Dense clusters of primes in subsets

James Maynard

doi:10.1112/S0010437X16007296
Dense clusters of primes in subsets

James Maynard

Abstract
We prove a generalization of the author’s work to show that any subset of the primes which is ‘well distributed’ in arithmetic progressions contains many primes which are close together. Moreover, our bounds hold with some uniformity in the parameters. As applications, we show there are infinitely many intervals of length $(\log x)^\epsilon$ containing $\gg \epsilon \log \log x$ primes, and show lower bounds of the correct order of magnitude for the number of strings of m congruent primes with $p_{n+m} - p_n \leq \epsilon \log x$.

1. Introduction
Let $L = \{L_1, \ldots, L_k\}$ be a set of distinct linear functions $L_i(n) = a_i n + b_i$ $(1 \leq i \leq k)$ with coefficients in the positive integers. We say such a set is admissible if $\prod_{i=1}^k L_i(n)$ has no fixed prime divisor (that is, for every prime p there is an integer n_p such that $\prod_{i=1}^k L_i(n_p)$ is coprime to p). Dickson made the following conjecture.

Conjecture (Prime k-tuples conjecture). Let $L = \{L_1, \ldots, L_k\}$ be admissible. Then there are infinitely many integers n such that all $L_i(n)$ $(1 \leq i \leq k)$ are prime.

Although such a conjecture appears well beyond the current techniques, recent progress ([Zha14, May15], and unpublished work of Tao) has enabled us to prove weak forms of this conjecture, where instead we show that there are infinitely many integers n such that several (rather than all) of the $L_i(n)$ are primes.

As noted in [May15], the method of Maynard and Tao can also prove such weak versions of Dickson’s conjecture in various more general settings. This has been demonstrated in various recent works [Tho14, CHLPT15, BFT15, Pol14, LP00]. In this paper we consider generalized versions of Dickson’s conjecture, and prove corresponding weak versions of them.

Based on heuristics from the Hardy–Littlewood circle method, it has been conjectured that the number of $n \leq x$ such that all the $L_i(n)$ are prime should have an asymptotic formula $(\mathcal{S}(L) + o(1)) x / (\log x)^k$, where $\mathcal{S}(L)$ is a constant depending only on L (with $\mathcal{S}(L) > 0$ if and only if L is admissible). Moreover, these heuristics would suggest that the formulae should hold even if we allow the coefficients a_i, b_i and the number k of functions in L to vary slightly with x.

One can also speculate that Dickson’s conjecture might hold for more general sets, where we ask for infinitely many integers $n \in A$ such that all of $L_i(n)$ are primes in P, for some ‘nice’ sets of integers A and of primes P, and provided L satisfies some simple properties in terms of A and P. For example, Schinzel’s Hypothesis H would imply this if either A or P were restricted to the values given by an irreducible polynomial, and a uniform version of Dickson’s conjecture would give this if A or P were restricted to the union of short intervals.

Received 31 July 2014, accepted in final form 15 October 2015, published online 1 April 2016.

2010 Mathematics Subject Classification 11N05, 11N35 (primary).
Keywords: prime numbers, sieve methods.

This journal is © Foundation Compositio Mathematica 2016.
J. Maynard

The aim of this paper is to show that the flexibility of the method introduced in [May15] allows us to prove weak analogues of these generalizations of Dickson’s conjecture. In particular, if \(\mathcal{A} \) and \(\mathcal{P} \cap L(\mathcal{A}) \) are well distributed in arithmetic progressions, then we can obtain a lower bound close to the expected truth for the number of \(n \in \mathcal{A}, n \leq x \) such that several of the \(L_i(n) \) are primes in \(\mathcal{P} \), and we can show this estimate holds with some uniformity in the size of \(a_i, b_i \) and \(k \).

2. Well-distributed sets

Given a set of integers \(\mathcal{A} \), a set of primes \(\mathcal{P} \), and a linear function \(L(n) = l_1 n + l_2 \), we define
\[
\mathcal{A}(x) = \{ n \in \mathcal{A} : x \leq n < 2x \}, \quad \mathcal{A}(x; q, a) = \{ n \in \mathcal{A}(x), n \equiv a \pmod{q} \}, \\
L(\mathcal{A}) = \{ L(n) : n \in \mathcal{A} \}, \quad \varphi_L(q) = \varphi(|l_1|)/\varphi(|l_1|), \\
\mathcal{P}_{L,\mathcal{A}}(x) = L(\mathcal{A}(x)) \cap \mathcal{P}, \quad \mathcal{P}_{L,\mathcal{A}}(x; q, a) = L(\mathcal{A}(x; q, a)) \cap \mathcal{P}.
\]

This paper will focus on sets which satisfy the following hypothesis, which is given in terms of \((\mathcal{A}, \mathcal{L}, \mathcal{P}, B, x, \theta) \) for \(\mathcal{L} \) an admissible set of linear functions, \(B \in \mathbb{N} \), \(x \) a large real number, and \(0 < \theta < 1 \).

Hypothesis 1. \((\mathcal{A}, \mathcal{L}, \mathcal{P}, B, x, \theta) \). Let \(k = \#\mathcal{L} \).

1. \(\mathcal{A} \) is well distributed in arithmetic progressions: we have
\[
\sum_{q \leq x^\theta} \max_a \left| \#\mathcal{A}(x; q, a) - \frac{\#\mathcal{A}(x)}{q} \right| \ll \frac{\#\mathcal{A}(x)}{\log x}^{100k^2}.
\]

2. Primes in \(L(\mathcal{A}) \cap \mathcal{P} \) are well distributed in most arithmetic progressions: for any \(L \in \mathcal{L} \) we have
\[
\sum_{\substack{q \leq x^\theta \\ (q, B) = 1}} \max_{(a, q) = 1} \left| \#\mathcal{P}_{L,\mathcal{A}}(x; q, a) - \frac{\#\mathcal{P}_{L,\mathcal{A}}(x)}{\varphi_L(q)} \right| \ll \frac{\#\mathcal{P}_{L,\mathcal{A}}(x)}{\log x}^{100k^2}.
\]

3. \(\mathcal{A} \) is not too concentrated in any arithmetic progression: for any \(q < x^\theta \) we have
\[
\#\mathcal{A}(x; q, a) \ll \frac{\#\mathcal{A}(x)}{q}.
\]

We expect to be able to show this hypothesis holds (for all large \(x \), some fixed \(\theta > 0 \) and some \(B < x^{O(1)} \) with few prime factors) for sets \(\mathcal{A}, \mathcal{P} \) where we can establish ‘Siegel–Walfisz’ type asymptotics for arithmetic progressions to small moduli, and a large sieve estimate to handle larger moduli.

We note that the recent work of Benatar [Ben00] showed the existence of small gaps between primes for sets which satisfy similar properties to those considered here.

3. Main results

Theorem 3.1. Let \(\alpha > 0 \) and \(0 < \theta < 1 \). Let \(\mathcal{A} \) be a set of integers, \(\mathcal{P} \) a set of primes, \(\mathcal{L} = \{L_1, \ldots, L_k\} \) an admissible set of \(k \) linear functions, and \(B, x \) integers. Let the coefficients \(L_i(n) = a_in + b_i \in \mathcal{L} \) satisfy \(0 \leq a_i, b_i \leq x^{\alpha} \) for all \(1 \leq i \leq k \), and let \(k \leq (\log x)^\alpha \) and \(1 \leq B \leq x^{\alpha} \).
Dense clusters of primes in subsets

There is a constant C depending only on α and θ such that the following holds. If $k \geq C$ and (A, L, P, B, x, θ) satisfy Hypothesis 1, and if $\delta > (\log k)^{-1}$ is such that

\[
\frac{1}{k} \frac{\varphi(B)}{B} \sum_{L \in L} \frac{\varphi(a_i)}{a_i} \#P_{L,A}(x) \geq \delta \frac{\#A(x)}{\log x},
\]

then

\[
\# \{ n \in A(x) : \#(\{L_1(n), \ldots, L_k(n)\} \cap P) \geq C^{-1} \delta \log k \} \gg \frac{\#A(x)}{(\log x)^k \exp(Ck)}.
\]

Moreover, if $P = \mathbb{P}$, $k \leq (\log x)^{1/5}$ and all $L \in L$ have the form $an + bi$ with $|b_i| \leq (\log x)k^{-2}$ and $a \ll 1$, then the primes counted above can be restricted to be consecutive, at the cost of replacing $\exp(Ck)$ with $\exp(Ck^3)$ in the bound.

All implied constants in Theorem 3.1 are effectively computable if the implied constants in Hypothesis 1 for (A, L, P, B, x, θ) are.

We note that Theorem 3.1 can show that several of the $L_i(n)$ are primes for sets A, P where it is not the case that there are infinitely many $n \in A$ such that all of the $L_i(n)$ are primes in P. For example, if $P = \{p_{2n} : n \in \mathbb{N}\}$ is the set of primes of even index and $A = \mathbb{N}$, then we would expect P to be equidistributed in the sense of Hypothesis 1. However, there are clearly no integers n such that $n, n + 2 \in P$, and so the analogue of the twin prime conjecture does not hold in this case. Similarly if P is restricted to the union of arithmetic progressions in short intervals.\(^1\) Therefore without extra assumptions on our sets A, P we cannot hope for a much stronger statement than that several of the $L_i(n)$ are primes in P.

We also note that Theorem 3.1 can apply to very sparse sets A, and no density assumptions are required beyond the estimates of Hypothesis 1. Of course, for such sets the major obstacle is in establishing Hypothesis 1.

We give some applications of this result.

Theorem 3.2. For any $x, y \geq 1$ there are $\gg x \exp(-\sqrt{\log x})$ integers $x_0 \in [x, 2x]$ such that

\[
\pi(x_0 + y) - \pi(x_0) \gg \log y.
\]

Theorem 3.2 is non-trivial in the region $y = o(\log x)$ (and y sufficiently large), when typically there are no primes in the interval $[x, x + y]$. For such values of y, it shows that there are many intervals of length y containing considerably more than the typical number of primes. By comparison, a uniform version of the prime k-tuples conjecture would suggest that for small y there are intervals $[x, x + y]$ containing $\gg y/\log y$ primes. For large fixed y, we recover the main result of [May15], that $\lim \inf_n (p_{n+m} - p_n) \approx_m 1$ for all m.

Theorem 3.3. Fix $\epsilon > 0$ and let $x > x_0(\epsilon, q)$. There is a constant $c_\epsilon > 0$ (depending only on ϵ) such that uniformly for $m \leq c_\epsilon \log \log x$, $q \leq (\log x)^{1-\epsilon}$ and $(a, q) = 1$ we have

\[
\# \{ p_n \leq x : p_n \equiv \cdots \equiv p_{n+m} \equiv a \pmod{q}, p_{n+m} - p_n \leq \epsilon \log x \} \gg \frac{\pi(x)}{(2q)^{\exp(Cm)}}.
\]

Here $C > 0$ is a fixed constant.

\(^1\) For example, one could take $P = \bigcup_{x=2}^{x \leq x^{1/4}} \bigcup_{x+2 \leq x \leq x^{3/4}} \{ x + (2i - 1)x^{3/4} < p \leq x + 2ix^{3/4} : n \equiv i \pmod{5} \}$. This set is equidistributed in the sense of Hypothesis 1, but also has no gaps of size 2.
Theorem 3.3 extends a result of Shiu [Shi00] who showed the same result but with a lower bound \(x^{1-\varepsilon(y)} \) for \(\varepsilon(x) \approx C \log \log x \) in the shorter range \(m \ll (\log x)^{1/\varphi(q)-\varepsilon} \) and without the constraint \(p_{n+m} - p_n \ll \varepsilon \log x \).

We see that for fixed \(m, q \), Theorem 3.3 shows a positive proportion of primes \(p_n \) are counted (and so our lower bound is of the correct order of magnitude). In particular, for a positive proportion of primes \(p_n \) we have \(p_n \equiv p_{n+1} \equiv \cdots \equiv p_{n+m} \equiv a \pmod{q} \) and \(p_{n+m} - p_n \ll \varepsilon \log p_n \). This disproves the conjecture of Knappowski and Turán [KT77] that \(\# \{ p_n \leq x : p_n \equiv p_{n+1} \equiv 1 \pmod{4} \} = o(\pi(x)) \). It also extends a result of Goldston et al. [GPY11], who showed a positive proportion of primes \(p_n \) have \(p_{n+1} - p_n \ll \varepsilon \log p_n \), and of Freiberg [Fre11] who showed at least \(x^{1-\varepsilon/\log \log x} \) primes \(p_n \ll x \) have \(p_{n+1} - p_n \ll \varepsilon \log p_n \) and \(p_{n+1} \equiv p_n \equiv a \pmod{q} \).

Theorem 3.4. Fix \(m \in \mathbb{N} \) and \(\varepsilon > 0 \). There exists a \(k = k_m \ll \exp(Cm) \) such that for \(x > x_0(\varepsilon, m) \) and \(x^{7/12+\varepsilon} \leq y \leq x \) and for any admissible set \(L = \{ L_1, \ldots, L_k \} \) where \(L_i(n) = a_i n + b_i \) with \(a_i \ll (\log x)^{1/\varepsilon} \) and \(b_i \ll x \), we have

\[
\# \{ n \in [x, x+y] : \text{at least } m \text{ of } L_i(n) \text{ are prime} \} \gg \frac{y}{(\log x)^k}.
\]

Here \(C > 0 \) is a fixed constant.

Theorem 3.4 relies on a Bombieri–Vinogradov type theorem for primes in intervals of length \(x^{7/12+\varepsilon} \), the best such result being due to Timofeev [Tim87]. By adapting Hypothesis 1 to allow for weighted sums instead of \(\# \mathcal{P}_{\mathcal{L},a}(x) \), we could presumably use the results of [HWW04] and [Kum02] to extend this to the wider range \(x^{0.525} \leq y \leq x \).

Theorem 3.4 explicitly demonstrates the claim from [May15] that the method also shows the existence of bounded gaps between primes in short intervals, and for linear functions. We note that we would expect the lower bound to be of size \(y/(\log x)^m \), and so our bound is smaller than the expected truth by a factor of a fixed power of \(\log x \). It appears such a loss is an unavoidable feature of the method when looking at bounded length intervals.

Our final application uses Theorem 3.1 to apply to a subset \(\mathcal{P} \) of the primes. This extends the result of Thorner [Tho14] to sets of linear functions, and with an explicit lower bound.

Theorem 3.5. Let \(K/\mathbb{Q} \) be a Galois extension of \(\mathbb{Q} \) with discriminant \(\Delta_K \). There exists a constant \(C_K \) depending only on \(K \) such that the following holds. Let \(C \subseteq \text{Gal}(K/\mathbb{Q}) \) be a conjugacy class in the Galois group of \(K/\mathbb{Q} \), and let

\[
\mathcal{P} = \left\{ p \text{ prime} : p \nmid \Delta_K, \left[\frac{K/\mathbb{Q}}{p} \right] = C \right\},
\]

where \(\left[\frac{K/\mathbb{Q}}{p} \right] \) denotes the Artin symbol. Let \(m \in \mathbb{N} \) and \(k = \exp(C_K m) \). For any fixed admissible set \(\mathcal{L} = \{ L_1, \ldots, L_k \} \) of \(k \) linear functions \(L_i(n) = a_i n + b_i \) with \((a_i, \Delta_K) = 1 \) for each \(1 \leq i \leq k \), we have

\[
\# \{ x \leq n \leq 2x : \text{at least } m \text{ of } L_1(n), \ldots, L_k(n) \text{ are in } \mathcal{P} \} \gg \frac{x}{(\log x)^{\exp(C_K m)}},
\]

provided \(x \geq x_0(K, \mathcal{L}) \).

