed.

6. Proof of Theorems 3.1-3.5

The proof of Theorems 3.1-3.5 relies on the following key proposition.

PROPOSITION 6.1. Let o« > 0 and 0 < # < 1. Let A be a set of integers, P a set of primes,
L ={Ly,...,L;} an admissible set of k linear functions, and B,x integers. Assume that the
coefficients L;(n) = a;n + b; € L satisfy 1 < a;,b; < x® for all 1 <1i < k, and that k < (log 9:)1/5
and 1 < B < z®. Let 2910 < R < 29/3. Let p, € satisfy k(loglogz)?/(logz) < p,& < 0/10, and
define

S D)={neN:pn = (p>z° orp/D)}.

There is a constant C depending only on « and 6 such that the following holds. If k > C' and
(A, L, P, B,x,0) satisfy Hypothesis 1, then there is a choice of non-negative weights w, = wy, (L)
satisfying

k
w, < (log R)* H H 4
i=1p|L;(n),ptB
such that the following statements hold.
(1) We have

k
2 = (1 " O((log ;)1/1())) @é)’“GB(ﬁ)#A(fﬂ)(bg R I

neA(x)

(2) For L(n) =arn+ by, € L we have

! Bt plar) -
nE;(x) tr(Em)n = (1 i O((logg:)l/lo)> SD(B)k_lgB(/l) ar #Pr a(z)(log R)*

k
+0 (9{)@),663(@#,4(@(10{@ R)k1]k> .

(3) For L=aon+by ¢ L and D < 29 Jet AL = ag H§:1 lagbj — boaj|. If A, # 0 we have

., A, D BF

2(AL) 2(D) p(B)F OB L)HAl) o R)F1,,.
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(4) For L € L we have
k

B
> ( > 1)wn < PPk (log b)*— e S p(L)#A() log R)
nEA(x) “p|L(n) 4
p<xPf
ptB
Here Iy, Jj are quantities depending only on k, and &g (L) is a quantity depending only on
L, and these satisfy

(o Hisn<pe I Ly (1T 1
SpL) = H<1 p )(1 p) = exp(O(k))’

piB

log k
T > %Ik > (2klog k) k!

Moreover, if all functions L € L are of the form L = an + by, for some fixed a and b <
log z/(klog k), then for n > (logz)~%/1°, we have

A
E —r <« n(log x)(log k).
bl (AL)
nlogx
L(n)=an+b

Here the implied constants depend only on 0, «, and the implied constants from Hypothesis 1.
Assuming Proposition 6.1, we now establish Theorems 3.1-3.5 in turn.

Proof of Theorem 3.1. We first note that by passing to a subset of L, it is sufficient to show that
in the restricted range C' < k < (logx)'/® we have the weaker bound

#A(z)
(log z)* exp(Ck®)’

#{nc Alx): #({Li(n),...,Lyg(n)} NP) = C 'slogk} > (6.1)
The main result then follows with a suitably adjusted value of C.
For m € N, we consider the sum

S (le kY Y )wn:sl_sg_sg, (6.2
neA(z) i=1 p|Li(n)
p<af
p{B
where w,, are the weights whose existence is guaranteed by Proposition 6.1. We note that for
any n € A(x), the term in parentheses in (6.2) is positive only if at least m + 1 of the L;(n) are
primes in P, and none of the L;(n) have any prime factors p{B less than z*. Moreover, we see
that if this is the case then since a;, b; < 2%, each L;(n) can have at most O(1/p) prime factors
p1B, and so
k
wy < (logz) [T J[ 4 < (logz)* exp(O(k/p)). (6.3)
i=1p|L;i(n)
ptB

Since the term in parentheses in (6.2) can be at most k, we have that

S

#Hn € Ale): #{La(n), o L)} OP) 2 md > 4o OtT0))

(6.4)
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Thus it is sufficient to obtain a suitable lower bound for S. (Essentially the same idea has been
used by Goldston et al. [GPY11].) Using Proposition 6.1, we have

k k—1 k a
> Y e, > (1t o) e @a(C)log R Y. E
neA(z) i=1 =1
k
+o(gfweg<£>#v4<x><log3>kfk>, (6.5)
k
—m Y wa=m 1+0(1))@(B;?)kGB(E)#A(m)(IogR)ka, (6.6)
neA(zx)
Ss=k »_ Z > wn < p?kS(log k)? (B) Sp(L)#A(z)(log R)F Ty, (6.7)
nEA) =1 piLy(n)
p<laP
piB

We choose p = cok~3(log k) ~! with ¢y a small absolute constant such that S3 < (1/3 + 0(1))Ss.
(This choice satisfies the bounds of Proposition 6.1 since k < (logz)/® and k is taken to be
sufficiently large in terms of §.) Thus, for x sufficiently large, we have

Bk

S >
@(B)F

az
o0 lox 1" 1ogRZ ALAE) s ale) 2 A()). (03)
By the assumption of Theorem 3.1, we have

#A(2)
logz

%Z ela #PL“A( )20 (6.9)

=1

From Proposition 6.1, we have Ji /I > (log k)/k. Combining this with (6.8) and (6.9), we have
(for x sufficiently large)

k
o(B)k

for some constant ¢; depending only on 6. In particular, if m = ¢;dlogk, then m > 1 (since
§ > (logk)~! by assumption), and S > 0. Using the bounds I > (2klogk)™" and &p(L) >
exp(—Ck) from Proposition 6.1, along with the trivial bound B/¢(B) > 1, we obtain

> (0/3)F Sp(L)#A(x)(log z)* I, (3c16log k — 2m), (6.10)

Bk
p(B)*

for a suitable constant Cy depending only on . Combining this with (6.4) and recalling our
choices of m, p gives for x > Cj,

S > (0/3)F Gp(L)#A(z)(log )" I}, > #A(x)(log z)* exp(—Cak?), (6.11)

#A(x) exp(—C3k®)
(log )"

#{ne Alx) : #{L1(n),...,Lg(n)} NP) = c1dlogk} > ) (6.12)

provided Cj5 is chosen sufficiently large in terms of § and «. This gives (6.1), and so the first
claim of the theorem.
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For the second claim, we have L; = an + b; for all 1 < i < k, with a < 1 and b; < n(logx).
(We will eventually take n = c4(klogk)~!, for some ﬁxed 4 Wthh implies the bound in the
statement of Theorem 3.1.) In place of S we consider

k
> (Z Ip(Lim) —m—k>, >, 1=k 18(9/10;1)(L(n))>wn

neA(x) i=1 p|Li(n) b<nlogz
p<z’,piB L=an+b¢ L

=5, — Sy~ S5~ 8. (6.13)

The term in parentheses in (6.13) is positive only if at least m of the L;(n) are primes, none of
the L;(n) have a prime factor p{B smaller than z*, and all integers not in {L1(n),..., Lg(n)} of
the form an + b with b < nlogx have a prime factor less than 2%/10_ In particular, there can be
no primes in the interval [an, an + n(log )| apart from possibly {Li(n), ..., Lx(n)}, and so the
primes counted in this way must be consecutive.

For Sy, we notice that Ar, # 0 for all L we consider since any L has the same lead coefficient
as the L; (and so cannot be a multiple of one of them). By Proposition 6.1, we have

Bk
Si < k——# A@)log R)F S50 > ——E < nk(logk)Ss. (6.14)
¢(B) pe AL
L=an+b¢ L

We choose nn = ¢4/(klog k) for some sufficiently small constant ¢4 (this satisfies the requirements
of Proposition 6.1). We then see that the bound (6.8) holds for S” in place of S provided x, k are
sufficiently large. The whole argument then goes through as before. O

Proof of Theorem 3.2. We note that the result is trivial if y > (logz)?, y = O(1) or z = O(1)
by the pigeonhole principle, Bertrand’s postulate and the prime number theorem. Therefore, by
changing the implied constant if necessary, it is sufficient to establish the result for y < (logz)'/®
with y sufficiently large.

We take P =P, A=N, £ ={Ly,..., L}, with L;(n) = n + h;, where h; is the ith prime
larger than k. By the prime number theorem, h; < 2klogk for all ¢ (provided k is sufficiently
large). This is an admissible set.

By the Landau—Page theorem (see, for example, [Dav00, ch. 14]) there is at most one modulus
qo < exp(c1/log x) such that there exists a primitive character y modulo gy for which L(s, x) has
a real zero larger than 1 — ¢y(logz)~'/2 (for suitable fixed constants ¢y, ¢o). If this exceptional
modulus gg exists, we take B to be the largest prime factor of ¢g, and otherwise we take B = 1.
If qo exists, it must be square-free apart from a possible factor of at most 4, and must satisfy
qo > log x (from the class number formula). Therefore if g exists, loglog 2 < B < exp(c1/log x).
Thus, whether or not qq exists, we have

B 1
5 =" iogrogs) (619

With this choice of parameters, we have error terms for parts (1) and (2) of Hypothesis 1 of size
rexp(—czy/logx) = #A(x) exp(—csy/logx) for § = 1/3 by variants of the Bombieri—Vinogradov
theorem avoiding an exceptional character (see, for example, [Dav00, ch. 28]). Thus Hypothesis 1
holds for (A, £, P, B, z,1/3) for any k < (logz)'/° provided k is sufficiently large. We have

(I+o(1))z  (1+o(1))#A(x)

#PLA(r) = log N log z

: (6.16)
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and so we may take § = (14 o(1)) in Theorem 3.1. Theorem 3.1 then gives

#{x <n<2zx:7(n+2klogk) —7m(n) > logk} >

x
. 1
(log x)* exp(Ck) (6.17)
Thus, given any x,y suitably large with y < (logz)'/® we can take k = |y/(2logy)], and see
that the above gives the result. All constants we have used are effectively computable. O

Proof of Theorem 3.3. To get lower bounds of the correct order of magnitude, we average over
admissible sets. We assume without loss of generality that a is reduced modulo ¢, so 1 < a < g.
We then adopt the same set-up as in the proof of Theorem 3.2 for our choice of A, P, 8, R. If an
exceptional modulus ¢ exists (as defined in the proof of Theorem 3.2), then we take B to be the
largest prime factor of gg coprime to q. Since ¢ < (logz)!~¢ and gy > log x (with qg essentially
square-free) we have loglogr <. B < x if qg exists. Thus B/p(B) = 1 + o(1) regardless of
whether ¢qg exists.

Instead of our individual choice of £, we will average over all admissible choices of £ with
#L = k and where £ = {L1,..., L} contains functions of the form L;(n) = gn + a + ¢b; with
gb; < nlogz. We write L(b) for such a set given by b1, ..., b;. We consider

S = > Z<Z1p —m— kZ Z 1-k > 13(p;B)(L(n))>wn(£).

b1<-<b, neA(x i=1 p|Li(n b<2nlogz
qbi<nlogx p<a:”,p’[B L=qn+b¢L
L=L(b) admissible

(6.18)

Here w, (L) are the weights given by Proposition 6.1 for the admissible set £ = £(b). For a given
admissible set £, the sum over n is then essentially the same quantity as S’ from (6.13), except
in the final term in parentheses we are considering elements with no prime factor less than z”
instead of zf/19.

We see the term in parentheses in (6.18) is positive only if at least m of the L;(n) are
primes, all the remaining L;(n) have no prime factors ptB less than x”, and all other gn + b
with b < 2nlogn have a prime factor ptB less than x”. We see from this than no n can make a
positive contribution from two different admissible sets (since if n makes a positive contribution
for some admissible set, the L;(n) are uniquely determined as the integers in [gn, gn + nlog z]
with no prime factors p{B less than x”). By (6.3), we see that if n makes a positive contribution
then w,, < (logx)?* exp(O(k/p)), with the implied bound uniform in £(b).

As before, we choose p = cok~3(log k) ™!, which makes the contribution of the third of the
terms in parentheses small compared to the second one. Following the argument of the proof of
Theorem 3.1, using S(p; B) in place of S(0/10;1) increases the size of the contribution of the
final term by a factor O(p~1) = O(k3logk). Thus to show the final term is suitably small, we
take 7 < € to be a small multiple of k~*(log k)2 instead of 1/(klogk) (which is acceptable for
Proposition 6.1). With these choices, we find that for a suitable constant ¢; we have

k:Bk

=20 oy

Sp(L)#A(x)(log 2)* I, Z (3c1log k — 2m). (6.19)
by <---<bg
gbr<nlogx
L(b) admissible

Therefore, given m € N we choose k = [exp(m/c1)]. With this choice we see that S” > 0. Using
the bounds Ij, > (klog k)™ and &p(L) > exp(—Ck) from Proposition 6.1 and B¥/o(B)* > 1,
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we see that for a suitable constant Cy we have

S" > a(logz)Fexp(-Cok®) > L. (6.20)
by <--<bg
gbr<nlogx
L(b) admissible
Thus we are left with obtaining a lower bound for the inner sum of (6.20). We see all the b;
lie between 0 and 7(log x)/q. We greedily sieve this interval by removing for each prime p < k
in turn any elements from the residue class modulo p which contains the fewest elements. The
resulting set has size at least

nlogx 1 log
1—- —_—. 6.21
q H( p) 7 gk (log £)? (6:21)

p<k

Any choice of k distinct b; from this set will cause the resulting £(b) to be admissible. We now
recall from the theorem that we are only considering ¢ < (logz)!~¢ and m < c.loglogz. For a
suitably small choice of ¢, we see that k = [exp(m/c1)] < (logz)¥/!. Therefore from (6.21) we
see the length of the interval is at least k2 if « is sufficiently large in terms of €. In this case, we
obtain the bound

1 k 1 F
S et (L k) > (BT ewt-car) (6.22)
by<--<b
qbizn;gkw

L(b) admissible
for some constants c3, Cy > 0. Thus, substituting (6.22) into (6.20), we obtain
5" > z(log z)* exp(—Csk?)q". (6.23)

We recall that every pair n, £ which makes a positive contribution to S” is counted with weight
at most kw, (L) < k(logz)?* exp(O(k/p)) (uniformly over all choices of £). Putting this all
together, we obtain the number N of integers n with z < n < 2z such that there are >logk
consecutive primes all congruent to a (mod ¢) in the interval [gn, gn + nlog x] satisfies

x
N>»— . 6.24
q* exp(Cgk®) (6.24)
We see that the initial prime in each such interval is counted by at most logx values of n.
Therefore, changing the count to be over the initial prime, recalling k = [exp(m/c1)], recalling

that n < ¢, and replacing x with x/3q gives

m(z)

T (6.25)

#{pn <T:pp=--- =Pn+m =0a (mOd q)apn-l—m —Pn < EIOgIIZ} >

for a suitable constant C > 0, as required. |

Proof of Theorem 3.4. We take P =P, A= [z, +y], B=1, 0 =1/30 — e. Given m, we choose
k = exp(Cm) for some suitable constant C' > 0.

Timofeev [Tim87] (improving earlier work of Huxley and Iwaniec [HI75] and Perelli et al.
[PPS85]) has shown that, for § = 1/30 — €/2, for any 27/127¢/2 <y < x and any fixed C’ > 0 we
have
m(z +y) —w(x) y

sup Lot e 7
©(q) (log )¢

(a,9)=1

m(z +y;q,a) — m(2;q,a) — (6.26)

g<z?
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By taking C’ sufficiently large in terms of k, we see that (6.26) implies Hypothesis 1 holds for
our choice of § = 1/30 — e provided z is sufficiently large in terms of m and e. Theorem 3.1 then
automatically gives Theorem 3.4. O

Proof of Theorem 3.5. We take A =N, B = Ax and P, L the sets given by the statement of the
theorem. To avoid confusion, we note that A here is the discriminant of K/Q, and unrelated
to Az, from Proposition 6.1. Murty and Murty [MM87] have then established the key estimate
(2) of Hypothesis 1 with any 6 < min(1/2,2/#G), where G = Gal(K/Q) (the other estimates
being trivial). Finally, we have

Ax#C =z
(Ax)#Clogz’

(6.27)

T =

B e(ai)
— Prialz) = (1+o(1
B L Pale) > (o)
and so for x sufficiently large, we may take § to be a constant depending only on K. The result
now follows directly from Theorem 3.1. O

7. Initial considerations

We recall that we are given a set A of integers, a set P of primes, an admissible set £ = {Lq,...,
Ly} of integer linear functions, an integer B and quantities R, x. We assume that the coefficients
of Li(n) = ain+b; € L satisty |a;], |b;| < 2%, a; # 0, and k = #L is sufficiently large in terms of the
fixed quantities 0, « and satisfies k < (log x)1/5. B, R satisfy 1 < B < z%, and 29/10 <RK 29/3.
Finally, we assume from now on that the set A satisfies

5™ #A)| A

—~ (log z)100k2”
q\x

#A(x;q,a) —

and

#A(x)
q

for any ¢ < Y. Together these assumptions are a slight generalization of the assumptions of
Proposition 6.1.

We define the multiplicative functions w = wg and ¢, = @, ¢ and the singular series Sp(L)
for an integer D by

#A(x;q,0) <

k
w(p) = #{1<n<pll:lle(n)Eo (mOdp)}v p1B, (7.1)
0, p|B,
po(d) =] - wp)), (7.2)
pld
—k
GDw>:II(L_ﬂfO<1_;) . (7.3)

ptD

Since L is admissible, we have w(p) < p for all p and so ¢, (n) > 0 and Sp(L) > 0 for any integer

D. Since w(p) = k for all pJ(Hle ai[];4;(aibj — bia;) we see the product &p(L) converges.
The main innovation in [May15] was a different choice of the sieve weights used in the GPY

method to detect small gaps between primes. In order to adapt the argument of [May15] to the
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more general situation considered here, we need to modify the choice of these weights further
to produce a choice more amenable to obtaining uniform estimates. In particular, in [May15]
the ‘W-trick’ was used to eliminate the need for consideration of the singular series which would
naturally arise. In our situation, however, in order to obtain suitable uniform estimates without
stronger assumptions on the error terms in Hypothesis 1, we need to take these singular series
into account.

We will consider sieve weights w,, = wy, (L), which are defined to be 0 if Hle Li(n) is a
multiple of any prime p < 2k? with p{B. Specifically, we define

w= ][ » (7.4)

p<2k2,ptB
2 k
( > Ad> if <W,HLi(n>> =1,
wy, = di|Li(n) Vi i:l (7.5)
0 if <W,HLi(n>> #1,
i=1
for some real variables Aq depending on d = (dy, ..., dy). We first restrict our A\gq to be supported

on d with d = Hle d; square-free and coprime to W B.
Given a prime p{W B, let 11,...,7p 40 be the w(p) residue classes for which Hle L;i(n)

vanishes modulo p. For each such prime p, we fix a choice of indices jy1,...,Jpwp) € {1,-- -, k}
such that for each i € {1,...,w(p)} we have that j,; is the smallest index such that
Lj, (rpi) =0 (mod p). (7.6)

(We could choose any index satisfying the above condition; we choose the smallest index purely
for concreteness.) All the functions L; are linear and, since £ is admissible, none of the L; are
a multiple of p. This means that for any L € L there is at most one residue class for which L
vanishes modulo p. Thus the indices jp 1, ..., jpwu(p) We have chosen must be distinct. We now
restrict the support of Ag to (dj,p) =1 for all j & {jp1,- -, Jpwp)}-
We see these restrictions are equivalent to the restriction that the support of \q must lie the
set
Dy, = Di(L) = {d € N*: %(d) = 1,(dj, W;) =1 V1 < j <k}, (7.7)

where W; are square-free integers each a multiple of W B, and any prime p{W B divides exactly
k — w(p) of the W; (such a prime p divides Wj if j & {jp1,-- -, Jpw(p)})- We recall that in our
notation p%(d) = p?([15, ds).