Thorner gives several arithmetic consequences of finding such primes of a given splitting type; we refer the reader to the paper [Tho14] for such applications.
As with Theorem 3.4, we only state the result for fixed m, because it relies on other work which establishes the Bombieri–Vinogradov type estimates of Hypothesis 1, and these results only save an arbitrary power of $\log x$. One would presume these results can be extended to save $\exp(-c\sqrt{\log x})$ or similar (having excluded some possible bad moduli), which would allow uniformity for $m \leq \log \log x$, but we do not pursue this here. Similarly, the implied constant in the lower bounds of Theorems 3.4 and 3.5 is not effective as stated, but presumably a small modification to the underlying results would allow us to obtain an effective bound.

4. Notation

We shall view $0 < \theta < 1$ and $\alpha > 0$ as fixed real constants. All asymptotic notation such as $O(\cdot), o(\cdot), \ll, \gg$ should be interpreted as referring to the limit $x \to \infty$, and any constants (implied by $O(\cdot)$ or denoted by c,C with subscripts) may depend on θ, α but no other variable, unless otherwise noted. We will adopt the main assumptions of Theorem 3.1 throughout. In particular, we will view A, P as given sets of integers and primes respectively and $k = \# \mathcal{L}$ will be the size of $\mathcal{L} = \{L_1, \ldots, L_k\}$ an admissible set of integer linear functions, and the coefficients $a_i, b_i \in \mathbb{Z}$ of $L_i(n) = a_i n + b_i$ will satisfy $|a_i|, |b_i| \leq x^{\alpha}$ and $a_i \neq 0$. $B \leq x^\alpha$ will be an integer, and x, k will always be assumed sufficiently large (in terms of θ, α).

All sums, products and suprema will be assumed to be taken over variables lying in the natural numbers $\mathbb{N} = \{1, 2, \ldots\}$ unless specified otherwise. The exception to this is when sums or products are over a variable p (or p'), which instead will be assumed to lie in the prime numbers $\mathbb{P} = \{2, 3, \ldots\}$.

Throughout the paper, φ will denote the Euler totient function, $\tau_r(n)$ the number of ways of writing n as a product of r natural numbers, and μ the Möbius function. We let $\# \mathcal{A}$ denote the number of elements of a finite set \mathcal{A}, and $1_{\mathcal{A}}(x)$ the indicator function of \mathcal{A} (so $1_{\mathcal{A}}(x) = 1$ if $x \in \mathcal{A}$, and 0 otherwise). We let (a, b) be the greatest common divisor of integers a and b, and $[a, b]$ the least common multiple of integers a and b. (For real numbers x, y we also use $[x, y]$ to denote the closed interval. The usage of $[\cdot, \cdot]$ should be clear from the context.)

To simplify notation we will use vectors in a way which is somewhat non-standard. \mathbf{d} will denote a vector $(d_1, \ldots, d_k) \in \mathbb{N}^k$. Given a vector \mathbf{d}, when it does not cause confusion, we write $\mathbf{d} = \prod_{i=1}^k d_i$. Given \mathbf{d}, \mathbf{e}, we will let $[\mathbf{d}, \mathbf{e}] = \prod_{i=1}^k [d_i, e_i]$ be the product of least common multiples of the components of \mathbf{d}, \mathbf{e}, and similarly let $(\mathbf{d}, \mathbf{e}) = \prod_{i=1}^k (d_i, e_i)$ be the product of greatest common divisors of the components, and $\mathbf{d}|\mathbf{e}$ denote the k conditions $d_i|e_i$ for each $1 \leq i \leq k$. An unlabelled sum $\sum_{\mathbf{d}}$ should be interpreted as being over all $\mathbf{d} \in \mathbb{N}^k$.

Finally, for reference we list here the key quantities used in the proof (apart from the previously introduced $\mathcal{A}, \mathcal{L}, \mathcal{P}, B, x, \theta$) and where they are first introduced.

$\omega, \varphi, \mathcal{S}_D(\mathcal{L})$:	equations (7.1)–(7.3),
W, w_n:	equations (7.4), (7.5),
D_k, W_j:	equation (7.7),
$\lambda_\mathbf{d}, y_\mathbf{r}$:	equation (7.8),
R:	inequality (7.9),
F, T_k, U_k:	equation (7.10),
F_1, F_2:	equation (7.12),
$Y_\mathbf{r}$:	Lemma 8.2,
$I_k(\cdot), J_k(\cdot)$:	Lemma 8.6,

1521
5. Outline

The methods of this paper are based on the ‘GPY method’ for detecting primes. The GPY method works by considering a weighted sum associated to an admissible set \(\mathcal{L} = \{L_1, \ldots, L_k\} \):

\[
S = \sum_{x \leq n \leq 2x} \left(\sum_{i=1}^{k} 1_\mathcal{P}(L_i(n)) - m \right) w_n, \tag{5.1}
\]

where \(m \) and \(k \) are fixed integers, \(x \) is a large positive number and \(w_n \) are some non-negative weights (typically chosen to be of the form of the weights in Selberg’s \(\Lambda^2 \) sieve).

If \(S > 0 \), then at least one integer \(n \) must make a positive contribution to \(S \). Since the weights \(w_n \) are non-negative, if \(n \) makes a positive contribution then the term in parentheses in (5.1) must be positive at \(n \), and so at least \(m + 1 \) of the \(L_i(n) \) must be prime. Thus to show at least \(m + 1 \) of the \(L_i(n) \) are simultaneously prime infinitely often, it suffices to show that \(S > 0 \) for all large \(x \).

The shape of \(S \) means that one can consider the terms weighted by \(1_\mathcal{P}(L_i(n)) \) separately for each \(L_i \in \mathcal{L} \), which makes these terms feasible to estimate accurately using current techniques. In particular, the only knowledge about the joint behaviour of the prime values of the \(L_i \) is derived from the pigeonhole principle described above.

The method only succeeds if the weights \(w_n \) are suitably concentrated on integers \(n \) when many of the \(L_i(n) \) are prime. To enable an unconditional asymptotic estimate for \(S \), the \(w_n \) are typically chosen to mimic sieve weights, and in particular Selberg sieve weights (which tend to be the best performing weights when the ‘dimension’ \(k \) of the sieve is large). One can then hope to estimate a quantity involving such sieve weights provided one can prove suitable equidistribution results in arithmetic progressions. The strength of concentration of the weights \(w_n \) on primes depends directly on the strength of equidistribution results available.

The original work of Goldston, Pintz and Yıldırım [GPY09] showed that one could construct weights \(w_n \) which would show that \(S > 0 \) for \(m = 1 \) (and for \(k \) sufficiently large) if one could prove a suitable extension of the Bombieri–Vinogradov theorem. Zhang [Zha14] succeeded in proving such an extension,\(^2\) and as a consequence showed the existence of bounded gaps between primes.

The author’s work [May15] introduced a modification to the choices of the sieve weights \(w_n \) (this modification was also independently discovered by Terence Tao at the same time). This modification enables \(w_n \) to be rather more concentrated on \(n \) for which many of the \(L_i(n) \) are prime. This allows one to show \(S > 0 \) for any \(m \in \mathbb{N} \), and moreover the method works even if one has much more limited knowledge about primes in arithmetic progressions.

As remarked in [May15], the fact that the method now works even with only a limited amount of knowledge about primes in arithmetic progressions makes it rather flexible, and in particular applicable to counting primes in subsets, where we have more limited equidistribution results. Moreover, it is possible to exploit the flexibility of the pigeonhole principle set-up in (5.1) to consider slightly more exotic combinations, which can ensure that the \(n \) making a positive contribution to \(S \) also satisfy ‘typical’ properties.

Therefore we can consider modified sums of the form

\[
S = \sum_{n \in \mathcal{A}(x)} \left(\sum_{i=1}^{k} 1_\mathcal{P}(L_i(n)) - m - k1_B(n) \right) w_n
\]

\(^2\) The actual form of Zhang’s extension is slightly weaker than that considered in the original conditional result of Goldston, Pintz and Yıldırım, although it is sufficient for the argument.
for some set of integers \(A \), set of primes \(P \) and set of ‘atypical’ integers \(B \). Provided we have some weak distribution results available (such as those asserted by Hypothesis 1), we can estimate all the terms involved in this sum. Again, by the pigeonhole principle, we see that if \(n \in A(x) \) makes a positive contribution to \(S \), then at least \(m + 1 \) of the \(L_i(n) \) are primes in \(P \), and that \(n \notin B \). We expect that if \(B \) represents an ‘atypical’ set, and \(P \) is not too sparse (relative to \(A \)), then we can choose \(w_n \) similarly to before and show that \(S > 0 \) for \(k \) sufficiently large. Moreover, by modifying some of the technical aspects of the method in [May15], we can obtain suitable uniform estimates for such sums \(S \) even when we allow the coefficients \(a_i, b_i \) of \(L_i(n) = a_i n + b_i \), the number \(k \) of functions and the number \(m \) of primes we find to vary with \(x \) in certain ranges.

Our work necessarily builds on previous work in [May15], and a certain degree of familiarity with [May15] is assumed.

6. Proof of Theorems 3.1–3.5

The proof of Theorems 3.1–3.5 relies on the following key proposition.

Proposition 6.1. Let \(\alpha > 0 \) and \(0 < \theta < 1 \). Let \(A \) be a set of integers, \(P \) a set of primes, \(L = \{L_1, \ldots, L_k\} \) an admissible set of \(k \) linear functions, and \(B, x \) integers. Assume that the coefficients \(L_i(n) = a_i n + b_i \in L \) satisfy \(1 \leq a_i, b_i \leq x^\alpha \) for all \(1 \leq i \leq k \), and that \(k \leq (\log x)^{1/5} \) and \(1 \leq B \leq x^\alpha \). Let \(x^{\theta/10} \leq R \leq x^{\theta/3} \). Let \(\rho, \xi \) satisfy \(k(\log \log x)^2/\log x \leq \rho, \xi \leq \theta/10 \), and define

\[
S(\xi; D) = \{n \in \mathbb{N} : p | n \implies (p > x^\xi \text{ or } p | D)\}.
\]

There is a constant \(C \) depending only on \(\alpha \) and \(\theta \) such that the following holds. If \(k \geq C \) and \((A, L, P, B, x, \theta) \) satisfy Hypothesis 1, then there is a choice of non-negative weights \(w_n = w_n(L) \) satisfying

\[
w_n \ll (\log R)^2 k \prod_{i=1}^k \prod_{p | L_i(n), p | B} 4
\]

such that the following statements hold.

1. We have

\[
\sum_{n \in A(x)} w_n = \left(1 + O\left(\frac{1}{(\log x)^{1/10}}\right)\right) \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(L) \# A(x) (\log R)^k I_k.
\]

2. For \(L(n) = a_L n + b_L \in L \) we have

\[
\sum_{n \in A(x)} \mathbf{1}_P(L(n)) w_n \geq \left(1 + O\left(\frac{1}{(\log x)^{1/10}}\right)\right) \frac{B^{k-1}}{\varphi(B)^{k-1}} \mathcal{S}_B(L) \frac{\varphi(a_L)}{a_L} \# P_{L,A}(x) (\log R)^{k+1} J_k + O\left(\frac{B^k}{\varphi(B)^k} \mathcal{S}_B(L) \# A(x) (\log R)^{k-1} I_k\right).
\]

3. For \(L = a_0 n + b_0 \notin L \) and \(D \ll x^{O(1)} \), let \(\Delta_L = a_0 \prod_{j=1}^k |a_0 b_j - b_0 a_j| \). If \(\Delta_L \neq 0 \) we have

\[
\sum_{n \in A(x)} \mathbf{1}_{S(\xi; D)}(L(n)) w_n \ll \xi^{-1} \frac{\Delta_L}{\varphi(\Delta_L)} \frac{D}{\varphi(D)} \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(L) \# A(x) (\log R)^{k-1} I_k.
\]
Since the term in parentheses in (6.2) can be at most \(k \), that if this is the case then since \(a \) primes in \(P \), any \(w \) where \(C \) the main result then follows with a suitably adjusted value of \(\log x / k \).

Moreover, if all functions \(L \in \mathcal{L} \) are of the form \(L = an + bL \), for some fixed \(a \) and \(bL \ll \log x / (k \log k) \), then for \(\eta \geq (\log x)^{-9/10} \), we have

\[
\sum_{b \leq \eta \log x \atop L(n) = an + b} \frac{\Delta_L}{\varphi(\Delta_L)} \ll \eta(\log x)(\log k).
\]

Here the implied constants depend only on \(\theta, \alpha \), and the implied constants from Hypothesis 1.

Assuming Proposition 6.1, we now establish Theorems 3.1–3.5 in turn.

Proof of Theorem 3.1. We first note that by passing to a subset of \(\mathcal{L} \), it is sufficient to show that in the restricted range \(C \leq k \leq (\log x)^{1/5} \) we have the weaker bound

\[
\#\{n \in \mathcal{A}(x) : \#(\{L_1(n), \ldots, L_k(n)\} \cap \mathcal{P}) \geq C^{-1} \delta \log k \} \gg \frac{\#\mathcal{A}(x)}{(\log x)^k \exp(C^k)}.
\]

The main result then follows with a suitably adjusted value of \(C \).

For \(m \in \mathbb{N} \), we consider the sum

\[
S = \sum_{n \in \mathcal{A}(x)} \left(\sum_{i=1}^{k} 1_{p \mid L_i(n)} - m - k \sum_{i=1}^{k} \sum_{l \mid L_i(n) \atop p < x^\alpha} \frac{1}{p} \right) w_n = S_1 - S_2 - S_3,
\]

where \(w_n \) are the weights whose existence is guaranteed by Proposition 6.1. We note that for any \(n \in \mathcal{A}(x) \), the term in parentheses in (6.2) is positive only if at least \(m + 1 \) of the \(L_i(n) \) are primes in \(\mathcal{P} \), and none of the \(L_i(n) \) have any prime factors \(p \mid B \) less than \(x^\alpha \). Moreover, we see that if this is the case then since \(a_i, b_i \leq x^\alpha \), each \(L_i(n) \) can have at most \(O(1/p) \) prime factors \(p \mid B \), and so

\[
w_n \ll (\log x)^{2k} \prod_{i=1}^{k} \prod_{p \mid L_i(n) \atop p \mid B} 4 \ll (\log x)^{2k} \exp(O(k/\rho)).
\]

Since the term in parentheses in (6.2) can be at most \(k \), we have that

\[
\#\{n \in \mathcal{A}(x) : \#(\{L_1(n), \ldots, L_k(n)\} \cap \mathcal{P}) \geq m \} \gg \frac{S}{k(\log x)^{2k} \exp(O(k/\rho))}.
\]
Thus it is sufficient to obtain a suitable lower bound for S. (Essentially the same idea has been used by Goldston et al. [GPY11].) Using Proposition 6.1, we have

$$S_1 = \sum_{n \in \mathcal{A}(x)} \sum_{i=1}^{k} 1_{\mathcal{P}}(L_i(n))w_n \geq (1 + o(1)) \frac{B^{k-1}}{\varphi(B)^{k-1}} \mathcal{S}_B(\mathcal{L})(\log R)^{k+1} \sum_{i=1}^{k} \frac{\varphi(a_i)}{a_i} \# \mathcal{P}_{L_i,A}$$

$$+ o\left(\frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# \mathcal{A}(x)(\log R)^k I_k \right), \quad (6.5)$$

$$S_2 = m \sum_{n \in \mathcal{A}(x)} w_n = m(1 + o(1)) \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# \mathcal{A}(x)(\log R)^k I_k, \quad (6.6)$$

$$S_3 = k \sum_{n \in \mathcal{A}(x)} \sum_{i=1}^{k} \sum_{\substack{p \mid L_i(n) \land p < x^\rho \land \nu | B}} w_n \ll \rho^2 k^6 (\log k)^2 \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# \mathcal{A}(x)(\log R)^k I_k. \quad (6.7)$$

We choose $\rho = c_0k^{-3}(\log k)^{-1}$ with c_0 a small absolute constant such that $S_3 \leq (1/3 + o(1))S_2$. (This choice satisfies the bounds of Proposition 6.1 since $k \leq (\log x)^{1/5}$ and k is taken to be sufficiently large in terms of θ.) Thus, for x sufficiently large, we have

$$S \geq \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L})(\log R)^k \left(\frac{J_k}{2} \log R \sum_{i=1}^{k} \frac{\varphi(a_i) \varphi(B)}{a_i B} \# \mathcal{P}_{L_i,A}(x) - 2mI_k \# \mathcal{A}(x) \right). \quad (6.8)$$

By the assumption of Theorem 3.1, we have

$$\frac{1}{k} \sum_{i=1}^{k} \frac{\varphi(a_i) \varphi(B)}{a_i B} \# \mathcal{P}_{L_i,A}(x) \geq \delta \frac{\# \mathcal{A}(x)}{\log x}. \quad (6.9)$$

From Proposition 6.1, we have $J_k/I_k \gg (\log k)/k$. Combining this with (6.8) and (6.9), we have (for x sufficiently large)

$$S \geq (\theta/3)^k \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# \mathcal{A}(x)(\log x)^k I_k (3c_1 \delta \log k - 2m), \quad (6.10)$$

for some constant c_1 depending only on θ. In particular, if $m = c_1 \delta \log k$, then $m \gg 1$ (since $\delta \geq (\log k)^{-1}$ by assumption), and $S > 0$. Using the bounds $I_k \gg (2k \log k)^{-k}$ and $\mathcal{S}_B(\mathcal{L}) \gg \exp(-Ck)$ from Proposition 6.1, along with the trivial bound $B/\varphi(B) \geq 1$, we obtain

$$S \gg (\theta/3)^k \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# \mathcal{A}(x)(\log x)^k I_k \gg \# \mathcal{A}(x)(\log x)^k \exp(-C_2k^2), \quad (6.11)$$

for a suitable constant C_2 depending only on θ. Combining this with (6.4) and recalling our choices of m, ρ gives for $x \geq C_3$,

$$\# \{ n \in \mathcal{A}(x) : \| (L_1(n), \ldots, L_k(n)) \cap \mathcal{P} \| \geq c_1 \delta \log k \} \geq \frac{\# \mathcal{A}(x) \exp(-C_3k^5)}{(\log x)^k}, \quad (6.12)$$

provided C_3 is chosen sufficiently large in terms of θ and α. This gives (6.1), and so the first claim of the theorem.
For the second claim, we have \(L_i = an + bi \) for all \(1 \leq i \leq k \), with \(a \ll 1 \) and \(b_i \ll \eta(\log x) \).

(We will eventually take \(\eta = c_4(k \log k)^{-1} \), for some fixed \(c_4 \) which implies the bound in the statement of Theorem 3.1.) In place of \(S \) we consider

\[
S' = \sum_{n \in A(x)} \left(\sum_{i=1}^{k} 1_{\mathcal{P}}(L_i(n)) - m - k \sum_{i=1}^{k} \sum_{p|L_i(n)} 1 - k \sum_{b \leq \eta \log x} \frac{1}{L = an + b \xi \mathcal{L}} \right) w_n
= S_1 - S_2 - S_3 - S_4. \tag{6.13}
\]

The term in parentheses in (6.13) is positive only if at least \(m \) of the \(L_i(n) \) are primes, none of the \(L_i(n) \) have a prime factor \(p \mid B \) smaller than \(x^\rho \), and all integers not in \(\{L_1(n), \ldots, L_k(n)\} \) of the form \(an + b \) with \(b \leq \eta \log x \) have a prime factor less than \(x^{\theta/10} \). In particular, there can be no primes in the interval \([an, an + \eta(\log x)] \) apart from possibly \(\{L_1(n), \ldots, L_k(n)\} \), and so the primes counted in this way must be consecutive.

For \(S_4 \), we notice that \(\Delta_L \neq 0 \) for all \(L \) we consider since any \(L \) has the same lead coefficient as the \(L_i \) (and so cannot be a multiple of one of them). By Proposition 6.1, we have

\[
S_4 \ll k \frac{B^k}{\varphi(B)^k} \# A(x)(\log R)^{k-1} \sum_{b \leq \eta \log x} \frac{\Delta_L}{\varphi(\Delta_L)} \ll \eta k(\log k)S_2. \tag{6.14}
\]

We choose \(\eta = c_4/(k \log k) \) for some sufficiently small constant \(c_4 \) (this satisfies the requirements of Proposition 6.1). We then see that the bound (6.8) holds for \(S' \) in place of \(S \) provided \(x, k \) are sufficiently large. The whole argument then goes through as before. \(\square \)

Proof of Theorem 3.2. We note that the result is trivial if \(y \gg (\log x)^2 \), \(y = O(1) \) or \(x = O(1) \) by the pigeonhole principle, Bertrand’s postulate and the prime number theorem. Therefore, by changing the implied constant if necessary, it is sufficient to establish the result for \(y \ll (\log x)^{1/5} \) with \(y \) sufficiently large.

We take \(\mathcal{P} = \mathbb{P} \), \(A = \mathbb{N} \), \(\mathcal{L} = \{L_1, \ldots, L_k\} \), with \(L_i(n) = n + h_i \), where \(h_i \) is the \(i \)th prime larger than \(k \). By the prime number theorem, \(h_i \ll 2k \log k \) for all \(i \) (provided \(k \) is sufficiently large). This is an admissible set.

By the Landau–Page theorem (see, for example, [Dav00, ch. 14]) there is at most one modulus \(q_0 \ll \exp(c_1 \sqrt{\log x}) \) such that there exists a primitive character \(\chi \mod q_0 \) for which \(L(s, \chi) \) has a real zero larger than \(1 - c_2(\log x)^{-1/2} \) (for suitable fixed constants \(c_1, c_2 \)). If this exceptional modulus \(q_0 \) exists, we take \(B \) to be the largest prime factor of \(q_0 \), and otherwise we take \(B = 1 \). If \(q_0 \) exists, it must be square-free apart from a possible factor of at most \(4 \), and must satisfy \(q_0 \gg \log x \) (from the class number formula). Therefore if \(q_0 \) exists, \(\log \log x \ll B \ll \exp(c_1 \sqrt{\log x}) \). Thus, whether or not \(q_0 \) exists, we have

\[
\frac{B}{\varphi(B)} = 1 + O\left(\frac{1}{\log \log x} \right). \tag{6.15}
\]

With this choice of parameters, we have error terms for parts (1) and (2) of Hypothesis 1 of size \(x \exp(-c_3 \sqrt{\log x}) = \# A(x) \exp(-c_3 \sqrt{\log x}) \) for \(\theta = 1/3 \) by variants of the Bombieri–Vinogradov theorem avoiding an exceptional character (see, for example, [Dav00, ch. 28]). Thus Hypothesis 1 holds for \((A, \mathcal{L}, \mathcal{P}, B, x, 1/3) \) for any \(k \ll (\log x)^{1/5} \) provided \(k \) is sufficiently large. We have

\[
\# \mathcal{P}_{L,A}(x) = \frac{(1 + o(1))x}{\log x} = \frac{(1 + o(1))\# A(x)}{\log x}, \tag{6.16}
\]

1526
and so we may take \(\delta = (1 + o(1)) \) in Theorem 3.1. Theorem 3.1 then gives
\[
\# \{ x \leq n \leq 2x : \pi(n + 2k \log k) - \pi(n) \gg \log k \} \gg \frac{x}{(\log x)^k \exp(Ck)}.
\]
(6.17)

Thus, given any \(x, y \) suitably large with \(y \leq (\log x)^{1/5} \) we can take \(k = [y/(2 \log y)] \), and see that the above gives the result. All constants we have used are effectively computable. \(\square \)

Proof of Theorem 3.3. To get lower bounds of the correct order of magnitude, we average over admissible sets. We assume without loss of generality that \(a \) is reduced modulo \(q \), so \(1 \leq a < q \). We then adopt the same set-up as in the proof of Theorem 3.2 for our choice of \(A, \mathcal{P}, \theta, R \). If an exceptional modulus \(q_0 \) exists (as defined in the proof of Theorem 3.2), then we take \(B \) to be the largest prime factor of \(q_0 \) coprime to \(q \). Since \(q \leq (\log x)^{1-\epsilon} \) and \(q_0 \gg \log x \) (with \(q_0 \) essentially square-free) we have \(\log \log x \ll \epsilon B \ll x \) if \(q_0 \) exists. Thus \(B/\phi(B) = 1 + o(1) \) regardless of whether \(q_0 \) exists.

Instead of our individual choice of \(\mathcal{L} \), we will average over all admissible choices of \(\mathcal{L} \) with \(\# \mathcal{L} = k \) and where \(\mathcal{L} = \{ L_1, \ldots, L_k \} \) contains functions of the form \(L_i(n) = qn + a + qb_i \) with \(qb_i \leq \eta \log x \). We write \(\mathcal{L}(b) \) for such a set given by \(b_1, \ldots, b_k \). We consider
\[
S'' = \sum_{b_1 < \cdots < b_k, \ qb_i \leq \eta \log x, \ \mathcal{L} = \mathcal{L}(b) \text{ admissible}} \left(\sum_{n \in \mathcal{A}(x)} \mathbf{1}_{\mathcal{P}(L_i(n))} - m - k \sum_{i=1}^k \sum_{p \leq \eta \log x, \ p \mid L_i(n)} 1 - k \sum_{b \leq 2\eta \log x, \ b \not\mid \mathcal{L}} \mathbf{1}_{\mathcal{S}(\rho; B)}(L(n)) \right) w_n(\mathcal{L}).
\]
(6.18)

Here \(w_n(\mathcal{L}) \) are the weights given by Proposition 6.1 for the admissible set \(\mathcal{L} = \mathcal{L}(b) \). For a given admissible set \(\mathcal{L} \), the sum over \(n \) is then essentially the same quantity as \(S' \) from (6.13), except in the final term in parentheses we are considering elements with no prime factor less than \(x^\theta \) instead of \(x^{\theta/10} \).

We see the term in parentheses in (6.18) is positive only if at least \(m \) of the \(L_i(n) \) are primes, all the remaining \(L_i(n) \) have no prime factors \(p \mid B \) less than \(x^\theta \), and all other \(qn + b \) with \(b \leq 2\eta \log x \) have a prime factor \(p \mid B \) less than \(x^\theta \). We see from this than no \(n \) can make a positive contribution from two different admissible sets (since if \(n \) makes a positive contribution for some admissible set, the \(L_i(n) \) are uniquely determined as the integers in \([qn, qn + \eta \log x] \) with no prime factors \(p \mid B \) less than \(x^\theta \)). By (6.3), we see that if \(n \) makes a positive contribution then \(w_n \ll (\log x)^{2k} \exp(O(k/\rho)) \), with the implied bound uniform in \(\mathcal{L}(b) \).

As before, we choose \(\rho = (c_0 k^{-3}(\log k))^{-1} \), which makes the contribution of the third of the terms in parentheses small compared to the second one. Following the argument of the proof of Theorem 3.1, using \(S(\rho; B) \) in place of \(S(\theta/10; 1) \) increases the size of the contribution of the final term by a factor \(O(\rho^{-1}) = O(k^3 \log k) \). Thus to show the final term is suitably small, we take \(\eta \leq \epsilon \) to be a small multiple of \(k^{-4}(\log k)^{-2} \) instead of \(1/(k \log k) \) (which is acceptable for Proposition 6.1). With these choices, we find that for a suitable constant \(c_1 \) we have
\[
S'' \gg \left(\theta/3 \right)^k \frac{B^k}{\phi(B)^k} \mathbf{1}_{\mathcal{B}(\mathcal{L})} \# \mathcal{A}(x)(\log x)^k I_k \sum_{b_1 < \cdots < b_k, \ qb_i \leq \eta \log x, \ \mathcal{L} \text{ admissible}} (3c_1 \log k - 2m).
\]
(6.19)

Therefore, given \(m \in \mathbb{N} \) we choose \(k = \lceil \exp(m/c_1) \rceil \). With this choice we see that \(S'' > 0 \). Using the bounds \(I_k \gg (k \log k)^{-k} \) and \(\mathbf{1}_{\mathcal{B}(\mathcal{L})} \gg \exp(-Ck) \) from Proposition 6.1 and \(B^k/\phi(B)^k \geq 1 \),
we see that for a suitable constant C_2 we have

$$S'' \gg x (\log x)^k \exp(-C_2 k^2) \sum_{b_1 < \cdots < b_k \atop \eta(q b_k) \leq \log x} 1. \quad (6.20)$$

Thus we are left with obtaining a lower bound for the inner sum of (6.20). We see all the b_i lie between 0 and $\eta(\log x)/q$. We greedily sieve this interval by removing for each prime $p \leq k$ in turn any elements from the residue class modulo p which contains the fewest elements. The resulting set has size at least

$$\frac{\eta \log x}{q} \prod_{p \leq k} \left(1 - \frac{1}{p}\right) \gg \frac{\log x}{q k^4 (\log k)^3}. \quad (6.21)$$

Any choice of k distinct b_i from this set will cause the resulting $L(b)$ to be admissible. We now recall from the theorem that we are only considering $q \lesssim (\log x)^{1-\epsilon}$ and $m \lesssim c_\epsilon \log x$. For a suitably small choice of c_ϵ, we see that $k = \lceil \exp(m/c_1) \rceil \lesssim (\log x)^{\epsilon/10}$. Therefore from (6.21) we see the length of the interval is at least k^2 if x is sufficiently large in terms of ϵ. In this case, we obtain the bound

$$\sum_{b_1 < \cdots < b_k \atop \eta(q b_k) \leq \log x} 1 \geq k^{-k} \left(\frac{c_3 \log x}{q k^4 \log^2 k} - k \right)^k \gg \left(\frac{\log x}{q} \right)^k \exp(-C_4 k^2), \quad (6.22)$$

for some constants $c_3, C_4 > 0$. Thus, substituting (6.22) into (6.20), we obtain

$$S'' \gg x (\log x)^{2k} \exp(-C_5 k^2) q^{-k}. \quad (6.23)$$

We recall that every pair n, L which makes a positive contribution to S'' is counted with weight at most $k w_n(L) \ll k (\log x)^{2k} \exp(O(k/p))$ (uniformly over all choices of L). Putting this all together, we obtain the number N of integers n with $x \leq n \leq 2x$ such that there are $\gg \log k$ consecutive primes all congruent to $a \pmod{q}$ in the interval $[qn, qn + \eta \log x]$ satisfies

$$N \gg \frac{x}{q^k \exp(C_6 k^5)}. \quad (6.24)$$

We see that the initial prime in each such interval is counted by at most $\log x$ values of n. Therefore, changing the count to be over the initial prime, recalling $k = \lceil \exp(m/c_1) \rceil$, recalling that $\eta \lesssim \epsilon$, and replacing x with $x/3q$ gives

$$\# \{p_n \leq x : p_n \equiv \cdots \equiv p_{n+m} \equiv a \pmod{q}, p_{n+m} - p_n \leq \epsilon \log x \} \geq \epsilon \frac{\pi(x)}{(2q)^{\exp(Cm)}}, \quad (6.25)$$

for a suitable constant $C > 0$, as required. \hfill \Box

Proof of Theorem 3.4. We take $\mathcal{P} = \mathbb{P}$, $A = [x, x+y]$, $B = 1$, $\theta = 1/30 - \epsilon$. Given m, we choose $k = \exp(C'm)$ for some suitable constant $C > 0$.