The key point of these restrictions is so that different components of different d occurring
in our sieve weights will be relatively prime. Indeed, let d and e both occur in the sum (7.5). If
p|d; then p|L;(n), and so ¢ must be the chosen index for the residue class n (mod p). But if we
also have ple; then similarly j must be the chosen index for this residue class, and so we must
have i = j. Hence (d;,e;) = 1 for all i # j.

Similar to [May15], we define A\q in terms of variables y, supported on r € Dy by

Yr 1p, (r)WkB* log 1 log 71
M = p(d)d o= 2O D s )R 7.8
A=y = ey SO ok k) 7Y
(again, we recall d = Hle d;), where R is a quantity with
2210 < R < 1'9/3, (7.9)
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and F : R¥ — R is a smooth function given by

w tz/ Uk —1/2
F(ty,...,t Ty, = kloghk, U=k /2 7.10
(t,.. . te) = (Z)ZHHM o= klogk, Us (7.10)
Here v : [0,00) — [0, 1] is a fixed smooth non-increasing function supported on [0, 1] which is 1
on [0,9/10]. In particular, we note that this choice of F' is non-negative, and that the support of
v implies that

k

Aa=0 ifd=]]di>R. (7.11)

i=1
We will find it useful to also consider the closely related functions F} and F» which will appear
in our error estimates, defined by

Y(ti/Uy) _ (tj/2) Y (ti/Uk)
Fi(ty, ... ty H1+Tkt Pylty, ..., t)) = Y 1+Tkt“H Tt T (7.12)

1<j<k

Finally, by Mdbius inversion, we see that (7.8) implies that for r € Dy,

D02 3w = el A (713)

r|d
r|d d|f

8. Preparatory lemmas

LEMMA 8.1. (i) There is a constant C' such that, for any admissible set L of size k, we have
&p(L) = exp(—Ck).

(ii) Let all functions L; € L be of the form L; = an + b;, for some integers |a| < 1 and
bi| < logz. Let Ap = |a|FH! Hle |bi — b| and 1 > (logz)~%/19. Then we have

>

bl <nloga
L(n)=an+b¢ L

Lp(ALL) < n(logz)(log k).

Proof. Since w(p) < min(k,p — 1) for any admissible £ of size k, we have

o000 > L0

p{B p<2k,ptB " p>2k,piB

Since all terms in the products on the right-hand side are less than 1, we can drop the restriction
p1B for a lower bound. This gives

H H exp(O(k?/p?)) = exp(—Ck). (8.2)

p<2k p>2k
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We now consider the second statement. We have L;(n) = an + b; with |b;| < logz, and

consider L = an+b ¢ £ with |b| < nlogz. If k> loglog « then we use the bound Ar/p(Ar) <
loglog Ar < logk to give

2.

bl <nloga
L=an+b¢ L

QD(ALL) < n(log k)(log x). (8.3)

We now establish (8.3) in the case k < loglog x. Using the identity e/p(e) =>4 w2 (d)/¢(d),
and splitting the terms depending on the size of divisors, we have

AL a u
> A POEED D
pemogs PAE) - Pla) S i~
L=an+b¢ L L=an+b¢ L (d,a)=

w2 (d) 12 (d) >_plalogp
<<Z(Z¢<d)+2 I )

[b|l<nlogz * 1<d<nlogz d>nlogx Sp(d) og(n IOg x)

L=an+b¢L d|Ar,(d,a)=1 dlAL
2
p(d) log p Ap
< ¥ TR IS e
1<d<nlogx #(d) [b|<nlogx [b|<nlogz p|Ap plog(nlogz) (AL)
(d,a)=1 Lzarzrbgé[l L=an+b¢L
d|Ar

We first consider the second term on the right-hand side of (8.4). We have Zpl N ptlogp <
loglog Ap, and Ap/p(Ar) < loglog Ar. But we are only considering k < loglogx and n >
(log £)~%/1%, and so (loglog Ar)? < (logloglog z)? = o(log(nlog x)). Therefore we see that the
total contribution from the second term in (8.4) is o(nlog z).

We now consider the first sum in (8.4). For every prime p|d, there are at most k choices for
the residue class b (mod p) such that p|Ay, and trivially there are also at most p choices. Thus
the inner sum can be written as ][, , min(p, k) sums over b in a fixed arithmetic progression
modulo d. For each such sum there are <n(log ) / d possible values of b. Thus we have

@ p|dmln(p’k) nlog x
O S S T ( d)

1<d<nlogx |b|<nlogx d<nlogzx
(da)=1 L=an+b¢L
dAg
<<n10ng<1+1> H(l-l—k)
S\ p= 1) e = 1)
< n(logz)(log k). (8.5)
This gives the result. i

LEMMA 8.2. Let

r —

WFBF&y (L) log log 7
o(W B)k logR’ " "logR
where F is given by (7.12).

(i) Letr,s € Dy with s; =r; for all i # j, and s; = Ar; for some A € N. Then

log A
s = yr + O T1Y; .
Ys = Yr + (k lgR>
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(ii) Letr, s € Dy withr = s and let A be the product of primes dividing r but not (r,s). Then

log A
Ys = Yr + O<Tk(Yr + K>10§R> .

Proof. We recall the definitions of ¢, Fy, Uy = k~/2 and T}, = klogk from §7. Given any two
reals u,v > 0 with |u — v| < €, we have

1 B 1+ O(Tke)
1+ Tku o 1+ Tkv

o Y(u) = ¥(v) + O(e). (8.6)

Given r,s as in the lemma, we define uy,...,ug,v1,..., v, €1,...,€ by u; = logr;/log R, v; =
log s;/log R and €; = v; — u;. For part (i) we have ¢; = 0 for ¢ # j and ¢; = log A/log R. We may
assume €; < 1,u; < Uy, since otherwise the result is trivial. By (8.6) we have

b v, /Uk i log A U log A
()t - (&) +o(r)) ((7) - (aien))
y 1+ O(Ti(log A/log R))
1 +Tku]' '

(8.7)

Since 1+ U, ' < Ty, 0 <4 < 1 and ¢(v;/2) = 1 (since vj = u; +¢; < 1+ Uy < 9/5), expanding
the terms and multiplying by [[, ,; ¥(ui/Uy)/(1 + Tyu;) gives the result for (i).

We now consider part (ii). We let t be the vector with ¢; = [r;, s;]. By applying part (i) to
each component in turn, and using the fact that Y; is decreasing, we find that

IOg i Sz]/sz 10g A
= O\ TYs ——— | = O|TrYs—— ). 8.8
Ys = Yt + <k Z log R =Yt + 100 R (8.8)
We obtain the same expression for r in place of s, and hence the result follows. O

We use the following lemma to estimate the various smoothed sums of multiplicative functions
which we will encounter.

LEMMA 8.3. Let A1, Ao, L > 0. Let v be a multiplicative function satisfying

1
0<X® <1y and —p< Y YREP g
p

WPz

for any 2 < w < z. Let g be the totally multiplicative function defined on primes by g(p) =
v(p)/(p —~(p))- Finally, let G : [0,1] — R be smooth, and let Gimax = supyco1)(|G(t)| +[G'(t)]).

Then
9 logd !
> u(d)?g(d)G Togs =c,logz i G(z) dx + Oa, a,(cy(1 4 L)Grnax),
<z
where )
7(29))‘ ( 1)
cy = 1- 22 1—-=).
! 1;[< p p

Proof. This is [GGPY09, Lemma 4], with £ = 1 and slight changes to the notation. We note that
in the general formulation, an additional term ¢, (L + 1)* should be included in the error term,
but this is not necessary in our situation with x = 1. We thank Kevin Ford for this observation. O
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LEMMA 8.4. Let r < k < (log R)'/5. Let Wi,..., W, < R® all be a multiple of [], o p-
Let g be a multiplicative function with g(p) = p + O(k). Let G : R — R be a smooth function
supported on the interval [0, 1] such that

sup (G| +16'(0)) < % [~ G

te(0,1]
for some quantity Q¢ which satisfies 7Qq = o((log R)/(loglog R)). Let ® : R — R be smooth

with ®(t), ®'(t) < 1 uniformly for all t.
Then for k sufficiently ]arge we have

log e; b loge;
g%~ <§:k%R>£IG(bgR>

(e;,W;)=1 Vi
byz/ / @:)ﬁGMﬁi
=1 =1

20

+O<T‘Qgﬂ (logR)"™ 1loglogR/ /HG dt>

t1,ety >0 =1

where ) .
n(p 1 .
I, = 1—|—><1—>, n(p) =#{ie{1,...,r} : ptW;}.
! ]¥I<: 9(p) p Z
Proof. We let ¥ denote the sum in the statement of the lemma. We estimate the ¥ by applying
Lemma 8.3 7 times to each variable e, ..., e, in turn. We use induction to establish that, having

applied the lemma j times, we obtain the estimate

L =cilogRY Y ’”ﬂ“ HGuz [ e (Zt iw)ﬁ%)dt

(e?j‘;}‘s.;716791 g] R =i+l t1,e.5t520 i=j+1 =1
00 j,sJ . 0
4 j J Qcloglog R
+¢j(log R) ( / G(t) dt) (; ( €>o<10g IE
p( plejt1 .. -€r)"
X G (u;), (8.9)
ej+;,er gj(e]“ 11311
(e;,W;)=1 Vi
where
log e; . .
UiZIOgR, n](p):#{le{lvaj}pfwl}a
. 1\’ (8.10)
5@ =TT+ no). o =TI(1+22) (11"
oid p 9(p) p

We see that (8.9) clearly holds when j = 0. We now assume that (8.9) holds for some j < r, and
apply Lemma 8.3 to the sum over e;11. In the notation of Lemma 8.3, we have

07 p|W]+1 H €,
v(p) = =k (8.11)
p(L+n;(p) +9(p) " =1+ 0(k/p), ptWin1 [] e
i=j+2
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Since W1 is a multiple of all primes p < 2k? (by assumption of the lemma), we see that we can
take A; and As to be fixed constants (independent of j, k,r, x) provided k is sufficiently large.
With this choice of v(p), we see that

lo klo
L<i+y Y BP0y PP < loglog R. (8.12)
pIWitiIli—j o€ p>2k2 p

Here we used the fact that the first sum is over prime divisors of an integer which is <<Ro(k2),
and this sum is largest when all the prime divisors are smallest, and that k < (log R)'/% < log R.

We apply Lemma 8.3 to the main term with the smooth function G, and to the error term
with the smooth function G, defined by

() :/---/G(t)é[)(g;ti—kt—k Z u) <]jl G(ti)dti>< H G(ui)>, (8.13)

t1,...,tj>0 = l:]+2 2:]+2

G(t) dt’)j < ﬁ G(ui)>, (8.14)

i=j+2

Ga(t) = G(t)(

t'>0

where we recall u; = (loge;)/log R for i > j + 1. With this choice, we see that from the bounds
on ®, G given in the lemma, we have

it
sup (1G1(8)] + [GA(8)] + G ()] + |GH (D)) < QG( a() dt) (
te[0,1] 120

,
i=j+2
= Q¢ Go(t) dt. (8.15)
=0

Thus Lemma 8.3 gives

3 M2(€j+1)G1 <log €j+1)

& gilesr) -\ log R
(ej+1,Wj1 [Tim; 0 €:)=1

zlogRH(1—7§f))_l<1—;> /OOOGl(t)dt
+O<leoglogR1;[<17?)_1<1;>/000G2(t)dt>, (8.16)

and we obtain the same expression when summing with G5 instead of G, except fooo G1(t)dt is
replaced by fooo G2(t) dt in the main term. The implied constant in the error term is independent
of j. We note that

STI(-17) (-5) = IO 5)(-)

piWit1
n;(p) + g(p) )
X
_ n;(p) +g(p) +1
plejta...er
PiWi1

gi+1(€j+2 - €r)
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Therefore substituting (8.16) and (8.17) into (8.9) gives the result for j + 1. We conclude that
(8.9) holds for all j < r.

Finally, let ¢ = (Q¢ loglog R)/log R. By assumption of the lemma, we have ¢ = o(1/r). We
see the sum over £ in (8.9) is (1 + O(e))? — 1 = O(je) where, by our bound on ¢, the implied
constant is independent of j < r. Substituting this into (8.9) with j = r gives the result. O

LEMMA 8.5. Let k < (log x)1/5 be sufficiently large in terms of 8. Then we have:
(1) hal < k*(log R)*;

(i) wy, < k=% (logx)?* Hf::l Hp|Li(n)7pJ[B 4;

(iii) w, < RZ+e),

Proof. Substituting in our choice of y,, we have for d € Dy,

Yr dW*B*GSy (L) 1 <logr1 logrk>
M| =d - F . : 8.18
Pl =42 0 T e @e VB 2 aulefd) ok og (319

We obtain an upper bound for (8.18) by replacing the logr;/log R in the argument of F' with
o; = (logr;/d;)/log R, since F is decreasing in each argument.

We now estimate the sum using Lemma 8.4. We see from (7.10) that F' is of the form
@(Zle t;) Hle G(t;), and we have a bound on G,® which corresponds to Q¢ = O(kTy)
(where T}, = klogk is the constant given by (7.10)). Since k < (logz)'/%, we see that k*T), =
o(log R/loglog R). Finally, we note that the condition r € Dy, forces (r;,dW;) = 1 for integers
Wi,...,W; < 2z9(*) which are all a multiple of W B. Thus we can apply Lemma 8.4, which gives

F(Jl,...,Uk)
2 (r/d)

d|reDy Yo
k
p(WB)* w(p) 1 / /
<8 2) 1 1—= o H@ty, . ) dty . dt, (819
WkBk H +p—w(p) P (1 k) 1 k ( )
ptWB t1,..,t5 =0
where
k%T} loglog R
Ht, ... ty) = F(ty, ... tp) + O 2288 m w0 ). (8.20)
log R
Substituting (8.19) into (8.18), noting that the singular series cancel and that H < (1+0(1))F1,
we have
|)\d| < (1 + 0(1))(logR)k / .- -/Fl(tl, e ,tk) dty ... dt
£yt =0
Ue gt \F log R\ "
log R)" : 8.21
<t (7 ) < () 621
This gives claim (i). Claim (ii) now follows from this bound and the definition (7.5) of wy,
recalling that Aq = 0 unless d,...,d; are all square-free and coprime to B. Finally, for claim
(iii), the fact that \q is supported on d = dj - - - dj, < R gives
(log R)** ? 240(1) 1 ? 2+0(1)
wn < —r—| D 1) <R > ) <ET O
d1--dp<R d1--dp<R
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We will eventually be interested in the quantities Iy, Ji considered in the following lemma.

LEMMA 8.6. Given a square-integrable function G : RF — R, let

00 oo 0o 0o oo 2
Ik(G):/ / G%dty ... dty, Jk(G):/ / (/ Gdtk> dti...dtg_1.
0 0 0 0 0

Let F', Fy, F» be as given by (7.10) and (7.12). Then

1 log k < Ji(F) < log k
(2k log k)k (klogk)k’ k I(F) k-’

L(F) < Ii(F) < I(F2) /K2 < Ii(F),  Je(F) < Je(Fy) < Jp(Fo) /K2 < Ji(F).

< Ix(F) <

Proof. A minor adaption of the argument of [Mayl5, §7] to account for the slightly different

definition of F' shows
[e’s) 2
0

?:711 £;<9/10~U,
00 2
> / . / (/ Fy dtk) dt1 ... dtp_1 = Jk(Fl) (8'22)
t1,..0t—120 0

Applying the same concentration of measure argument to Iy (F") yields

/ / Fl dty ... dtp > / /Fl dt1 ... dt, = Ik(Fl) (8.23)

Sk L 4,<9/10 t1,0stp 20

We also have the trivial bounds I;,(F) < Ix(F1) < k72I(F) and Ji,(F) < Ji(F1) < k720 (Fy).
For our choice of ¢, Ty, Uy from (7.10), we see that

00 9U /10 Uk 1 1
[ tovo( [ ) = gt 0(p ) G20
0 1 + Tkt 0 1 =+ Tkt 9Uk/10 1 =+ Tkt Qk k log k

> (t/U)? dt /9Uk/10 dt +O</Uk dt ) 14+ O0(k7Y?)
(1 + Tyt)? 0 (14 Tjt)? v 0 (L+Tit)2) — klogk

> p(t/2) o o/ dt 2 dt B 1—|—O(k_1)
0 (1"‘Tkt)2_/0 (1+Tkt)2+o(/9/5 (1+Tkt)2)  klogk (8.26)

From these bounds it follows immediately that k=2J(F2) < Ji(F1), k21 (Fy) < I, (Fy) and

Ju(F1) _ logk (1 0<10;k)>' (8.27)

I.(F) 4k
Combining these statements gives the bounds of the lemma. O

, (8.25)

9. Proof of propositions

We see that Lemmas 8.1, 8.5 and 8.6 verify the claims at the end of Proposition 6.1 for w,, given
by (7.5), Iy = Ix(F) and Ji = Jx(F). It therefore remains to establish the four main claims of
Proposition 6.1, which we now do in turn. To obtain results with the desired uniformity in k,
we need to perform calculations in a slightly different manner from the corresponding ones in
[May15].
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PropoSITION 9.1. Let w, be as described in § 7. Then we have

k
Z Wy, = (1 + O((log ;)1/10)> @g)k Sp(L)#A(x)(log R)* I, (F).