Timofeev [Tim87] (improving earlier work of Huxley and Iwaniec [HI75] and Perelli et al. [PPS85]) has shown that, for $\theta = 1/30 - \epsilon/2$, for any $x^{7/12+\epsilon/2} \leq y \leq x$ and any fixed $C' > 0$ we have

$$\sum_{q < x^y} \sup_{(a,q)=1} \left| \frac{\pi(x+y; q, a) - \pi(x; q, a)}{\varphi(q)} \right| \ll C' \epsilon \frac{y}{(\log x)^{C'}}. \quad (6.26)$$

1528
Dense clusters of primes in subsets

By taking C' sufficiently large in terms of k, we see that (6.26) implies Hypothesis 1 holds for our choice of $\theta = 1/30 - \epsilon$ provided x is sufficiently large in terms of m and ϵ. Theorem 3.1 then automatically gives Theorem 3.4. \qed

Proof of Theorem 3.5. We take $A = \mathbb{N}, B = \Delta_K$ and \mathcal{P}, \mathcal{L} the sets given by the statement of the theorem. To avoid confusion, we note that Δ_K here is the discriminant of K/\mathbb{Q}, and unrelated to Δ_L from Proposition 6.1. Murty and Murty [MM87] have then established the key estimate (2) of Hypothesis 1 with any $\theta < \min(1/2, 2/\#G)$, where $G = \text{Gal}(K/\mathbb{Q})$ (the other estimates being trivial). Finally, we have

$$1 \frac{B}{k \varphi(B)} \sum_{i=1}^{k} \frac{\varphi(a_i)}{a_i} \#\mathcal{P}_{L_i, A}(x) \geq (1 + o(1)) \frac{\Delta_K \#C}{\varphi(\Delta_K) \#G \log x},$$

(6.27)

and so for x sufficiently large, we may take δ to be a constant depending only on K. The result now follows directly from Theorem 3.1. \qed

7. Initial considerations

We recall that we are given a set \mathcal{A} of integers, a set \mathcal{P} of primes, an admissible set $\mathcal{L} = \{L_1, \ldots, L_k\}$ of integer linear functions, an integer B and quantities R, x. We assume that the coefficients of $L_i(n) = a_i n + b_i \in \mathcal{L}$ satisfy $|a_i|, |b_i| \leq x^\alpha, a_i \neq 0$, and $k = \#\mathcal{L}$ is sufficiently large in terms of the fixed quantities θ, α and satisfies $k \leq (\log x)^{1/5}$. B, R satisfy $1 \leq B \leq x^\alpha$, and $x^{9/10} \leq R \leq x^{9/3}$. Finally, we assume from now on that the set \mathcal{A} satisfies

$$\sum_{q < x^\theta} \max_a \left| \#\mathcal{A}(x; q, a) - \frac{\#\mathcal{A}(x)}{q} \right| \leq \frac{\#\mathcal{A}(x)}{(\log x)^{100k^2}},$$

and

$$\#\mathcal{A}(x; q, a) \leq \frac{\#\mathcal{A}(x)}{q}$$

for any $q < x^\theta$. Together these assumptions are a slight generalization of the assumptions of Proposition 6.1.

We define the multiplicative functions $\omega = \omega_\mathcal{L}$ and $\varphi_\omega = \varphi_\omega_\mathcal{L}$ and the singular series $\mathcal{S}_D(\mathcal{L})$ for an integer D by

$$\omega(p) = \begin{cases} \# \left\{ 1 \leq n \leq p : \prod_{i=1}^{k} L_i(n) \equiv 0 \pmod{p} \right\}, & p \nmid B, \\ 0, & p \mid B, \end{cases} \tag{7.1}$$

$$\varphi_\omega(d) = \prod_{p \mid d} (p - \omega(p)), \tag{7.2}$$

$$\mathcal{S}_D(\mathcal{L}) = \prod_{p \mid D} \left(1 - \frac{\omega(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-k}. \tag{7.3}$$

Since \mathcal{L} is admissible, we have $\omega(p) < p$ for all p and so $\varphi_\omega(n) > 0$ and $\mathcal{S}_D(\mathcal{L}) > 0$ for any integer D. Since $\omega(p) = k$ for all $p \nmid \prod_{i=1}^{k} a_i \prod_{i \neq j} (a_i b_j - b_i a_j)$ we see the product $\mathcal{S}_D(\mathcal{L})$ converges.

The main innovation in [May15] was a different choice of the sieve weights used in the GPY method to detect small gaps between primes. In order to adapt the argument of [May15] to the
more general situation considered here, we need to modify the choice of these weights further to produce a choice more amenable to obtaining uniform estimates. In particular, in [May15] the ‘W-trick’ was used to eliminate the need for consideration of the singular terms which would naturally arise. In our situation, however, in order to obtain suitable uniform estimates without stronger assumptions on the error terms in Hypothesis 1, we need to take these singular series into account.

We will consider sieve weights \(w_n = w_n(\mathcal{L}) \), which are defined to be 0 if \(\prod_{i=1}^{k} L_i(n) \) is a multiple of any prime \(p \leq 2k^2 \) with \(p \mid B \). Specifically, we define

\[
W = \prod_{p \leq 2k^2, p \mid B} p
\]
(7.4)

\[
w_n = \left\{ \left(\sum_{d_i \mid L_i(n)} \lambda_d \right)^2 \text{ if } \left(W, \prod_{i=1}^{k} L_i(n) \right) = 1, \right. \\
0 \text{ if } \left(W, \prod_{i=1}^{k} L_i(n) \right) \neq 1,
\]
(7.5)

for some real variables \(\lambda_d \) depending on \(d = (d_1, \ldots, d_k) \). We first restrict our \(\lambda_d \) to be supported on \(d \) with \(d = \prod_{i=1}^{k} d_i \) square-free and coprime to \(WB \).

Given a prime \(p \mid WB \), let \(r_{p,1}, \ldots, r_{p, \omega(p)} \) be the \(\omega(p) \) residue classes for which \(\prod_{i=1}^{k} L_i(n) \) vanishes modulo \(p \). For each such prime \(p \), we fix a choice of indices \(j_{p,1}, \ldots, j_{p, \omega(p)} \in \{1, \ldots, k\} \) such that for each \(i \in \{1, \ldots, \omega(p)\} \) we have that \(j_{p,i} \) is the smallest index such that

\[
L_{j_{p,i}}(r_{p,i}) \equiv 0 \pmod{p}.
\]
(7.6)

(We could choose any index satisfying the above condition; we choose the smallest index purely for concreteness.) All the functions \(L_i \) are linear and, since \(\mathcal{L} \) is admissible, none of the \(L_i \) are a multiple of \(p \). This means that for any \(L \in \mathcal{L} \) there is at most one residue class for which \(L \) vanishes modulo \(p \). Thus the indices \(j_{p,1}, \ldots, j_{p, \omega(p)} \) we have chosen must be distinct. We now restrict the support of \(\lambda_d \) to \((d_j, p) = 1 \) for all \(j \notin \{j_{p,1}, \ldots, j_{p, \omega(p)}\} \).

We see these restrictions are equivalent to the restriction that the support of \(\lambda_d \) must lie the set

\[
\mathcal{D}_k = \mathcal{D}_k(\mathcal{L}) = \{d \in \mathbb{N}^k : \mu^2(d) = 1, (d_j, W_j) = 1 \ \forall 1 \leq j \leq k\},
\]
(7.7)

where \(W_j \) are square-free integers each a multiple of \(WB \), and any prime \(p \mid WB \) divides exactly \(k - \omega(p) \) of the \(W_j \) (such a prime \(p \) divides \(W_j \) if \(j \notin \{j_{p,1}, \ldots, j_{p, \omega(p)}\} \)). We recall that in our notation \(\mu^2(d) = \mu^2(\prod_{i=1}^{k} d_i) \).

The key point of these restrictions is so that different components of different \(d \) occurring in our sieve weights will be relatively prime. Indeed, let \(d \) and \(e \) both occur in the sum (7.5). If \(p \mid d_i \) then \(p \mid L_i(n) \), and so \(i \) must be the chosen index for the residue class \(n \pmod{p} \). But if we also have \(p \mid e_j \) then similarly \(j \) must be the chosen index for this residue class, and so we must have \(i = j \). Hence \((d_i, e_j) = 1 \) for all \(i \neq j \).

Similar to [May15], we define \(\lambda_d \) in terms of variables \(y_r \) supported on \(r \in \mathcal{D}_k \) by

\[
\lambda_d = \mu(d) \bar{d} \sum_{d \mid r} \frac{y_r}{\varphi_\omega(r)^t}, \quad y_r = \frac{1 \mathcal{D}_k(r) W^k B^k}{\varphi(WB)^k} \mathcal{S}_{WB}(\mathcal{L}) F \left(\log r_1, \ldots, \log r_k \right)
\]
(7.8)

(again, we recall \(d = \prod_{i=1}^{k} d_i \)), where \(R \) is a quantity with

\[
x^{9/10} \leq R \leq x^{9/3},
\]
(7.9)
and $F : \mathbb{R}^k \to \mathbb{R}$ is a smooth function given by

$$F(t_1, \ldots, t_k) = \psi \left(\sum_{i=1}^k t_i \right) \prod_{i=1}^k \frac{\psi(t_i/U_k)}{1 + T_k t_i}, \quad T_k = k \log k, \quad U_k = k^{-1/2}. \quad (7.10)$$

Here $\psi : [0, \infty) \to [0, 1]$ is a fixed smooth non-increasing function supported on $[0, 1]$ which is 1 on $[0, 9/10]$. In particular, we note that this choice of F is non-negative, and that the support of ψ implies that

$$\lambda_d = 0 \text{ if } d = \prod_{i=1}^k d_i > R. \quad (7.11)$$

We will find it useful to also consider the closely related functions F_1 and F_2 which will appear in our error estimates, defined by

$$F_1(t_1, \ldots, t_k) = \prod_{i=1}^k \frac{\psi(t_i/U_k)}{1 + T_k t_i}, \quad F_2(t_1, \ldots, t_k) = \sum_{1 \leq j \leq k} \left(\psi(t_j/2) \prod_{1 \leq i < j} \frac{\psi(t_i/U_k)}{1 + T_k t_i} \right). \quad (7.12)$$

Finally, by Möbius inversion, we see that (7.8) implies that for $r \in D_k$,

$$y_r = \mu(r) \varphi_\omega(r) \sum_{r | f} \frac{y_f}{\varphi_\omega(f)} \sum_{r | d, d | f} \mu(d) = \mu(r) \varphi_\omega(r) \sum_{r | d} \frac{\lambda_d}{d}. \quad (7.13)$$

8. Preparatory lemmas

Lemma 8.1. (i) There is a constant C such that, for any admissible set L of size k, we have

$$\mathcal{S}_B(L) \geq \exp(-Ck).$$

(ii) Let all functions $L_i \in L$ be of the form $L_i = an + b_i$, for some integers $|a| \ll 1$ and $|b_i| \ll \log x$. Let $\Delta_L = |a|^{k+1} \prod_{i=1}^k |b_i - b|$ and $\eta \geq (\log x)^{-9/10}$. Then we have

$$\sum_{|b| \ll \eta \log x} \frac{\Delta_L}{\varphi(\Delta_L)} \ll \eta(\log x)(\log k).$$

Proof. Since $\omega(p) \leq \min(k, p - 1)$ for any admissible L of size k, we have

$$\mathcal{S}_B(L) = \prod_{p | B} \left(1 - \frac{\omega(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-k} \geq \prod_{p \leq 2k, p | B} \frac{1}{p} \prod_{p > 2k, p | B} \left(1 - \frac{k}{p} \right) \left(1 - \frac{1}{p} \right)^{-k}. \quad (8.1)$$

Since all terms in the products on the right-hand side are less than 1, we can drop the restriction $p | B$ for a lower bound. This gives

$$\mathcal{S}_B(L) \geq \prod_{p \leq 2k} \frac{1}{p} \prod_{p > 2k} \exp(O(k^2/p^2)) \geq \exp(-Ck). \quad (8.2)$$
We now consider the second statement. We have $L_i(n) = an + b_i$ with $|b_i| \ll \log x$, and consider $L = an + b \not\in \mathcal{L}$ with $|b| \ll \eta \log x$. If $k \gg \log \log x$ then we use the bound $\Delta_L/\varphi(\Delta_L) \ll \log \log \Delta_L \ll \log k$ to give

$$
\sum_{L = an + b \not\in \mathcal{L}, |b| \leq \eta \log x} \frac{\Delta_L}{\varphi(\Delta_L)} \ll \eta(\log k)(\log x). \tag{8.3}
$$

We now establish (8.3) in the case $k \ll \log \log x$. Using the identity $e/\varphi(e) = \sum_{d \mid e} \mu^2(d)/\varphi(d)$, and splitting the terms depending on the size of divisors, we have

$$
\sum_{L = an + b \not\in \mathcal{L}, |b| \leq \eta \log x} \frac{\Delta_L}{\varphi(\Delta_L)} = \frac{a}{\varphi(a)} \sum_{d \mid a} \sum_{d \mid \Delta_L, (d,a) = 1} \mu^2(d) \varphi(\Delta_L) \ll \eta(\log \log \log \Delta_L)(\sum_{d \mid a} \mu^2(d) \varphi(d)) + \sum_{d \mid \Delta_L, d > \eta \log x} \mu^2(d) \varphi(\Delta_L) \log(\eta \log x), \quad (8.4)
$$

We first consider the second term on the right-hand side of (8.4). We have $\sum_{d \mid \Delta_L} p^{-1} \log p \ll \log \log \Delta_L$ and $\Delta_L/\varphi(\Delta_L) \ll \log \log \Delta_L$. But we are only considering $k \ll \log \log x$ and $\eta \gg (\log x)^{-9/10}$, and so $(\log \log \Delta_L)^2 \ll (\log \log \log x)^2 = o(\log(\eta \log x))$. Therefore we see that the total contribution from the second term in (8.4) is $o(\eta \log x)$.

We now consider the first sum in (8.4). For every prime $p \mid d$, there are at most k choices for the residue class b (mod p) such that $p \mid \Delta_L$, and trivially there are also at most p choices. Thus the inner sum can be written as $\prod_{p \mid d} \min(p,k)$ sums over b in a fixed arithmetic progression modulo d. For each such sum there are $\ll \eta(\log x)/d$ possible values of b. Thus we have

$$
\sum_{1 \leq d \leq \eta \log x, (d,a) = 1} \frac{\mu^2(d)}{\varphi(d)} \sum_{b \leq \eta \log x, d \mid \Delta_L} 1 \ll \sum_{d \mid \Delta_L} \frac{\mu^2(d) \prod_{p \mid d} \min(p,k)}{\varphi(d)} \left(\frac{\eta \log x}{d} \right) \ll \eta \log x \prod_{p \leq k} \left(1 + \frac{1}{p-1} \right) \prod_{p > k} \left(1 + \frac{k}{p(p-1)} \right) \ll \eta(\log x)(\log k), \tag{8.5}
$$

This gives the result.

\begin{lemma}
Let

$$
Y_r = \frac{W^k B^k \Theta_{W B}(\mathcal{L})}{\varphi(W B)^k} F_2 \left(\frac{\log r_1}{\log R}, \ldots, \frac{\log r_k}{\log R} \right),
$$

where F_2 is given by (7.12).