Proof. We recall W = [],<op2 15 P < exp((log £)2/5), and consider the summation over n in the

residue class vg (mod W). If (Hf:1 L;(vo), W) # 1 then we have w, = 0, and so we restrict our

attention to vy with (Hf:1 L;(vg), W) = 1. We substitute the definition (7.5) of w,,, expand the
square and swap the order of summation. This gives

S we= D> Aade Y, L (9.1)

neA(x) d,e€Dy neA(x)
n=vg (mod W) n=vg (mod W)
[di,ei]|Li(n) Vi
By our choice of support of the A\q, there is no contribution unless (d;e;, d;e;) =1 for all i # j.
In this case, given d, e € Dy, (so, in particular, (dje;,a;W) =1 for 1 < j < k), we can combine
the congruence conditions by the Chinese remainder theorem, and see that the inner sum is
A(z;q,a) for some a and for ¢ = W|[d,e]. We let Eél) = max, |#A(z;q,a) — #A(x)/q|, and
substitute #A(z;q,a) = #A(x)/q + O(Elgl)) into (9.1).
We first show the contribution from the errors E(gl) is small. There are O(73r(q)) ways of
writing ¢ = W[d, €] and all such ¢ are square-free, coprime to B and less than R?W < 27 (since
Aq is supported on d < R < 2%/3). Since |\q| < (logz)*¥ by Lemma 8.5, these contribute

ST DarelBY < (log)* ST () maelg) EY
d.ecD; q<R2W,(¢,B)=1

1/2
<los*( S om@rE?)

q<R2W,(¢,B)=1

1/2
MQ(Q)E§1)>

(9.2)

q<R2W,(¢,B)=1

We apply Hypothesis 1 to estimate these terms. Using Eél) < #A(x)/q for the first sum, and
the average of Eél) for the second sum, we see the contribution is

Tgj2 1/2 x 1/2 X
<<(logx)2k(#A(x)Z 9’“q(q>> ( ( #Az) ) <<L() (9.3)

100k2 2%2 "
oy log x) W (log x)

By Lemmas 8.1 and 8.6, we see that this is o(#A(x)&p(L)Ix(F)/W), and so will be negligible
compared with our main term.

We now consider the main term. We substitute our expression (7.8) for A\gq in terms of y, to
give

Az I AdAe Az Vs 1 p(d)p(e)de
Y aa - T aten s 4

where 3 indicates the restriction that (d;e;, djej) =1 for all i # j. By multiplicativity, we can
write the inner sum as Hmrs Sp(r,s), where, for r,s such that p|rs and y,ys # 0, we have

d,e€Dy, r,s€Dy d|r.e|s

p—= 17 p’(r7 S)v
d d
Sp(r,s) = Z/ M([l'lu(ee])e =< -1, p|r, p|s, pt(r,s), (9.5)
d|r.els ’ 0, (p|r and pts) or (p|s and pfr).
d;,eilp Vi
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(We remind the reader that in our notation r = Hle ri, that (r,s) = Hle(ri, s;), that
r,s] =1 1[7’1,81] and similarly for e, d, s.)

Since [, ,s Sp(r,s) = 0 if there is a prime p which divides one of r, s but not the other, we
can restrict to r = s. We let A = A(r,s) = r/(r,s) be the product of primes dividing r but not
(r,s), so that [, Sp(r,s) = u(A)p(r)/¢(A). Given a choice of r € Dy, and Alr, for each prime

p|A there are w(p) — 1 possible choices of which components of s can be a multiple of p (since
there are w(p) indices j for which p{W;, but for one of these we have p|r;), and so [, 4 (w(p) —1)
choices of s. By Lemma 8.2, for each such choice we have

log A
s = Ypr + O Ti(Yr + Ys . 9.6
Ys = Yr + ( k(Ye + )logR> (9.6)

Thus our main term becomes

() ol ) o

reDy

Since yy < Y /k and Y, Y5 < Yl? + YSQ, the contribution of the error here is

Tk#A o(r w(A) logp
Z QZ AZbgR

rEDk A|r
Ty #A(z) o(r
— 1 .
€ WhgR 2 187 2 Z (98)
p>2k2 (AwB)=1 7 reD
p|A Alr

We let 1’ be the vector formed by removing from r any factors of A, so r; =r;/(r;, A). Since Y; is
decreasing, we have Yy > Y;. Given r’, there are O(w(A)) possible choices of r. Thus, swapping
the summation to r’, and letting A = pA’, we obtain the bound

DS n S e

S PeP) =t P4

The first two terms in parentheses can both be seen to be O(1), since all prime factors are greater
than 2k?. We estimate the final term by Lemma 8.4 (taking Q¢ = O(T?)). This gives a bound
for (9.9) of size

Tka 1Bk(logR)k 16WB( )2#A(I‘) M _1 .
) Fe W B)! p’(]‘;!B <1 - w(p))2> (1 p) T(£2).(9:10)

We note that

I (52250 (05) = L (5285 (0 (5)) (1-3) < cwoter

p{WB pIWB
(9.11)

since the product is only over primes p > 2k?. Using I (Fy) < k%I;(F) from Lemma 8.6, we see
that (9.10) is
kKT, WL BEGy p(L)#A(z) (log R)*!
< (VB

Ik (F). (9.12)
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This is negligible, and can be absorbed into the error term in the statement of the lemma. We
now consider the main term. We have

_ T 2

reD;, reDy, u(r)

We estimate the inner sum here by applying Lemma 8.4 (again with Qg =T, ,3) This gives

y?  WFB*&yp(L)? oo BV < w(p) )( 1>k
Z%(T)i p(WB)k los )" 1] 1+p—w(p) Ty T(F)

reDy ptWB
WEBFGSyy 5(L)? . w(p) 1\ " kT2 loglog R
1 1 1—-) =k =21 (F
+O< (W B)* log " ] ( +p—W(}?))( p> log R # 1)>
ptW B
WEBkGyw 5(L) & kT loglog R

In the last line we have used the fact that I (F1) < I (F') given by Lemma 8.6. Putting this all
together (and recalling k < (logz)'/® and T}, = klog k), we have shown that

w. — 1 WHF1BFSy (L) #A(x) oo BV
) ne(%:(? . n = (1 + O((]ogg;)l/10>) S(WB)F (log R)"I1,(F). (9.15)

Summing this over the ¢, (W) residue classes vg (mod W) such that (Hf:1 L(vg), W) =1 then
gives the result. 0

PROPOSITION 9.2. Let wy, be as described in § 7. Let L € L satisfy L(n) > R for n € [z, 2x] and
P P
#PLal)|  #Pral)

max Pr.alz;q,a) — .
q%;g 0 L e oy (log a:) 100K*
(¢:B)=1

Then we have

1 BF1 p—1
Z 1P(L(7’L))wn - (1 + O( 1 >> 1 GB(E)#,PL’_A( )(IOgR k+1<]k H
neAls) (log )'/10 )] o(B)* p%b

k

+0( f;) o)A ><1ogR>“fk<F>).

Proof. We let L(n) = Ly, (n) = amn + by, be the mth element of L.

Again we split the sum into residue classes n = vy (mod W). If (]_[f:1 Li(vg), W) # 1 then
we have w,, = 0, and so we restrict our attention to vy with (Hf:1 L;(vp), W) = 1. We substitute
the definition (7.5) of wy,, expand the square and swap the order of summation. This gives

S 1p@m))wa= D Aare Y. 1p(L(n)). (9.16)
neA(x) d,e€Dy neA(zx)
n=vg (mod W) n=vg (mod W)

We first show that there is no contribution to our sum from Ag for which (d;, ajb, — amb;) # 1
for some j # m. If p|d; then the inner sum requires that pla;n + b;. However, if we also have
pla;jbpy, —bjan, then this means p|a,n+ by, (since (aj,b;) =1 by adm1851b111ty of £). Since there is
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no contribution to our sum unless L(n) = Ly, (n) = amn+ by, is a prime and since d; < R < L(n)
by the support of \q and assumption of the lemma, we see that there is no contribution from
>\d with (dj, ajbm - ambj) 75 1.

Thus we may restrict the support of A\q to D,, defined by

p={deR": p2(d) =1,(d;, W) =1V}, W= 11 p. (9.17)
PIW;(ajbm—amb;)

We write X for \q with this restricted support. We see from this that p|W]’ J/W; if and only

if pta,, and j was the chosen index for the residue class —b,,a,, (mod p) (for our fixed set of
choices of residue classes given in §7).

We now observe that given d, e € Dj, the inner sum of (9.16) is empty unless (d;e;, dje;) =1

for all i # j (since otherwise the divisibility conditions are incompatible). If (d;e;, dje;) = 1Vi # j,

then we can combine the conditions by the Chinese remainder theorem. This shows the sum

is #Pr.a(x;q,a) for ¢ = Wid,e] and some a. We note #Pr a(x;q,a) # 0 if and only if

(L(a),q) = 1, which occurs if and only if d,, = e, = 1. For such a choice of d,e, we
write #Pp a(z;q,0) = #Ppa(@)/¢r(q) + O(ES), where E{Y = max(qg_1 [#Pr.a(x:q,a) -
#Pr.alz)/er(a)]-

We treat the error term ESQ) in the same manner as we treated Eél) in the proof of

Proposition 9.1. We note that for all d,e € Dj we have (¢, B) = 1, allowing us to use
Proposition 6.1 for the average of Eé2). We also note that trivially #Pr a(x; ¢, a) < #A(z;q,a),
which gives us the bound E,(IQ) < #A(x)/¢r(q). Thus the same argument shows that these error
terms contribute O(#A(z)W ! (log z)~2F*).
We now consider the main term, given by
#Pr.a(7) 1 Agle
) Z d

oL () or(d.a)’ (5-18)

d,ecD;,

dm=em=1

where we recall Y’ indicates the sum is restricted to (d;e;, dje;) = 1 for all i # j. We change

fm

, satisfying

W = p(r)eu(r) Y

r|/d,dm=1

variables to y.
)‘:j / yl(‘m)
pr(d)’

(9.19)

We see from (9.19) that the yém) are supported on r € D) with r,, = 1. Substituting our
expression (9.19) for A} into our main term (9.18) gives

#PLal®) §~ Nare  _ #Pralx) "y (m)
R b S — ’ _Jr Is S m r’ s ’ 9‘20
oL(W) d;D’ er([d,e]) oL(W) rgp, ©u(r)pw(s) H p (r,s) ( )
9 k s ke
dm=em=1 Tm=8m=1

where now, if r and s are such that y,(pm)yém) #0 (so 7y = sm =1, r,s € D)) and pl|rs, we have

plrs

pb—= 27 p‘(ra S)7p*am7

d)u(e)er(d)er(e) p—1, pl(r,s),plam,

S0 (r,5) = gt - 9.21

g ( ) d|1‘28|5 QOL([(Le]) _1’ p\r,p|s,p+(r,s), ( )
di.eilp Vi 0, (p|r and pts) or (p|s and pir),

m=em=1

so again we may restrict to r = s. We use the following lemma to relate yﬁm) to Y.
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LEMMA 9.3. Let r € D), with rp, =1, and let t; = logr;/log R for i # m. Then we have

m amWB)WkE-1Bk-15
A~ 1og RPL C)l SOVE wa( / H(ty, ... t) dtm,
where
Ty, (loglog R)?
H(t1,....tx) = F(t1,....t @) F5(t ot
(t1,- s tk) (t1,-- oo t) + ( o R H(t1, ..., tk)

We first complete the proof of Proposition 9.2, and then establish the lemma. Given r,s € D),
with r,, = s, = 1 and r = s, let A = A(r,s) be the product of primes dividing r but not (r,s).
We note that Lemma 9.3 implies the bound

(m) o(amWB)log R
U <L W B

since we have the bound fooo Fy(tr, ... tg) dty, < Fo(t1, ... tm—1,0,tmt1, ..., t;)/k (this follows
from the definition (7.12) of F,). Analogously to Lemma 8.2, we have (for A > 1)

y™ = g )+O<kk(Yr+Ys)(p(a )

Yr, (9.22)

a, W B
o(amW B)
amW B

(log A + (loglog R)2)>

Y 4 0< k (Yr + Y) (log A)(log log R)2). (9.23)

Substituting this into our main term (9.20), we are left to estimate

(m)

> (s ) (s + o G + v £t D og ayogion 12 ).

r
r,seD;, 900.)( ) plrs
rm=8m=1
r=s

(9.24)

We note that for » = s the value of [] ( )(r, s) depends only on r and A. Substituting this

()(

value for Sj,

p\TS

r,s) gives a main term

L - -t
r% 0 (r)? (H(%(p) 1)) %;(H O 1) S% 1, (9.25)
Tt A(r,s)=A

and (using (9.22) and Y;Ys < Y2 + Y2) an error term of size

Teo(amWB)2log R — Yi [ (¢r(p) — log A )
< loglog R)~.
K202, B2 EZD pu(r)? Z “ [aler®) — 1) GZD oglog )
rm=1 A(r,s)=A

(9.26)
We first estimate the inner sum over s which occurs in both terms. We fix a choice of r € D},
and A = A(r,s) with A|r. For each prime p|A, we count how many components of s can be a
multiple of p, subject to the constraints that p{(s;, ;) and p{(s;, W) for all i. If p|A, pfa,, then

there are w(p) — 2 possible choices of which component of s can be a multiple of p (there are
w(p) — 1 indices j # m for which p{W7, but for one of these indices p|r;). If p|A and p|a,, then
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instead there are w(p) — 1 choices (since there are w(p) indices j # m for which p{W7, but for
one of these indices p|r;). Thus we have

Yooi= ] wr®-2 ] wm-1. (9.27)
s€D, plA, ptam plA, plam
A(r,s)=A
We now consider the error term (9.26). We follow an analogous argument to that in the proof of
Proposition 9.1. Substituting our expression (9.27) for the inner sum and crudely bounding the
multiplicative functions gives a bound

Tro(amW B)?(log R)(log log R)? w(A) Y2p( T/A
< k2a2, B2W2 Z logA (A2 Z (AP (9.28)
(A WB)=1 reDj,
7‘7Z|—Tl

We let r’ be given by r, = r;/(r;, A) and see that Y > Y;. Moreover, we see that there are
O(w(A)) choices of r given r’. Therefore we obtain the bound

Y2( r/A w(A)? Y2p(r')
E E log A r . (9.2
(AWB)=1 2 Z w(r/A)? <(AWB)1 " %(A)2> /GZD o (r')? (5:29)
) ) - r k
Tm_]- T;,,LZI
Alr

Here we have dropped the requirement that (r/, A) = 1 for an upper bound. We substitute
log A = Zpl 4logp, A =pA’, and swap the order of summation. This shows the right-hand side

of (9.29) is
w 2 [0}
< < > W) <(A/,%:g) o >( z p(r ) (9.30)

p>2k2

T’,,L—l

The first two sums are seen to be O(1) since they only involve primes p > 2k2. The final sum we
estimate using Lemma 8.4. This gives a bound for (9.30) of

W B Gy p(£)* (log R)* ! 11 (1 n “’(p)_l> (1 - 1>k_1

<K
k+1
»(WB) s\ PHO®) »
. // bt t) [ dti (9.31)
t1,0t 20, tm =0 /L;ém
We see that the product is O(Sy (L)1) analogously to (9.11). We also have, from the definition
(712) Of FQ,
// Pty ... tx)* ] dti
t1,..,t20,tm=0 Z#m

00 2 k=2 ; oo 9
<K </0 W) ( ; W) < K TR Ji(F). (9.32)

Putting this together, the contribution of the error term to (9.24) is

< T3o(amW B)?Wk- lBk 1&w (L) (log R)*(loglog R)?
2 o(WB)k+1

which contributes only to the error term in the statement of the lemma.

Je(F), (9.33)
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We now consider the main term in (9.24), given by (9.25). Substituting our expression (9.27)
for the inner sum and evaluating the sum over A gives

2 w07 (pr}(“(p) D)%;(H@L(p)—l) X =Y U 0w
e A(r,s)iA rm:}i

We evaluate this sum using Lemma 8.4. This gives

S I () I ()l

I‘E'D;i pJfamBW p‘am,p)(WB
y (10 R)k,_H go(amWB)2kalBk*16WB(£)2
5 a2, (W B)k+1
kT2 (loglog R)?
H k F . .
x(m >+0< e 1>>> (9.35)

By Lemma 8.6, we have Ji(F1) > Ji(F). From the definition of H, we have

Ty loglog R Ty loglog R
H=J.(F ket m ) ) = Ju(F ke n (F
Ji.(H) Jk( +O( log R 2>) Ji( )+O< log R Ji( 2)>

k2T loglog R
kogog» (9.36)

= Jk(F)(l +O< log R

We recall k < (logz)/® and T}, = klogk, so the errors appearing are o((logz)~1/19). Therefore,
simplifying the products in (9.35) gives

(g2 < ( 1 >> fpa WEIBF 18y 5(L) p—1

S (14 (L)) aogn) wWE) I =
1/10 k-1

=t Pu(T) (log ) »(WB) plamptws T

rm=1

Thus, putting everything together, we have

M. — FPLAR) S~ Aade #A(z)
ngfac) e = ) ; ‘PL([d7e])+O(W(logm)2k2>

n=vg (mod W) dm=em=1

1 WHEAB 1Sy 5 (L)# P, A() p—1
_ (1 ol 1 log R k+1 WB ) J.(F A
( + <(log x)1/10>>( og R) e(WB)k=1lpp (W) kl )p|aml;[m/3 p

#A(2) ) (9.38)

O _ TN
- (W(log )2k

Summing over the ¢,(W) residue classes vg (mod W) then gives the result (recalling
(W,B) =1). O

We now prove Lemma 9.3.

Proof of Lemma 9.3. We recall that \; = A\q for d € D;, and X = 0 otherwise. Using this, we
substitute our expression (7.8) for A\q into the definition (9.19) of yl(ﬂm). For rp, =1 and r € D},
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we obtain

W = p(r)pu(r) Y A = u(r)pu(r) S 2 3 pd)d

deD;, L) ocpy (€ deD, Pr(d)
r|d,dm=1 rle r|d,dle, dm=1
T¢u(r) T Ye IT s,
= S, (e,r) (9.39)
P Y )
pr(r) = pule) o
where if ple,, then S;J(m)(e, r) =1 and if plej/r; with j # m then
_1/(]7 - 1)7 pfa’mw/?
/ d)d J
SMen= Y 49— to Plam, pIW?, (9.40)
deD;, vL 1, pIW;/W;.

djl(ej/rj,p); dm=1

(Since e € Dy, we have (ej, W;) =1 and so if plej/r; we only need consider ptWj.)

We let e; = rju;v; for each j # m, where u; is the product of primes dividing e;/r; but not
W, and v; is the product of primes dividing both e;/r; and W;/W;. We put up, = vm, = 1, and
consider e, separately.

We can restrict to the case when (uj,a;,) = 1 for all j, since otherwise the product of
S;(m) (e,r) vanishes. For e € Dy, the product in (9.39) is then u(u)/¢(u) by (9.40). (We recall
that in our notation u = Hle uj, and similarly for v.) Since (an,, W;/W;) =1 for all j, we can
also restrict to (vj, an) = 1 for all j. (If p[W;/W; then plamb; — a;jbm, so if pla,, and p|W]/W;,
then pla; and hence p|W;, meaning p{W;/Wj.)

We let v/ = (71,.. ., "m—1, €ms Tm+1, - - -, 7). By Lemma 8.2, we have
log uv
=y + O 1Yy ——— ). 9.41
Ye Y + ( klr IOgR) ( )

Substituting this into (9.39) gives

(m)y_ T Y/ p(u) Tyr Yy log uv
= ) 2 o) 2 <uv>+0(m<r>1ogRZ > )

— o~ e(uew T~ pwlem) 45 p(u)pu(uv)
r'eDy,

(9.42)
where the sums over u,v are subject to the constraints u € Dj,v € Dy, Uy = vy = 1,
(u,v) = (uv, reman,) = 1, and v;|W[/W;.