(i) Let $r, s \in \mathcal{D}_k$ with $s_i = r_i$ for all $i \neq j$, and $s_j = Ar_j$ for some $A \in \mathbb{N}$. Then

$$
y_s = y_r + O \left(T_k Y_r \frac{\log A}{\log R} \right).
$$

\end{lemma}
(ii) Let \(r, s \in \mathcal{D}_k \) with \(r = s \) and let \(A \) be the product of primes dividing \(r \) but not \((r, s) \). Then
\[
y_s = y_r + O \left(\frac{T_k (Y_r + Y_s) \log A}{\log R} \right).
\]

Proof. We recall the definitions of \(\psi, F_2, U_k = k^{-1/2} \) and \(T_k = k \log k \) from §7. Given any two reals \(u, v \geq 0 \) with \(|u - v| \leq \epsilon \), we have
\[
\frac{1}{1 + T_k u} = 1 + O(T_k \epsilon), \quad \psi(u) = \psi(v) + O(\epsilon).
\]

(8.6)

Given \(r, s \) as in the lemma, we define \(u_1, \ldots, u_k; v_1, \ldots, v_k, \epsilon_1, \ldots, \epsilon_k \) by \(u_i = \log r_i / \log R, v_i = \log s_i / \log R \) and \(\epsilon_i = v_i - u_i \). For part (i) we have \(\epsilon_i = 0 \) for \(i \neq j \) and \(\epsilon_j = \log A / \log R \). We may assume \(\epsilon_j \leq 1, u_j \leq U_k \) since otherwise the result is trivial. By (8.6) we have
\[
\psi \left(\sum_{i=1}^{k} u_i \right) \frac{\psi(v_j / U_k)}{1 + T_k v_j} = \left(\psi \left(\sum_{i=1}^{k} u_i \right) + O \left(\frac{\log A}{\log R} \right) \right) \left(\frac{\psi(u_j / U_k)}{1 + O(T_k (\log A / \log R))} \right)
\]
\[
\times 1 + O(T_k (\log A / \log R)).
\]

(8.7)

Since \(1 + U_k^{-1} \ll T_k, 0 \leq \psi \leq 1 \) and \(\psi(v_j / 2) = 1 \) (since \(v_j = u_j + \epsilon_j \leq 1 + U_k < 9/5 \)), expanding the terms and multiplying by \(\prod_{i \neq j} \psi(u_i / U_k) / (1 + T_k u_i) \) gives the result for (i).

We now consider part (ii). We let \(t \) be the vector with \(t_i = [r_i, s_i] \). By applying part (i) to each component in turn, and using the fact that \(Y_r \) is decreasing, we find that
\[
y_s = y_t + O \left(T_k Y_s \sum_{i=1}^{k} \frac{\log [r_i, s_i] / s_i}{\log R} \right) = y_t + O \left(T_k Y_s \frac{\log A}{\log R} \right).
\]

(8.8)

We obtain the same expression for \(r \) in place of \(s \), and hence the result follows. \(\square \)

We use the following lemma to estimate the various smoothed sums of multiplicative functions which we will encounter.

Lemma 8.3. Let \(A_1, A_2, L > 0 \). Let \(\gamma \) be a multiplicative function satisfying
\[
0 \leq \frac{\gamma(p)}{p} \leq 1 - A_1 \quad \text{and} \quad -L \leq \sum_{w \leq p \leq z} \frac{\gamma(p) \log p}{p} - \log z / w \leq A_2
\]
for any \(2 \leq w \leq z \). Let \(g \) be the totally multiplicative function defined on primes by \(g(p) = \gamma(p) / (p - \gamma(p)) \). Finally, let \(G : [0, 1] \to \mathbb{R} \) be smooth, and let \(G_{\max} = \sup_{t \in [0, 1]} (|G(t)| + |G'(t)|) \). Then
\[
\sum_{d \leq z} \mu(d) g(d) G \left(\frac{\log d}{\log z} \right) = c_\gamma \log z \int_0^1 G(x) \, dx + O_{A_1, A_2} (c_\gamma (1 + L) G_{\max}),
\]
where
\[
c_\gamma = \prod_p \left(1 - \frac{\gamma(p)}{p} \right)^{-1} \left(1 - \frac{1}{p} \right).
\]

Proof. This is [GGPY09, Lemma 4], with \(\kappa = 1 \) and slight changes to the notation. We note that in the general formulation, an additional term \(c_\gamma (L + 1)\kappa \) should be included in the error term, but this is not necessary in our situation with \(\kappa = 1 \). We thank Kevin Ford for this observation. \(\square \)
Lemma 8.4. Let \(r \leq k \ll (\log R)^{1/5} \). Let \(W_1, \ldots, W_r \leq R^{O(k)} \) all be a multiple of \(\prod_{p \leq 2k^2} p \). Let \(g \) be a multiplicative function with \(g(p) = p + O(k) \). Let \(G : \mathbb{R} \to \mathbb{R} \) be a smooth function supported on the interval \([0, 1]\) such that

\[
\sup_{t \in [0,1]} (|G(t)| + |G'(t)|) \leq \Omega_G \int_0^\infty G(t) \, dt,
\]

for some quantity \(\Omega_G \) which satisfies \(r \Omega_G = o((\log R)/(\log \log R)) \). Let \(\Phi : \mathbb{R} \to \mathbb{R} \) be smooth with \(\Phi(t), \Phi'(t) \ll 1 \) uniformly for all \(t \).

Then for \(k \) sufficiently large we have

\[
\sum_{e \in \mathbb{N}^r} \frac{\mu(e)}{g(e)} \left(\sum_{i=1}^k \frac{\log e_i}{\log R} \right)^k \prod_{i=1}^k G\left(\frac{\log e_i}{\log R} \right) = \Pi_g (\log R)^r \int_{t_1, \ldots, t_r \geq 0} \Phi\left(\sum_{i=1}^r t_i \right) \prod_{i=1}^r G(t_i) \, dt_i + O\left(r \Omega_G^{r-1} \log \log R \int_{t_1, \ldots, t_r \geq 0} \prod_{i=1}^r G(t_i) \, dt_i\right),
\]

where

\[
\Pi_g = \prod_p \left(1 + \frac{n(p)}{g(p)} \right) \left(1 - \frac{1}{p} \right)^r, \quad n(p) = \#\{i \in \{1, \ldots, r\} : p \mid W_i\}.
\]

Proof. We let \(\Sigma \) denote the sum in the statement of the lemma. We estimate the \(\Sigma \) by applying Lemma 8.3 \(r \) times to each variable \(e_1, \ldots, e_r \) in turn. We use induction to establish that, having applied the lemma \(j \) times, we obtain the estimate

\[
\Sigma = c_j (\log R)^j \sum_{e \in \mathbb{N}^r} \frac{\mu(e_{j+1} \ldots e_r)}{g_j(e_{j+1} \ldots e_k)} \prod_{i=j+1}^r G(u_i) \int_{t_1, \ldots, t_j \geq 0} \Phi\left(\sum_{i=1}^j t_i + \sum_{i=j+1}^r u_i \right) \prod_{i=1}^j G(t_i) \, dt_i + O\left((\log \log R)^{\Omega_G} \right) \frac{\log \log R}{\log R},
\]

where

\[
u_i = \frac{\log e_i}{\log R}, \quad n_j(p) = \#\{i \in \{1, \ldots, j\} : p \mid W_i\}, \quad g_j(d) = \prod_{p \mid d} (g(p) + n_j(p)), \quad c_j = \prod_p \left(1 + \frac{n_j(p)}{g(p)} \right) \left(1 - \frac{1}{p} \right)^j.
\]

We see that (8.9) clearly holds when \(j = 0 \). We now assume that (8.9) holds for some \(j < r \), and apply Lemma 8.3 to the sum over \(e_{j+1} \). In the notation of Lemma 8.3, we have

\[
\gamma(p) = \begin{cases}
0, & p \nmid W_{j+1} \prod_{i=j+2}^r e_i, \\
p(1 + n_j(p) + g(p))^{-1} = 1 + O(k/p), & p \mid W_{j+1} \prod_{i=j+2}^r e_i.
\end{cases}
\]
Since \(W_{j+1} \) is a multiple of all primes \(p \leq 2k^2 \) (by assumption of the lemma), we see that we can take \(A_1 \) and \(A_2 \) to be fixed constants (independent of \(j, k, r, x \)) provided \(k \) is sufficiently large. With this choice of \(\gamma(p) \), we see that

\[
L \leq 1 + \sum_{p|W_{j+1}} \frac{\log p}{p} + \sum_{p>2k^2} \frac{k \log p}{p^2} \ll \log \log R. \quad (8.12)
\]

Here we used the fact that the first sum is over prime divisors of an integer which is \(\ll R^{O(k^2)} \), and this sum is largest when all the prime divisors are smallest, and that \(k \ll (\log R)^{1/5} \ll \log R \).

We apply Lemma 8.3 to the main term with the smooth function \(G_1 \), and to the error term with the smooth function \(G_2 \), defined by

\[
G_1(t) = \int \cdots \int \frac{G(t_1)}{t_1 \cdots t_r} \Phi \left(\sum_{i=1}^{r} t_i + t + \sum_{i=j+2}^{r} u_i \right) \left(\prod_{i=1}^{r} G(t_i) dt_i \right) \left(\prod_{i=j+2}^{r} G(u_i) \right),
\]

\[
G_2(t) = G(t) \left(\int_{t'} G(t') dt' \right)^j \left(\prod_{i=j+2}^{r} G(u_i) \right),
\]

where we recall \(u_i = (\log e_i)/\log R \) for \(i > j + 1 \). With this choice, we see that from the bounds on \(\Phi, G \) given in the lemma, we have

\[
\sup_{t \in [0,1]} (|G_1(t)| + |G_1'(t)| + |G_2(t)| + |G_2'(t)|) \ll \Omega \left(\int_{t \geq 0} G(t) dt \right)^{j+1} \left(\prod_{i=j+2}^{r} G(u_i) \right) = \Omega \int_{t \geq 0} G_2(t) dt.
\]

Thus Lemma 8.3 gives

\[
\sum_{\epsilon j+1} \frac{\mu^2(e_{j+1})}{g_j(e_{j+1})} G_1 \left(\frac{\log e_{j+1}}{\log R} \right) = \log R \prod_p \left(1 - \frac{\gamma(p)}{p} \right)^{-1} \left(1 - \frac{1}{p} \right) \int_0^\infty G_1(t) dt
\]

\[
+ O \left(\Omega G \log R \prod_p \left(1 - \frac{\gamma(p)}{p} \right)^{-1} \left(1 - \frac{1}{p} \right) \int_0^\infty G_2(t) dt \right),
\]

and we obtain the same expression when summing with \(G_2 \) instead of \(G_1 \), except \(\int_0^\infty G_1(t) dt \) is replaced by \(\int_0^\infty G_2(t) dt \) in the main term. The implied constant in the error term is independent of \(j \). We note that

\[
c_j \prod_p \left(1 - \frac{\gamma(p)}{p} \right)^{-1} \left(1 - \frac{1}{p} \right) = \prod_{p|W_{j+1}} \left(1 + \frac{n_j(p)}{g(p)} \right) \left(1 - \frac{1}{p} \right)^{j+1}
\]

\[
\times \prod_{P \prod e_{j+2} \cdots e_r \neq W_{j+1}} \left(1 + \frac{n_j(p) + 1}{g(p)} \right) \left(1 - \frac{1}{p} \right)^{j+1}
\]

\[
= \frac{c_{j+1} g_j(e_{j+2} \cdots e_r)}{g_{j+1}(e_{j+2} \cdots e_r)}.
\]

(8.17)
Therefore substituting (8.16) and (8.17) into (8.9) gives the result for \(j + 1 \). We conclude that (8.9) holds for all \(j \leq r \).

Finally, let \(\varepsilon = (\Omega_G \log \log R) / \log R \). By assumption of the lemma, we have \(\varepsilon = o(1/r) \). We see the sum over \(\ell \) in (8.9) is \((1 + O(\varepsilon))^j - 1 = O(j \varepsilon)\) where, by our bound on \(\varepsilon \), the implied constant is independent of \(j \leq r \). Substituting this into (8.9) with \(j = r \) gives the result. \(\square \)

Lemma 8.5. Let \(k \leq (\log x)^{1/5} \) be sufficiently large in terms of \(\theta \). Then we have:

(i) \(|\lambda_d| \ll k^{-k}(\log R)^k\);
(ii) \(w_n \ll k^{-2k}(\log x)^{2k} \prod_{i=1}^{k} \prod_{p\mid L_i(n), p\mid B} 4^n\);
(iii) \(w_n \ll R^{2+o(1)}\).

Proof. Substituting in our choice of \(y_r \), we have for \(d \in D_k \),

\[
|\lambda_d| = d \sum_{d|r} \frac{y_r}{\varphi_w(r)} = d W^k B^k \varphi(WB) \sum_{d|r \in D_k} \frac{1}{\varphi_w(r/d)} F \left(\frac{\log r_1}{\log R}, \ldots, \frac{\log r_k}{\log R} \right). \tag{8.18}
\]

We obtain an upper bound for (8.18) by replacing the \(\log r_i/\log R \) in the argument of \(F \) with \(\sigma_i = (\log r_i/d_i)/\log R \), since \(F \) is decreasing in each argument.

We now estimate the sum using Lemma 8.4. We see from (7.10) that \(F \) is of the form \(\Phi(\sum_{i=1}^{k} t_i) \prod_{i=1}^{k} G(t_i) \), and we have a bound on \(G, \Phi \) which corresponds to \(\Omega_G = O(\kappa T_k) \) (where \(T_k = k \log k \) is the constant given by (7.10)). Since \(k \leq (\log x)^{1/5} \), we see that \(k^2 T_k = o(\log R/\log \log R) \). Finally, we note that the condition \(r \in D_k \) forces \((r_j, dW_j) = 1 \) for integers \(W_1, \ldots, W_j \leq x^{O(k)} \) which are all a multiple of \(WB \). Thus we can apply Lemma 8.4, which gives

\[
\sum_{d|r \in D_k} \frac{F(\sigma_1, \ldots, \sigma_k)}{\varphi_w(r/d)} \leq \frac{\varphi(WB)^k}{W^k B^k} \prod_{p\mid WB} \left(1 + \frac{\omega(p)}{p - \omega(p)} \right) \left(1 - \frac{1}{p} \right)^k \int_{t_1, \ldots, t_k \geq 0} H(t_1, \ldots, t_k) dt_1 \ldots dt_k, \tag{8.19}
\]

where

\[
H(t_1, \ldots, t_k) = F(t_1, \ldots, t_k) + O \left(\frac{k^2 T_k \log \log R}{\log R} F_1(t_1, \ldots, t_k) \right). \tag{8.20}
\]

Substituting (8.19) into (8.18), noting that the singular series cancel and that \(H \leq (1 + o(1)) F_1 \), we have

\[
|\lambda_d| \leq (1 + o(1)) (\log R)^k \int_{t_1, \ldots, t_k \geq 0} F_1(t_1, \ldots, t_k) dt_1 \ldots dt_k
\]

\[
\ll (\log R)^k \left(\int_0^{U_k} \frac{dt}{1 + T_k t} \right)^k \ll \left(\frac{\log R}{k} \right)^k. \tag{8.21}
\]

This gives claim (i). Claim (ii) now follows from this bound and the definition (7.5) of \(w_n \), recalling that \(\lambda_d = 0 \) unless \(d_1, \ldots, d_k \) are all square-free and coprime to \(B \). Finally, for claim (iii), the fact that \(\lambda_d \) is supported on \(d = d_1 \cdots d_k < R \) gives

\[
w_n \ll \frac{(\log R)^{2k}}{k^{2k}} \left(\sum_{d_1 \cdots d_k < R} 1 \right)^2 \ll R^{2+o(1)} \left(\sum_{d_1 \cdots d_k < R} \frac{1}{d_1 \cdots d_k} \right)^2 \ll R^{2+o(1)}. \quad \square
\]
Dense clusters of primes in subsets

We will eventually be interested in the quantities \(I_k, J_k \) considered in the following lemma.