We first estimate the error term from (9.42). We have loguv < u!/?(1 + logv), and we
drop the requirement that (u,v) = 1. The sum over u then factorizes as an Euler product,
which can be seen to be O(1) since there are O(w(s)) choices of u with v = s, and we only
consider primes p > 2k2. Thus we are left to consider the sum over v. For any choice of v there
is at most one possible v with Hle v; = v (since for every prime p|v with p|W,, there is a
unique index j such that p|W]/Wj, and if p{W,, there is no such index). Any such v must have
V|A = T; 2 (ambi — aibp) since vj|W;/W;. Thus the sum over v contributes at most

3 1+Zp|v10gp<<(1+ 3 logp> 1 (1+ 1 )

vEDEw|A ng(U) p>2k2:p|A p p>2k2:p|A gow(p)
< (loglog A)? < (loglog R)?, (9.43)

since both sum and product are largest if A is composed of primes < log A, and A < z9%).
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Thus, relaxing the constraint (e, 7Wy,) =1 to (em, a,, W Br) = 1, and using Lemma 8.4 to
estimate the sum over e,,, we see the error contributes a total

Ty (loglog R)? Z Y,
log B pr(r) Gy Pwlem)

T, (loglog R)*¢(amW B)W* 1 B 1&y (L) /OO
Fo(t tr) dty,.

Here, as in the statement of the lemma, ¢; = log r; /log R for i # m.
We now return to the main term from (9.42). We first consider the inner sum, which by
multiplicativity we can rewrite as a product

) ro_pw)
Z sﬁ(uww(uv)_l;[ uz; () pu (uv)’ (9.45)

u,v

(9.44)

wilp, vilp Vi

where the asterisk indicates that sums are subject to the additional constraints that u,, = v,, =1,
(u,v) =1 and that (u;, W/remam) =1, (vi, Wireman) = 1, and v;|W//W; for all 1 < i < k. Since
the summand only depends on u and v we can evaluate it by counting how many pairs u,v
correspond to a given choice of u, v.

If p|W Brep,a,, then our coprimality restrictions mean no component of u or v can be a
multiple of p. If ptW Bre,,a,, then there are w(p) — 1 components of u which can be a multiple
of p (corresponding to the indices for all residue classes chosen mod p except for the index
corresponding to —by,a,,). If p4W,, then no components of v can be a multiple of p (p{W,,
means m was the chosen index for the residue class —by@m (mod p), so p{W;/W; for any j).
If p|W,, and p{W Bre,,a,, then exactly one component of v can be a multiple of p (v; can be
a multiple of p if j was the chosen index for the residue class —b,,@,, (mod p)). Finally, since
(u,v) = 1, no component of u can be a multiple of p if v is a multiple of p. Putting this together,
we obtain (since (€, 7Wy,) = 1)

o pu) w1 1 w1
2 o(u)pu(uv) 11 <1 ©(p)ew(p) " %(p)> 11 <1 w(p)%(p)>

u,v p‘Wm P JfWBTam piWmrem

- I pﬁlp}%ﬁ(zﬁl - <pw1(p)> 11 (pﬁl - wwl(p)>_1'

P|Wmn ,ptW Bram plem

(9.46)

Now, using Lemma 8.3, we estimate the summation over e,,. This gives
> ()
emiiyy Pelem) S Ap =1 pu(p)
Swa(L)WkBk 1 p 1\t
=logR - II(1-=) I (= - / H(ty, ... t)dtm,

pWBE  Cw NP \p=1 e o

(9.47)

where, as in the statement of the lemma, t; = logr;/log R for ¢ # m, and where

Ty, (loglog R)?
————F5(t1,...,t .
log R a(t1, .- tk)

We have added an additional factor of log log R into the error term for H so we can absorb (9.44)
into the error term.

Hty, ... t) :F(tl,...,tk)+0<
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Thus, combining (9.46) and (9.47) gives

r Yo + pl(u)
2 ) 2 )

pr(r) £~ pulem) 45 plu)po(uv
WFBF&Sw (L) ( 1) < >
=logR 1— = 1— = / H(ty, ... tg)dtm
cvsy mm L) et
p|r p|WBam
pir
planW B)WH 1B 16y p(L /
=logR H(ty,... dtm 9.48
amp(W B)F (b1 ti) dt (9.48)
Here we have used the fact that r € D), and so (r, WB) = 1. Combining (9.44) and (9.48) gives
the result. O

PROPOSITION 9.4. Let w, be as described in §7. Given D < z9M) and ¢ satisfying
k(loglogx)?/(logz) < & < 6/10, let

S D)={neN:pn = (p>a* orp/D)}.
For L = agn + by ¢ £, with |ag|, |bo| < 2°0) and Ay # 0, we have

A; D B

A1) 7(D) p(B)F OB LA (log R)F I, (F),

> 1S(§ 0y (L(n))wy < &1
neA(zx

where
k
AL = a()H ’ajbo — a(]bj|.
=1

Proof. We first split the sum into residue classes vp modulo V' = [ o2 p for which L(vp) is
coprime to [[,<op2 ,4p P and each of the L;(vo) are coprime to W' (the other residue classes make
no contribution because of the support of w, and 1s.p)). We use the Selberg sieve upper bound

Ls(gn) (L( < > Ado>. (9.49)

do|L(n)
do<xt
(do,D)=1

(This holds for any choice of the values of Ay € R with A; # 0). For the residue class vy (mod V),

this gives
1 B 2 2
Y. lsen)(Ln)w, < 2 > ( > )‘d0> < > Ad) :
neA(x) 1 neA(x) do|L(n) deDy,
n=vo (mod V) n=vo (mod V) (do,D)=1,dp<xt d;|L;(n) V1<i<k
(9.50)

We restrict the support of :\do in a similar way to that of \q. We force 5\d0 = 0 if p|dp for any
prime with p|Wy where
Wy = DVAL. (9.51)

Similarly, we force >‘do = 0if dy > z¢. Note that we allow )‘do # 0 if (dy, B) # 1. These conditions

mean we can drop the constraints dy < ¢, (dg, D) = 1 since )‘do = 0 if either of these do not
hold.
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We return to (9.50). Expanding the squares and swapping the order of summation gives

PE (s oz

neA(z) do|L(n) deDy,
n=vg (mod V) (do,Wp)=1 d;|Li(n) V1<i<k
1 .
v Y Aipdey D Adde > 1. (9.52)
1 do,eq d,e€Dy nEA(:c)
(doeo,Wo)Zl Nn=vg (mod V)

[di ,ei] |L1‘ (n) Vo<i<k

We see that by our restrictions on the support of Aq, S\do, there is no contribution to (9.52) unless
do, e, d, e are such that (d;e;,dje;) =1 for all 0 <i# j <k, and d,e < R and dp, eg < 2¢. (To
avoid confusion, we recall that d = Hle d; and e = Hi?:l e;.) For such values, we can combine
the congruence conditions using the Chinese remainder theorem, which shows the inner sum is
#A(x;q,a) for some a and ¢ = VHfZO[di, e;]. We see that ¢ < VR22% < 29 since € < 6/10. We
substitute #A(z;q,a) = #A(z)/q + O(E(gl)), and the contribution from E(gl) can be seen to be
negligible by an identical argument to that in the proof of Proposition 9.1. We are therefore left
to evaluate

#A(x) Ao A I Adde
3 : (9.53)
VAL do%) o, eol d,éﬁk [d,e]
(do,e0,Wo)=1 (de,dpeg)=1

We let w* be the totally multiplicative function defined by

#{1<n HL =0 modp)}, p1B, (9.54)
1, p|B.

We note that with this choice, w*(p) = w(p) if p|Ar and p{B, and w*(p) = w(p) + 1 otherwise.
We also define

w*(p) =

Ad Mg

Yrro = :U’(TOT)(Pw*(TOT) Z y Yrg = M(TO)“P(TO) 5 (9'55)
ddy do
d, do do
1‘|d, T0|d0 7'O|d0
(do,d)=1
By Mobius inversion, we see that this definition of y,, implies that
Yro

dp)dy . 9.56
pldo)do Y (9.56)

For (rg, Wo) = 1 and 7y < 2¢ we choose
W
e(Wo)’

and y,, = 0 otherwise. This gives rise to a suitable choice of S\do supported on dy < x¢ with
(dg, Wo) = 1. Since & > k(loglog )?/(log x), Lemma 8.3 shows that

Uro = (9.57)

B ~ 9
A = E : ym/zr(;()) = ¢logz + O(loglog x) > {log x. (9.58)
7‘0<15 viro
(r0,Wo)=1

As in the proof of Proposition 9.1 (this is exactly the same argument but for (k + 1)-dimensional
vectors instead of k-dimensional ones) changing variables using (9.55) shows that
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5\do 5\eo ! Ad)\e Yr.roVs, 80
- Sp( 9.59
Z [do, eo] Z d, €] Z H (r,s,70,50),  (9.59)

Pox (717"0 Sow* 330

do,eo d,eeDy, r,8,70,50 plrrosso
(de,doeo)=1
where
D — 17 p’(ra S)(T0>30)7
Sp(r,s,r0,50) =< =1,  plrro and plssp but p1(r,s)(ro, so), (9.60)
0, (p|rro and p{ssp) or (p|ssp and pirry).

Thus we may restrict to rrg = ssp. Using the bound yr ., ¥ys s, < yﬁm + ygyso, we see that (by
symmetry) the right-hand side of (9.59) may be bounded by

yrro P—i—w ( )_2
Z%* (rro)? 2 1L Istesro ol <3 s 11 w*(p))?

7o Sss S?"ro plrro r,ro plrro (p
yr o
= : . (961)
rzﬂ; [ L (P + O(K))

To evaluate this, we express Yy, in terms of y, and g,,. Substituting (7.8) into (9.55), we find
that for (ro,7Wp) =1 and r € Dy,

Zl Yt
Yewo = 1(ror)ws(ror) Y p(d f° S ud)
o = 2u(f)
roldo do\fo r|d dif
(d,dp)=1

= u(ror) e (ror Y . )
= p(ror)gus(ror) O doz;j pu(d) (o) (9.62)

fo,f
T()‘f(),l‘|f To‘do,r|d
do| fo,d|f
(d,dp)=1

The inner sum is 0 unless every prime dividing one of f, fo but not the other is a divisor of rry. In
this case the sum is +1. Thus, using the fact that y, > y¢ and gr, > 7y, (since F is decreasing),
we have the crude bound

2
_ 1*(fo)

Yr,r < Pux(ToT)YrYr — 9.63
LD DI DR AN} (5:63)

k

Tolfo r|f

(fo,Wo)=1 f/(f.fo)lrro

We let fo = roflgo and f; = riflg; for 1 < i < k, where f! = fi/(fi,rro) is f; with any factors

of rro removed, go|r and g;|ro for 1 < i < k We see the constraint f/(f, fo)|rro means that
o= Hle f1. Therefore we can bound the double sum above by

1 1 1 1
<>Z (f1)w(f) X o

pro)pu(r) oz P (f)vw cep,  Pelo) i vlgo)
gilro V1<i<k (90,Wo)=1
1 w(p) w(p) L
G MQBQ G ) H<1 i) HW<1 )
(9.64)
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The first product is O(1) since it is over primes p > 2k?. Thus, simplifying the remaining products,

we obtain
Yr.ro <<yrzjm( H po ) )( 11 (pp_(p_wi(p)) ))> <Yy (9.65)

1
Pl Wo) plrro, piWo )(p —w(p

Here we have used the fact that w*(p) = w(p) + 1 if ptW.
Recalling the definitions (9.57) and (7.8) of 9., and y,, and applying Lemma 8.4, we find
that (since ¢ > k(loglogz)?/(logz))

Z% Hpmiy(;ri)QO < 2 pr«o(géO >(§ [ = O( )))

0 <x5
(?"O,Wo)

o1 WFEB*WoSwp(L£)?
(WB)’“sO(Wo)

x me < > p}v;[B<1 + z%) <1 - ;)kfk(F). (9.66)

We note that the first product is O(1) and the second product is O(Swp(£)™"), since all primes
in the products are greater than 2k? and w(p) < k. Thus, we obtain (recalling \; > ¢log x)

k pk
Vo s 0

< {(log R)

vv Z Hpmy(;ri oy < ¢ (s BT

We now sum over residue classes vgp mod V', for which L(vo) is coprime to [, o2 ,;p p and each
of the L;(vy) are coprime to W. The number N of such residue classes is given by

N= ][ e-w@ -1 [ @-w®) [ @-1 ] » (9.68)
p|W p|W plV/W plV/W
ptDAL p|DAL p1Dag p|Dag
This then gives
Bk NW Wk
-1 k-1 0
(9.69)

Finally, by calculation we find that
NWoWk — &p(L) ALD H p—l 1T (p—w(p)—1)p
( )

VelWolo(W)F ~ Swn(O)el oo A -1
p)(aOWD ptALD
Sp(L)ALD
< . 9.70
Swa(L)p(AL)p(D) (970)
This gives the result. i

PROPOSITION 9.5. Let w,, be as described in § 7. For L € £ and p < /10, we have

3 ( 3 1)wn < K (log k)26 (L) #-A(w) (log R)* 11 (F).
ne€A(z) “p|L(n)

p<xf

piB
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Proof. We let L(n) = Ly,(n) = amn—+ by, be the mth function in £. As with Propositions 9.1 and
9.2, we consider the sum restricted to n = vy (mod W) for some vy with (Hf:1 Li(vg), W) =1,
since the other choices of vy make no contribution. This means we can also restrict the sum to
piW.

Expanding the square and swapping the order of summation gives

> <Z 1>wn— YD ke Y, L (9.71)

neA(x) p<zf d,e€Dy neA(x)

n=vg (mod W) p<zf piWB [di,ei]|Li(n)
p{WB n=vg (mod W)
plLm(n)

The inner sum is empty unless (dje;, dje;) = 1 for all i # j and (dje;,p) = 1 for all i # m.
In this case, by the Chinese remainder theorem, we can combine the congruence conditions
and see that the inner sum is #A(x;q,a) for ¢ = [dp,, em, D] H#m[di, e;] and some a. We write

#A(x;q,a) = #A(m)/q+O(EC(11)) as in the proof of Proposition 9.1. We treat the error E(gl) from
making this change in the same manner as in Proposition 9.1, noting that all moduli ¢ we need
to consider are square-free and satisfy ¢ < WR2z? < 2%, and for any ¢ there are O(73x44(q))
choices of d,e,p which give rise to the modulus ¢. Thus these error terms make a negligible
contribution.

We use (7.8) to change to our y, variables, which gives us a main term of

AdA
[dims €m, D] le_[[di,el o Z Z yrys HS (r,s,p).

p<zP  d,e€Dy i%m p<J:P r SEDk p !|rs
pIW B (djei,p)=1 ptWB
(9.72)
Here if p’ # p then Sy (r,s,p) = Sy(r,s), given by (9.5), whereas if p’ = p then
(p - 1)27 p‘(rmu Sm)7
’ pu(d)p(e)de
Sp(r,s,p) = Z d ( ) ( ) d - == _(p - 1)7 p‘rmsmap+<rm75m)7 (973)
[ maemv ]H’L;ﬁm[ 2567,]
d|r,e|s 1, pj(rmsm.
d;.eilp Vi

(diei,p)=1 Vi#Em

We let u = (r1/(r1,p),-..,7%/(rk,p)) be the vector formed by removing a possible factor of p
from the components of r. We note that for any s € Dy, and ptW we have

3 [Lrs Sp(r,s,p) <H5'su) 3 S,(r,s,p)

r

reDy, SOUJ( ' |su reDy (Pw( )

ri/(ri;p)=u; Vi ri/(ri;p)=u; Vi
(ri,Wi)=1 (ri,Ws)=1

_ #((smsp))e((sm:p)) wp)—1  p-1 1\ _
B P () <1+ p—w(p) p—w(p)> N
(9.74)

Here the first term in parentheses represents the contribution when (r,p) = 1, the second term
represents the contribution when p|r but p{r,, (and so there are w(p) — 1 choices of which index
can be a multiple of p) and the final term represents the contribution when p|r,,.

We substitute yr = yu + (Y¥r — yu) into our main term. By (9.74) we find the y,, term makes
a total contribution of 0, leaving only the contribution from (yy — yy). Similarly, we let v be the
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vector obtained by removing a possible factor of p from s. We make the equivalent substitution
Ys = Yv + (Ys — yv ), with the yy term making no contribution. By Lemma 8.2 we have

(yr - yu)(ys - yv) < YuYVTI? (10gp)2/(10g R)Q' (9'75)

Substituting this bound into our main term (9.72), we obtain the bound

T2 A 1 1 2 S s
<<k#év($) 2 p(lgggf;) R A T D Y Lkl

p<z” u,veDy p'luv r,s€Dy Puw (T‘)QDW(S)

pJ[WB (u,p):(v,p)zl Ti/(ri7p):ui Vi
si/(si,p)=v; Vi
(9.76)
A calculation reveals that the inner sum is O(p,(u) 1o, (v)™!) for all pfW B. This gives the
bound
THHEA@) 1 ( logp>2
< Ti#e) 5 1 > s
4 p<xPf p IOgR u,veDy p / luv
piWB (u,p)=(v,p)=1
TE p*#A(z) & —i— Y2
< A UVEE:D ~e ]|_[ 1Sy (u, v) (9.77)

Here we have dropped the requirement that (u,p) = (v,p) = 1 and used Y, Yy < Y2+ Y2 for an
upper bound.

We recall from (9.5) that Sy (u,v) = 0 unless v = v. By multiplicativity and from the
definition (9.5) of S /(u v) we find that, given u € Dy,

g;k Hmms}o (v) N H< 2 %l(lw‘;V)‘) - E(pg;(lp) i :(f)wzp;) 07

p'lu > weDg
w;lp’ Vi

(Here the first term in parentheses in the final product corresponds to the w such that p|(u, w)
and the second term to the w(p) — 1 choices of w such that p{(u, w).) Thus, we find

2 2
> 73/ s H Sy (u,v)| < > ;(/r) (9.79)

u,veDy, () P luw reDy

where g is the multiplicative function defined by g(p) = (p — w(p))?/(p + w(p) — 2). Applying
Lemma 8.4, we see that this is

BkaGWB([:)Q k M _1 k
< SOV B (log R) p};V[B<1+ g(p)><1 p) I(Fy). (9.80)

By Lemma 8.6 we have I(Fy) < k?I;(F). Since any prime p{W B has p > 2k% and g(p) =
p + O(k), we see the product is < Sy (L)1, Thus (9.80) is

BkaGWB(E)
< k? log R)*I,(F). 9.81
Putting this all together gives
Bk k—1
S (3 1) wn < RT2pA B _SWBE) o0 Ry (). (9.82)
p(WB)*
neA(z) plL(n)
n=vg (mod W) p<zf
ptB
Summing over the ¢, (W) residue classes mod W then gives the result. O
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