Lemma 8.6. Given a square-integrable function \(G : \mathbb{R}^k \to \mathbb{R} \), let

\[
I_k(G) = \int_0^\infty \cdots \int_0^\infty G^2 \, dt_1 \cdots dt_k, \quad J_k(G) = \int_0^\infty \cdots \int_0^\infty \left(\int_0^\infty G \, dt_k \right)^2 \, dt_1 \cdots dt_{k-1}.
\]

Let \(F, F_1, F_2 \) be as given by (7.10) and (7.12). Then

\[
\frac{1}{(2k \log k)^k} \ll I_k(F) \ll \frac{1}{(k \log k)^k}, \quad \frac{\log k}{k} \ll \frac{J_k(F)}{I_k(F)} \ll \frac{\log k}{k},
\]

\[
I_k(F) \leq I_k(F_1) \leq I_k(F_2)/k^2 \ll I_k(F), \quad J_k(F) \leq J_k(F_1) \leq J_k(F_2)/k^2 \ll J_k(F).
\]

Proof. A minor adaption of the argument of [May15, §7] to account for the slightly different definition of \(F \) shows

\[
J_k(F) \geq \int \cdots \int \left(\int_0^\infty F_1 \, dt_k \right)^2 \, dt_1 \cdots dt_{k-1}
\]

\[
\sum_{i_1}^{k-1} t_i < 9/10 - U_k
\]

\[
\gg \int \cdots \int \left(\int_0^\infty F_1 \, dt_k \right)^2 \, dt_1 \cdots dt_{k-1} = J_k(F_1).
\]

Applying the same concentration of measure argument to \(I_k(F) \) yields

\[
I_k(F) \gg \int \cdots \int F_1^2 \, dt_1 \cdots dt_{k-1} \gg \int \cdots \int F_1^2 \, dt_1 \cdots dt_k = I_k(F_1).
\]

We also have the trivial bounds \(I_k(F) \leq I_k(F_1) \leq k^{-2} I_k(F_2) \) and \(J_k(F) \leq J_k(F_1) \leq k^{-2} J_k(F_2) \). For our choice of \(\psi, T_k, U_k \) from (7.10), we see that

\[
\int_0^\infty \frac{\psi(t/U_k)}{1 + T_k t} \, dt = \int_0^{9U_k/10} \frac{dt}{1 + T_k t} + O \left(\int_0^{U_k} \frac{dt}{1 + T_k t} \right) = \frac{1}{2k} + O \left(\frac{1}{k \log k} \right), \quad (8.24)
\]

\[
\int_0^\infty \frac{\psi(t/U_k)^2}{(1 + T_k t)^2} \, dt = \int_0^{9U_k/10} \frac{dt}{(1 + T_k t)^2} + O \left(\int_0^{U_k} \frac{dt}{(1 + T_k t)^2} \right) = \frac{1}{k \log k} + O \left(\frac{k^{-1/2}}{k \log k} \right), \quad (8.25)
\]

\[
\int_0^\infty \frac{\psi(t/2)^2}{(1 + T_k t)^2} \, dt = \int_0^{9/5} \frac{dt}{(1 + T_k t)^2} + O \left(\int_9^{2} \frac{dt}{(1 + T_k t)^2} \right) = \frac{1}{k \log k} + O \left(\frac{k^{-1}}{k \log k} \right). \quad (8.26)
\]

From these bounds it follows immediately that \(k^{-2} J_k(F_2) \ll J_k(F_1), k^{-2} I_k(F_2) \ll I_k(F_1) \) and

\[
\frac{J_k(F_1)}{I_k(F_1)} = \frac{\log k}{4k} \left(1 + O \left(\frac{1}{\log k} \right) \right). \quad (8.27)
\]

Combining these statements gives the bounds of the lemma. \(\square \)

9. Proof of propositions

We see that Lemmas 8.1, 8.5 and 8.6 verify the claims at the end of Proposition 6.1 for \(w_n \) given by (7.5), \(I_k = I_k(F) \) and \(J_k = J_k(F) \). It therefore remains to establish the four main claims of Proposition 6.1, which we now do in turn. To obtain results with the desired uniformity in \(k \), we need to perform calculations in a slightly different manner from the corresponding ones in [May15].
PROP \text{osition 9.1.} Let w_n be as described in \S\ 7. Then we have
\[
\sum_{n \in A(x)} w_n = \left(1 + O\left(\frac{1}{(\log x)^{1/10}}\right)\right) \frac{B^k}{\varphi(B)^k} \mathcal{S}_B(\mathcal{L}) \# A(x) (\log R)^k I_k(F).
\]

Proof. We recall $W = \prod_{p \leq 2k^2, p \nmid B} p < \exp((\log x)^{2/5})$, and consider the summation over v_0 in the residue class $v_0 \pmod{W}$. If $\left(\prod_{i=1}^k L_i(v_0), W\right) \neq 1$ then we have $w_n = 0$, and so we restrict our attention to v_0 with $\left(\prod_{i=1}^k L_i(v_0), W\right) = 1$. We substitute the definition (7.5) of w_n, expand the square and swap the order of summation. This gives
\[
\sum_{n \equiv v_0 \pmod{W}} w_n = \sum_{d,e \in D_k} \lambda_d \lambda_e \sum_{n \in A(x) \equiv v_0 \pmod{W}} 1.
\]

By our choice of support of the λ_d, there is no contribution unless $(d,e_i, d_j e_j) = 1$ for all $i \neq j$. In this case, given $d, e \in D_k$ (so, in particular, $(d,e_j, a_j W) = 1$ for $1 \leq j \leq k$), we can combine the congruence conditions by the Chinese remainder theorem, and see that the inner sum is $A(x; q, a)$ for some a and for $q = W|d,e|$. We let $E_1^{(1)} = \max_a \# A(x; q, a) - \# A(x)/q$, and substitute $\# A(x; q, a) = \# A(x)/q + O(E_1^{(1)})$ into (9.1).

We first show the contribution from the errors $E_1^{(1)}$ is small. There are $O(\tau_{3k}(q))$ ways of writing $q = W|d,e|$ and all such q are square-free, coprime to B and less than $R^2 W < x^\beta$ (since λ_d is supported on $d < R \leq x^{\beta/3}$). Since $|\lambda_d| \ll (\log x)^k$ by Lemma 8.5, these contribute
\[
\sum_{d,e \in D_k} |\lambda_d \lambda_e| E_1^{(1)} \ll (\log x)^{2k} \sum_{q < R^2 W(q,B) = 1} \mu^2(q) \tau_{3k}(q) E_1^{(1)} \\
\ll (\log x)^{2k} \left(\sum_{q < R^2 W(q,B) = 1} \mu^2(q) \tau_{3k}(q)^2 E_1^{(1)}\right)^{1/2} \left(\sum_{q < R^2 W(q,B) = 1} \mu^2(q) E_1^{(1)}\right)^{1/2}.
\]

We apply Hypothesis 1 to estimate these terms. Using $E_1^{(1)} \ll \# A(x)/q$ for the first sum, and the average of $E_1^{(1)}$ for the second sum, we see the contribution is
\[
\ll (\log x)^{2k} \left(\# A(x) \sum_{q < R} \frac{\tau_{3k}(q)}{q}\right)^{1/2} \left(\frac{\# A(x)}{(\log x)^{100k^2}}\right)^{1/2} \ll \frac{\# A(x)}{W(\log x)^{2k^2}}.
\]

By Lemmas 8.1 and 8.6, we see that this is $o(\# A(x) \mathcal{S}_B(\mathcal{L}) I_k(F)/W)$, and so will be negligible compared with our main term.

We now consider the main term. We substitute our expression (7.8) for λ_d in terms of y_r to give
\[
\frac{\# A(x)}{W} \sum_{d,e \in D_k} \lambda_d \lambda_e \frac{y_r y_s}{[d,e]} = \frac{\# A(x)}{W} \sum_{r,s \in D_k} \varphi(r) \varphi(s) \sum_{d \mid r e_s} \mu(d) \mu(e) [d,e],
\]

where \sum' indicates the restriction that $(d,e_i, d_j e_j) = 1$ for all $i \neq j$. By multiplicativity, we can write the inner sum as $\prod_{p \mid r s} S_p(r, s)$, where, for r, s such that $p \mid r s$ and $y_r y_s \neq 0$, we have
\[
S_p(r, s) = \sum_{d \mid r e_s \mid p \forall i} \mu(d) \mu(e) [d,e] = \begin{cases} p-1, & p \mid (r, s), \\
-1, & p \mid r, p \mid s, p \nmid (r, s), \\
0, & (p \mid r) \text{ and } (p \mid s) \text{ or } (p \mid r) \text{ and } (p \mid s).
\end{cases}
\]

1538
(We remind the reader that in our notation \(r = \prod_{i=1}^{k} r_i \), that \((r, s) = \prod_{i=1}^{k} (r_i, s_i) \), that \([r, s] = \prod_{i=1}^{k} [r_i, s_i]\), and similarly for \(e, d, s \).)

Since \(\prod_{p \mid r, s} S_p(r, s) = 0 \) if there is a prime \(p \) which divides one of \(r, s \) but not the other, we can restrict to \(r = s \). We let \(A = A(r, s) = r / (r, s) \) be the product of primes dividing \(r \) but not \((r, s)\), so that \(\prod_{p \mid r, s} S_p(r, s) = \mu(A) \varphi(r) / \varphi(A) \). Given a choice of \(r \in D_k \) and \(A | r \), for each prime \(p \mid A \) there are \(\omega(p) - 1 \) possible choices of which components of \(s \) can be a multiple of \(p \) (since there are \(\omega(p) \) indices \(j \) for which \(p \mid W_j \), but for one of these we have \(p \mid r_j \), and so \(\prod_{p | A} (\omega(p) - 1) \) choices of \(s \). By Lemma 8.2, for each such choice we have

\[
y_s = y_r + O \left(T_k (Y_r + Y_s) \frac{\log A}{\log R} \right). \quad (9.6)
\]

Thus our main term becomes

\[
\frac{\#A(x)}{W} \sum_{r \in D_k} \frac{y_r \varphi(r)}{\varphi_\omega(r)^2} \sum_{A \mid r} \left(\prod_{p \mid A} \frac{-(\omega(p) - 1)}{p - 1} \right) \left(y_r + O \left(T_k (Y_r + Y_s) \frac{\log A}{\log R} \right) \right).
\]

Since \(y_r \leq Y_r / k \) and \(Y_r Y_s \leq Y_r^2 + Y_s^2 \), the contribution of the error here is

\[
\ll \frac{T_k \#A(x)}{k W \log R} \sum_{p > 2k^2} \log p \sum_{\omega(A)} \frac{\varphi(r) Y_r^2}{\varphi_\omega(r)^2} \sum_{r \in D_k} \frac{\varphi(r) Y_r^2}{\varphi_\omega(r)^2} \quad (9.7)
\]

We let \(r' \) be the vector formed by removing from \(r \) any factors of \(A \), so \(r'_i = r_i / (r_i, A) \). Since \(Y_r \) is decreasing, we have \(Y_{r'} \geq Y_r \). Given \(r' \), there are \(O(\omega(A)) \) possible choices of \(r \). Thus, swapping the summation to \(r' \), and letting \(A = p A' \), we obtain the bound

\[
\ll \frac{T_k \#A(x)}{k W \log R} \left(\sum_{p > 2k^2} \frac{\omega(p) \log p}{\varphi_\omega(p)^2} \right) \left(\sum_{r' \in D_k} \frac{\varphi(r') Y_r^2}{\varphi_\omega(r')^2} \right) \quad (9.8)
\]

The first two terms in parentheses can both be seen to be \(O(1) \), since all prime factors are greater than \(2k^2 \). We estimate the final term by Lemma 8.4 (taking \(\Omega_G = O(T_2^\ell) \)). This gives a bound for (9.9) of size

\[
\ll \frac{T_k W^{k-1} B^k (\log R)^{k-1} \mathcal{S}_{WB}(\mathcal{L})^2 \#A(x)}{k \varphi(WB)^k} \prod_{p \mid WB} \left(1 + \frac{\omega(p) (p - 1)}{(p - \omega(p))^2} \right) \left(1 - \frac{1}{p} \right)^k I_k(F_2). \quad (9.10)
\]

We note that

\[
\prod_{p \mid WB} \left(1 + \frac{\omega(p) (p - 1)}{(p - \omega(p))^2} \right) \left(1 - \frac{1}{p} \right)^k = \prod_{p \mid WB} \left(1 + \frac{\omega(p)}{p - \omega(p)} \right) \left(1 + O \left(\frac{k^2}{p^2} \right) \right) \left(1 - \frac{1}{p} \right)^k \ll \mathcal{S}_{WB}(\mathcal{L})^{-1}, \quad (9.11)
\]

since the product is only over primes \(p > 2k^2 \). Using \(I_k(F_2) \ll k^2 I_k(F) \) from Lemma 8.6, we see that (9.10) is

\[
\ll \frac{k T_k W^{k-1} B^k \mathcal{S}_{WB}(\mathcal{L}) \#A(x)(\log R)^{k-1}}{\varphi(WB)^k} I_k(F). \quad (9.12)
\]
This is negligible, and can be absorbed into the error term in the statement of the lemma. We now consider the main term. We have

$$\frac{\#A(x)}{W} \sum_{r \in D_k} \frac{y_r^2 \varphi(r)}{\varphi(r)^2} \sum_{\alpha \mid p \mid A} \prod_{p | \alpha} \frac{-(\omega(p) - 1)}{p - 1} = \frac{\#A(x)}{W} \sum_{r \in D_k} \frac{y_r^2}{\varphi(r)}.$$

(9.13)

We estimate the inner sum here by applying Lemma 8.4 (again with $\Omega_G = T_k^2$). This gives

$$\sum_{r \in D_k} \frac{y_r^2}{\varphi(r)} = \frac{W^k B^k \mathcal{S}_{WB}(\mathcal{L})^2}{\varphi(WB)^k} (\log R)^k \prod_{p \mid WB} \left(1 + \frac{\omega(p)}{p - \omega(p)} \right) \left(1 - \frac{1}{p} \right)^k I_k(F) + O\left(\frac{W^k B^k \mathcal{S}_{WB}(\mathcal{L})^2}{\varphi(WB)^k} (\log R)^k \prod_{p \mid WB} \left(1 + \frac{\omega(p)}{p - \omega(p)} \right) \left(1 - \frac{1}{p} \right)^k kT_k^2 \log \log R \right) \frac{I_k(F)}{\log R}.$$

(9.14)

In the last line we have used the fact that $I_k(F_1) \ll I_k(F)$ given by Lemma 8.6. Putting this all together (and recalling $k \leq (\log x)^{1/5}$ and $T_k = k \log k$), we have shown that

$$\sum_{\substack{n \in A(x) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}} \max_{(L(a), q) = 1} \left| \frac{\#P_{L, A}(x; q, a) - \#P_{L, A}(x)}{\varphi_L(q)} \right| \ll \frac{\#P_{L, A}(x)}{(\log x)^{100k^2}}.$$

Proposition 9.2. Let w_n be as described in § 7. Let $L \in \mathcal{L}$ satisfy $L(n) > R$ for $n \in [x, 2x]$ and

$$\sum_{\substack{n \in A(x) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}} \max_{(L(a), q) = 1} \left| \frac{\#P_{L, A}(x; q, a) - \#P_{L, A}(x)}{\varphi_L(q)} \right| \ll \frac{\#P_{L, A}(x)}{(\log x)^{100k^2}}.$$

Then we have

$$\sum_{n \in A(x)} \lambda_d \lambda_e \sum_{\substack{n \equiv d \text{ (mod } D_k) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}}} \lambda_d \lambda_e \sum_{\substack{n \in A(x) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}} \max_{(L(a), q) = 1} \left| \frac{\#P_{L, A}(x; q, a) - \#P_{L, A}(x)}{\varphi_L(q)} \right| \ll \frac{\#P_{L, A}(x)}{(\log x)^{100k^2}}.$$

Then we have

$$\sum_{n \in A(x)} \lambda_d \lambda_e \sum_{\substack{n \equiv d \text{ (mod } D_k) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}}} \lambda_d \lambda_e \sum_{\substack{n \in A(x) \cap \omega(W) \text{ residue classes } v_0 \text{ (mod } W) \neq 1 \text{ then gives the result.}} \max_{(L(a), q) = 1} \left| \frac{\#P_{L, A}(x; q, a) - \#P_{L, A}(x)}{\varphi_L(q)} \right| \ll \frac{\#P_{L, A}(x)}{(\log x)^{100k^2}}.$$

(9.16)

We first show that there is no contribution to our sum from λ_d for which $(d_j, a_j b_m - a_m b_j) \neq 1$ for some $j \neq m$. If $p | d_j$ then the inner sum requires that $p | a_j n + b_j$. However, if we also have $p | a_j b_m - b_j a_m$ then this means $p | a_m n + b_m$ (since $(a_j, b_j) = 1$ by admissibility of \mathcal{L}). Since there is
no contribution to our sum unless \(L(n) = L_m(n) = a_mn + b_m \) is a prime and since \(d_j < R < L(n) \) by the support of \(\lambda_d \) and assumption of the lemma, we see that there is no contribution from \(\lambda_d \) with \((d_j, a_m b_m - a_m b_j) \neq 1\).

Thus we may restrict the support of \(\lambda_d \) to \(\mathcal{D}'_k \), defined by

\[
\mathcal{D}'_k = \{ d \in \mathbb{R}^k : \mu^2(d) = 1, (d_j, W_j'') = 1 \ \forall j \}, \quad W_j'' = \prod_{p | W_j(a_j b_m - a_m b_j)} p. \quad (9.17)
\]

We write \(\lambda_d' \) for \(\lambda_d \) with this restricted support. We see from this that \(p | W_j' / W_j \) if and only if \(p | a_m \) and \(j \) was the chosen index for the residue class \(-b_m \overline{a_m} \mod p\) (for our fixed set of choices of residue classes given in §7).

We now observe that given \(d, e \in \mathcal{D}'_k \), the inner sum of (9.16) is empty unless \((d_i e_i, d_j e_j) = 1 \) for all \(i \neq j \) (since otherwise the divisibility conditions are incompatible). If \((d_i e_i, d_j e_j) = 1 \ \forall i \neq j \), then we can combine the conditions by the Chinese remainder theorem. This shows the sum is \(\#\mathcal{P}_{L,A}(x; q, a) \) for \(q = W[d, e] \) and some \(a \). We note \(\#\mathcal{P}_{L,A}(x; q, a) \neq 0 \) if and only if \((L(a), q) = 1 \), which occurs if and only if \(d_m = e_m = 1 \). For such a choice of \(d, e \), we write \(\#\mathcal{P}_{L,A}(x; q, a) = \#\mathcal{P}_{L,A}(x) / \varphi_L(q) + O(E_q^2) \), where \(E_q^2 = \max(a, a) = 1 \mid \#\mathcal{P}_{L,A}(x; q, a) - \#\mathcal{P}_{L,A}(x) / \varphi_L(q) \).

We treat the error term \(E_q^2 \) in the same manner as we treated \(E_q^1 \) in the proof of Proposition 9.1. We note that for all \(d, e \in \mathcal{D}'_k \) we have \((q, B) = 1\), allowing us to use Proposition 6.1 for the average of \(E_q^2 \). We also note that trivially \(\#\mathcal{P}_{L,A}(x; q, a) \ll \#\mathcal{A}(x; q, a) \), which gives us the bound \(E_q^2 \ll \#\mathcal{A}(x) / \varphi_L(q) \). Thus the same argument shows that these error terms contribute \(O(\#\mathcal{A}(x) W^{-1}(\log x)^{-2k^2}) \).

We now consider the main term, given by

\[
\#\mathcal{P}_{L,A}(x) / \varphi_L(W) \sum_{d, e \in \mathcal{D}'_k} \frac{\lambda_d' \lambda_e'}{\varphi_L([d, e])}, \quad (9.18)
\]

where we recall \(\sum' \) indicates the sum is restricted to \((d_i e_i, d_j e_j) = 1 \) for all \(i \neq j \). We change variables to \(y_{r}^{(m)} \), satisfying

\[
y_{r}^{(m)} = \mu(r) \varphi_\omega(r) \sum_{r | d, d_m=1} \frac{\lambda_d'}{\varphi_L(d)}, \quad \lambda_d' = \mu(d) \varphi_L(d) \sum_{d | r} \frac{y_{r}^{(m)}}{\varphi_\omega(r)}. \quad (9.19)
\]

We see from (9.19) that the \(y_k^{(m)} \) are supported on \(r \in \mathcal{D}'_k \) with \(r_m = 1 \). Substituting our expression (9.19) for \(\lambda_d' \) into our main term (9.18) gives

\[
\#\mathcal{P}_{L,A}(x) / \varphi_L(W) \sum_{d, e \in \mathcal{D}'_k} \frac{\lambda_d' \lambda_e'}{\varphi_L([d, e])} = \#\mathcal{P}_{L,A}(x) / \varphi_L(W) \sum_{r, s \in \mathcal{D}'_k} \frac{y_{r}^{(m)} y_{s}^{(m)}}{\varphi_\omega(r) \varphi_\omega(s)} \prod_{p | rs} S_p^{(m)}(r, s), \quad (9.20)
\]

where now, if \(r \) and \(s \) are such that \(y_{r}^{(m)} y_{s}^{(m)} \neq 0 \) (so \(r_m = s_m = 1, r, s \in \mathcal{D}'_k \)) and \(p | rs \), we have

\[
S_p^{(m)}(r, s) = \sum_{d, e \in \mathcal{D}'_k} \mu(d) \mu(e) \varphi_L(d) \varphi_L(e) \frac{y_{r}^{(m)} y_{s}^{(m)}}{\varphi_L([d, e])} = \begin{cases} p - 2, & p || (r, s), p | a_m, \\ p - 1, & p || (r, s), p | a_m, \\ 0, & p || r, p || s \text{ or } p || s \text{ and } p || r, \end{cases} \quad (9.21)
\]

so again we may restrict to \(r = s \). We use the following lemma to relate \(y_{r}^{(m)} \) to \(y_r \).
LEMMA 9.3. Let \(r \in \mathcal{D}_k \) with \(r_m = 1 \), and let \(t_i = \log r_i / \log R \) for \(i \neq m \). Then we have
\[
y^{(m)}_r = \log R \frac{\varphi(a_{m}WB)W^{k-1}B^{k-1}S_{W}(L)}{a_{m}\varphi(WB)^{k}} \int_{0}^{\infty} H(t_1, \ldots, t_k) dt_m,
\]
where
\[
H(t_1, \ldots, t_k) = F(t_1, \ldots, t_k) + O\left(\frac{T_k(\log \log R)^2}{\log R} F_{2}(t_1, \ldots, t_k) \right).
\]

We first complete the proof of Proposition 9.2, and then establish the lemma. Given \(r, s \in \mathcal{D}_k \) with \(r_m = s_m = 1 \) and \(r = s \), let \(A = A(r, s) \) be the product of primes dividing \(r \) but not \((r, s) \). We note that Lemma 9.3 implies the bound
\[
y^{(m)}_r \ll \frac{\varphi(a_{m}WB) \log R}{kWB} Y_r,
\]

since we have the bound \(\int_{0}^{\infty} F_{2}(t_1, \ldots, t_k) dt_m \ll F_{2}(t_1, \ldots, t_m-1, 0, t_m+1, \ldots, t_k)/k \) (this follows from the definition (7.12) of \(F_{2} \)). Analogously to Lemma 8.2, we have (for \(A > 1 \))
\[
y^{(m)}_r = y^{(m)}_s + O\left(\frac{T_k}{k} (Y_r + Y_s) \frac{\varphi(a_{m}WB)}{a_{m}WB} (\log A + (\log \log R)^2) \right) = y^{(m)}_s + O\left(\frac{T_k}{k} (Y_r + Y_s) \frac{\varphi(a_{m}WB)}{a_{m}WB} (\log A)(\log \log R)^2 \right).
\]

Substituting this into our main term (9.20), we are left to estimate
\[
\sum_{\substack{r, s \in \mathcal{D}_k \atop r_m = s_m = 1 \atop r = s}} y^{(m)}_r \frac{\varphi(a_{m}WB)}{kWB} \left(\prod_{p|r} S_p^{(m)}(r, s) \right) \left(y^{(m)}_s + O\left(\frac{T_k}{k} (Y_r + Y_s) \frac{\varphi(a_{m}WB)}{a_{m}WB} (\log A)(\log \log R)^2 \right) \right). \tag{9.24}
\]

We note that for \(r = s \) the value of \(\prod_{p|r} S_p^{(m)}(r, s) \) depends only on \(r \) and \(A \). Substituting this value for \(S_p^{(m)}(r, s) \) gives a main term
\[
\sum_{r \in \mathcal{D}_k} \frac{(y^{(m)}_r)^2}{\varphi(r)^2} \left(\prod_{p|r} (\varphi_L(p) - 1) \right) \sum_{A|r} \left(\prod_{p|A} \frac{-1}{\varphi_L(p) - 1} \right) \sum_{s \in \mathcal{D}_k} 1 \quad A(r, s) = A \tag{9.25}
\]
and (using (9.22) and \(Y_r Y_s \ll Y_r^2 + Y_s^2 \)) an error term of size
\[
\ll \frac{T_k \varphi(a_{m}WB)^2 \log R}{k^2 a_{m}^2 B^2 W^2} \sum_{r \in \mathcal{D}_k} \frac{Y_r^2 \prod_{p|r} (\varphi_L(p) - 1) \sum_{A|r} \frac{\log A}{\prod_{p|A} (\varphi_L(p) - 1)} \sum_{s \in \mathcal{D}_k} (\log \log R)^2} {A(r, s) = A}. \tag{9.26}
\]

We first estimate the inner sum over \(s \) which occurs in both terms. We fix a choice of \(r \in \mathcal{D}_k \) and \(A = A(r, s) \) with \(A|r \). For each prime \(p|A \), we count how many components of \(s \) can be a multiple of \(p \), subject to the constraints that \(p|(s_i, r_i) \) and \(p|(s_i, W'_j) \) for all \(i \). If \(p|A, p|a_m \) then there are \(\omega(p) - 2 \) possible choices of which component of \(s \) can be a multiple of \(p \) (there are \(\omega(p) - 1 \) indices \(j \neq m \) for which \(p|W'_j \), but for one of these indices \(p|r_j \)). If \(p|A \) and \(p|a_m \), then
Dense clusters of primes in subsets

instead there are \(\omega(p) - 1 \) choices (since there are \(\omega(p) \) indices \(j \neq m \) for which \(p \mid W_j' \), but for one of these indices \(p \mid r_j \)). Thus we have

\[
\sum_{s \in D'_k} 1 = \prod_{p \mid A, p \mid a_m} (\omega(p) - 2) \prod_{p \mid A, p \mid a_m} (\omega(p) - 1). \tag{9.27}
\]

We now consider the error term (9.26). We follow an analogous argument to that in the proof of Proposition 9.1. Substituting our expression (9.27) for the inner sum and crudely bounding the multiplicative functions gives a bound

\[
\ll \frac{T_k \varphi(a_m WB)^2 (log R)(log log R)^2}{k^2 a_m^2 B^2 W^2} \sum_{(A, WB)=1} \log A \frac{\omega(A)}{\varphi(A)}^2 \sum_{r \in D'_k, r_m=1} \frac{Y_r^2 \varphi(r/A)}{\varphi(r/A)^2}. \tag{9.28}
\]

We let \(r' \) be given by \(r'_i = r_i/(r_i, A) \) and see that \(Y_{r'} \geq Y_r \). Moreover, we see that there are \(O(\omega(A)) \) choices of \(r \) given \(r' \). Therefore we obtain the bound

\[
\sum_{(A, WB)=1} \log A \frac{\omega(A)}{\varphi(A)}^2 \sum_{r \in D'_k, r_m=1} \frac{Y_r^2 \varphi(r/A)}{\varphi(r/A)^2} \ll \left(\sum_{p \mid A} \frac{\omega(p)^2}{\varphi(p)^2} \right) \left(\sum_{(A', WB)=1} \frac{\omega(A')^2}{\varphi(A')^2} \right) \left(\sum_{r' \in D'_k} \frac{\varphi(r')Y_{r'}^2}{\varphi(r')^2} \right). \tag{9.29}
\]

Here we have dropped the requirement that \((r', A) = 1 \) for an upper bound. We substitute \(\log A = \sum_{p \mid A} \log p \), \(A = pA' \), and swap the order of summation. This shows the right-hand side of (9.29) is

\[
\ll \left(\sum_{p > 2k^2} \frac{\omega(p)^2}{\varphi(p)^2} \right) \left(\sum_{(A', WB)=1} \frac{\omega(A')^2}{\varphi(A')^2} \right) \left(\sum_{r' \in D'_k} \frac{\varphi(r')Y_{r'}^2}{\varphi(r')^2} \right). \tag{9.30}
\]

The first two sums are seen to be \(O(1) \) since they only involve primes \(p > 2k^2 \). The final sum we estimate using Lemma 8.4. This gives a bound for (9.30) of

\[
\ll \frac{W^{k+1} B^{k+1} \mathcal{S}_{WB}(L)^2 (log R)^{k-1}}{\varphi(WB)^{k+1}} \prod_{p \mid WB} \left(1 + \frac{\omega(p) - 1}{p + O(k)} \right) \left(1 - \frac{1}{p} \right)^{k-1} \times \int_{t_1, \ldots, t_k \geq 0, t_m=0} \cdots \int_{t_1, \ldots, t_k \geq 0, t_m=0} F_2(t_1, \ldots, t_k)^2 \prod_{i \neq m} dt_i. \tag{9.31}
\]

We see that the product is \(O(\mathcal{S}_{WB}(L)^{-1}) \) analogously to (9.11). We also have, from the definition (7.12) of \(F_2 \),

\[
\int_{t_1, \ldots, t_k \geq 0, t_m=0} \cdots \int_{t_1, \ldots, t_k \geq 0, t_m=0} F_2(t_1, \ldots, t_k)^2 \prod_{i \neq m} dt_i \leq k^2 \left(\int_0^{\infty} \psi(t/U_k)^2 dt \left(1 + T_k/t \right)^2 \right)^{k-2} \left(\int_0^{\infty} \psi(t/2)^2 dt \left(1 + T_k/t \right)^2 \right) \ll k^2 T_k^2 J_k(F). \tag{9.32}
\]

Putting this together, the contribution of the error term to (9.24) is

\[
\ll \frac{T_k^3 \varphi(a_m WB)^2 W^{k-1} B^{k-1} \mathcal{S}_{WB}(L)(log R)^{k} (log log R)^2}{a_m^2 \varphi(WB)^{k+1}} J_k(F), \tag{9.33}
\]

which contributes only to the error term in the statement of the lemma.
Thus, putting everything together, we have

\[J \]

By Lemma 8.6, we have

\[\lambda \]

for the inner sum and evaluating the sum over \(A \) gives

\[\sum_{s \in D'_k \atop A(s) = A} \sum_{r \in D'_k \atop r_m = 1} (y_r^{(m)})^2 \left(\prod_{r \mid r} (\varphi_L(p) - 1) \right) \sum_{s \in D'_k \atop A(s) = A} (\prod_{r \mid s} (\varphi_L(p) - 1)) \sum_{r \in D'_k \atop r_m = 1} 1 = \sum_{r \in D'_k \atop r_m = 1} (y_r^{(m)})^2. \]

We evaluate this sum using Lemma 8.4. This gives

\[\sum_{r \in D'_k \atop r_m = 1} (y_r^{(m)})^2 = \prod_{p \mid r_B} \left(1 + \frac{\omega(p) - 1}{\varphi(p)} \right) \left(1 - \frac{1}{p} \right)^{k-1} \prod_{p \mid a, p \mid W_B} \left(1 + \frac{\omega(p)}{\varphi(p)} \right) \left(1 - \frac{1}{p} \right)^{k-1} \times (\log R)^{k+1} \frac{\varphi(a W B)^2 W^{k-1} B^{k-1} \varphi(W B)^2}{\omega(a W B)^2} \times \left(J_k(H) + O \left(\frac{k T_k^2 (\log \log R)^2}{\log R} J_k(F_1) \right) \right). \]

By Lemma 8.6, we have \(J_k(F_1) \gg J_k(F) \). From the definition of \(H \), we have

\[J_k(H) = J_k \left(F + O \left(\frac{T_k \log \log R}{\log R} F_2 \right) \right) = J_k(F) + O \left(\frac{T_k \log \log R}{\log R} J_k(F_2) \right) \]

\[= J_k(F) \left(1 + O \left(\frac{k T_k \log \log R}{\log R} \right) \right). \]

We recall \(k \leq (\log x)^{1/5} \) and \(T_k = k \log k \), so the errors appearing are \(o((\log x)^{-1/5}) \). Therefore, simplifying the products in (9.35) gives

\[\sum_{r \in D'_k \atop r_m = 1} (y_r^{(m)})^2 = \left(1 + \frac{1}{(\log x)^{1/10}} \right) (\log R)^{k+1} \frac{W^{k-1} B^{k-1} \varphi(W B)^k}{\varphi(W B)^k} J_k(F) \prod_{p \mid a, p \mid W_B} \frac{p - 1}{p}. \]

Thus, putting everything together, we have

\[\sum_{n \equiv 0 \atop \text{mod } W} \frac{1}{P(L(n)) w_n} = \frac{\# \mathcal{P}_{L,A}(x)}{\varphi_L(W)} \prod_{d \in D} \sum_{e \in E} \frac{\lambda_{d,e}'}{\varphi_L(d,e)} + O \left(\frac{\# \mathcal{A}(x)}{(\log x)^{10/2}} \right) \]

\[= \left(1 + O \left(\frac{1}{(\log x)^{1/10}} \right) \right) (\log R)^{k+1} \frac{W^{k-1} B^{k-1} \varphi(W B)^k}{\varphi(W B)^k} \frac{\# \mathcal{P}_{L,A}(x)}{\varphi_L(W)} J_k(F) \prod_{p \mid a, p \mid W_B} \frac{p - 1}{p}.
\]

Summing over the \(\varphi(W) \) residue classes \(v_0 \) (mod \(W \)) then gives the result (recalling \((W, B) = 1 \)).

We now prove Lemma 9.3.

Proof of Lemma 9.3. We recall that \(\lambda_{d} = \lambda_{d} \) for \(d \in D'_k \), and \(\lambda_{d}' = 0 \) otherwise. Using this, we substitute our expression (7.8) for \(\lambda_{d} \) into the definition (9.19) of \(y_r^{(m)} \). For \(r_m = 1 \) and \(r \in D'_k \),
we obtain
\[
y_{r}^{(m)} = \mu(r)\varphi_{\omega}(r) \sum_{d \in D_{r}'} \frac{\lambda_{d}}{\varphi_{L}(d)} = \mu(r)\varphi_{\omega}(r) \sum_{e \in D_{e}} \frac{y_{e}}{\varphi_{\omega}(e)} \sum_{d \in D_{d}'} \frac{\mu(d)\lambda_{d}}{\varphi_{L}(d)}
\]
\[
= \frac{r\varphi_{\omega}(r)}{\varphi_{L}(r)} \sum_{e \in D_{e}} \frac{y_{e}}{\varphi_{\omega}(e)} \prod_{p \mid e} S_{p}^{(m)}(e, r),
\]
(9.39)

where if \(p \mid m\) then \(S_{p}^{(m)}(e, r) = 1\) and if \(p \nmid e/r\) with \(j \neq m\) then
\[
S_{p}^{(m)}(e, r) = \sum_{d \in D_{d}'} \frac{\mu(d)\lambda_{d}}{\varphi_{L}(d)} = \begin{cases}
-1/(p - 1), & p \mid a_{m}W_{j}^{r}, \\
0, & p \mid a_{m}, p \mid W_{j}^{r}, \\
1, & p \mid W_{j}^{r}/W_{j}.
\end{cases}
\]
(9.40)

(Since \(e \in D_{k}\), we have \((e_{j}, W_{j}) = 1\) and so if \(p \mid e_{j}/r_{j}\) we only need consider \(p \mid W_{j}\).)

We let \(e_{j} = r_{j}u_{j}v_{j}\) for each \(j \neq m\), where \(u_{j}\) is the product of primes dividing \(e_{j}/r_{j}\) but not \(W_{j}',\) and \(v_{j}\) is the product of primes dividing both \(e_{j}/r_{j}\) and \(W_{j}'/W_{j}\). We put \(u_{m} = v_{m} = 1\), and consider \(e_{m}\) separately.

We can restrict to the case when \((u_{j}, a_{m}) = 1\) for all \(j\), since otherwise the product of \(S_{p}^{(m)}(e, r)\) vanishes. For \(e \in D_{k}\), the product in (9.39) is then \(\mu(u)/\varphi(u)\) by (9.40). (We recall that in our notation \(u = \prod_{i=1}^{k} u_{i}\), and similarly for \(v\).) Since \((a_{m}, W_{j}'/W_{j}) = 1\) for all \(j\), we can also restrict to \((v_{j}, a_{m}) = 1\) for all \(j\). (If \(p \mid W_{j}^{r}/W_{j}\) then \(p \mid a_{m}b_{j} - a_{b_{m}}\), so if \(p \mid a_{m}\) and \(p \mid W_{j}^{r}/W_{j}\), then \(p \mid a_{j}\) and hence \(p \mid W_{j}\), meaning \(p \mid W_{j}'/W_{j}\).)

We let \(r' = (r_{1}, \ldots, r_{m-1}, e_{m}, r_{m+1}, \ldots, r_{k})\). By Lemma 8.2, we have
\[
y_{e} = y_{r'} + O\left(T_{k}Y_{r'}\frac{\log uv}{\log R}\right).
\]
(9.41)

Substituting this into (9.39) gives
\[
y_{r}^{(m)} = \frac{r}{\varphi_{L}(r)} \sum_{e_{m}} \frac{y_{e}}{\varphi_{\omega}(e_{m})} \sum_{u,v} \frac{\mu(u)}{\varphi_{\omega}(uv)} + O\left(\frac{T_{k}r}{\varphi_{L}(r)\log R} \sum_{e_{m}} \frac{Y_{r'}}{\varphi_{\omega}(e_{m})} \sum_{u,v} \varphi_{\omega}(uv) \frac{\log uv}{\log R}\right),
\]
(9.42)

where the sums over \(u, v\) are subject to the constraints \(u \in D_{r}', v \in D_{k}, u_{m} = v_{m} = 1, (u, v) = (uv, re_{m}a_{m}) = 1, \) and \(v_{j}|W_{j}'/W_{j}\).

We first estimate the error term from (9.42). We have \(\log uv \ll u^{1/2}(1 + \log v)\), and we drop the requirement that \((u, v) = 1\). The sum over \(u\) then factorizes as an Euler product, which can be seen to be \(O(1)\) since there are \(O(\omega(s))\) choices of \(u\) with \(u = s\), and we only consider primes \(p > 2k^{2}\). Thus we are left to consider the sum over \(v\). For any choice of \(v\) there is at most one possible \(v\) with \(\prod_{i=1}^{k} v_{i} = v\) (since for every prime \(p \mid v\) with \(p \mid W_{m}\) there is a unique index \(j\) such that \(p \mid W_{j}'/W_{j}\), and if \(p \mid W_{m}\) there is no such index). Any such \(v\) must have \(v \Delta = \prod_{i \neq m} (a_{m}b_{i} - a_{b_{m}})\) since \(v_{j}|W_{j}'/W_{j}\). Thus the sum over \(v\) contributes at most
\[
\sum_{v \in D_{k}|v \Delta} \frac{1 + \sum_{p \mid v} \log p}{\varphi_{\omega}(v)} \ll \left(1 + \sum_{p > 2k^{2}, p \mid \Delta} \frac{\log p}{p}\right) \prod_{p > 2k^{2}, p \mid \Delta} \left(1 + \frac{1}{\varphi_{\omega}(p)}\right)
\]
\[
\ll (\log \log \Delta)^{2} \ll (\log \log R)^{2},
\]
(9.43)
since both sum and product are largest if \(\Delta\) is composed of primes \(\ll \log \Delta\), and \(\Delta \ll x^{O(k)}\).
J. Maynard

Thus, relaxing the constraint \((e_m, rW_m) = 1\) to \((e_m, a_mWBm) = 1\), and using Lemma 8.4 to estimate the sum over \(e_m\), we see the error contributes a total

\[
\ll \frac{T_k (\log \log R)^2}{\log R} \frac{r}{\varphi_L(r)} \sum_{(e_m, a_mWBm) = 1} \frac{Y_{\varphi}}{\varphi_\omega(e_m)}
\]

\[
\ll T_k (\log \log R)^2 \phi(a_mWB)B^{k-1}B^{-1}\mathcal{S}_{WB}(L) \int_0^\infty F_2(t_1, \ldots, t_k) dt_m. \tag{9.44}
\]

Here, as in the statement of the lemma, \(t_i = \log r_i/\log R\) for \(i \neq m\).

We now return to the main term from (9.42). We first consider the inner sum, which by multiplicativity we can rewrite as a product

\[
\sum_{u,v}^* \frac{\mu(u)}{\varphi(u)\varphi_\omega(\lambda v)} = \prod_p \sum_{u,v}^* \frac{\mu(u)}{\varphi(u)\varphi_\omega(\lambda v)}, \tag{9.45}
\]

where the asterisk indicates that sums are subject to the additional constraints that \(u_m = v_m = 1\), \((u, v) = 1\) and that \((u_i, W_i^r e_m a_m) = 1\), \((v_i, W_i^r e_m a_m) = 1\), and \(v_i|W_i/W_i\) for all \(1 \leq i \leq k\). Since the summand only depends on \(u \) and \(v \) we can evaluate it by counting how many pairs \(u, v\) correspond to a given choice of \(u, v\).

If \(p|WBm a_m\) then our coprimality restrictions mean no component of \(u\) or \(v\) can be a multiple of \(p\). If \(p|WBm a_m\) then there are \(\omega(p) - 1\) components of \(u\) which can be a multiple of \(p\) (corresponding to the indices for all residue classes chosen mod \(p\) except for the index corresponding to \(-b_m\bar{a}_m\)). If \(p|W_m\) then no components of \(v\) can be a multiple of \(p\) \(p|W_m\) means \(m\) was the chosen index for the residue class \(-b_m\bar{a}_m\) \((\text{mod} \ p)\), so \(p|W_j/W_j\) for any \(j\). If \(p|W_m\) and \(p|WBm a_m\) then exactly one component of \(v\) can be a multiple of \(p\) \((\nu_j\) can be a multiple of \(p\) if \(j\) was the chosen index for the residue class \(-b_m\bar{a}_m\) \((\text{mod} \ p)\)). Finally, since \((u, v) = 1\), no component of \(u\) can be a multiple of \(p\) if \(v\) is a multiple of \(p\). Putting this together, we obtain (since \((e_m, rW_m) = 1\))

\[
\sum_{u,v}^* \frac{\mu(u)}{\varphi(u)\varphi_\omega(\lambda v)} = \prod_{p|W_m, p|WBm} \left(1 - \frac{\omega(p) - 1}{\varphi(p)\varphi_\omega(p)} + \frac{1}{\varphi_\omega(p)} \right) \prod_{p|W_m r e_m} \left(1 - \frac{\omega(p) - 1}{\varphi(p)\varphi_\omega(p)} \right)
\]

\[
= \prod_{p|W_m, p|WBm} \frac{p}{p - 1} \prod_{p|W_m r e_m} \left(\frac{p}{p - 1} - \frac{1}{\varphi_\omega(p)} \right) \prod_{p|e_m} \left(\frac{p}{p - 1} - \frac{1}{\varphi_\omega(p)} \right)^{-1}. \tag{9.46}
\]

Now, using Lemma 8.3, we estimate the summation over \(e_m\). This gives

\[
\sum_{(e_m, rW_m) = 1} \frac{Y_{\varphi}}{\varphi_\omega(e_m)} \prod_{p|e_m} \left(\frac{p}{p - 1} - \frac{1}{\varphi_\omega(p)} \right)^{-1}
\]

\[
= \log R \mathcal{S}_{WB}(L)W^kB^k \prod_{p|rW_m} \left(1 - \frac{1}{p} \right) \prod_{p|pW_m} \left(\frac{p}{p - 1} - \frac{1}{\varphi_\omega(p)} \right)^{-1} \int_0^\infty H(t_1, \ldots, t_k) dt_m, \tag{9.47}
\]

where, as in the statement of the lemma, \(t_i = \log r_i/\log R\) for \(i \neq m\), and where

\[
H(t_1, \ldots, t_k) = F(t_1, \ldots, t_k) + O \left(\frac{T_k (\log \log R)^2}{\log R} F_2(t_1, \ldots, t_k) \right).
\]

We have added an additional factor of \(\log \log R\) into the error term for \(H\) so we can absorb (9.44) into the error term.
Thus, combining (9.46) and (9.47) gives

\[
\frac{r}{\varphi_L(r)} \sum_{e_m} \frac{y_{e_m}}{\varphi_\omega(\epsilon_{m})} \sum_{u,v} \frac{\mu(u)}{\varphi(u)\varphi_\omega(uv)}
= \log R \frac{W^k B^k \mathcal{S}_{WB}(L)}{\varphi(WB)^k} \frac{r}{\varphi_L(r)} \prod_{p\mid r} \left(1 - \frac{1}{p} \right) \prod_{p\mid WB \max} \left(1 - \frac{1}{p} \right) \int_0^\infty H(t_1, \ldots, t_k) \, dt_m
= \log R \frac{\varphi(a_m WB) W^{k-1} B^k \mathcal{S}_{WB}(L)}{a_m \varphi(WB)^k} \int_0^\infty H(t_1, \ldots, t_k) \, dt_m.
\] (9.48)

Here we have used the fact that \(r \in D'_k \), and so \((r, WB) = 1 \). Combining (9.44) and (9.48) gives the result.

Proposition 9.4. Let \(w_n \) be as described in §7. Given \(D \ll x^{O(1)} \) and \(\xi \) satisfying \(k(\log \log x)^2/(\log x) \ll \xi \ll \theta/10 \), let

\[
S(\xi; D) = \{ n \in \mathbb{N} : p|n \implies (p > x^\xi \text{ or } p|D) \}.
\]

For \(L = a_0 n + b_0 \not\in \mathcal{L} \), with \(|a_0|, |b_0| \ll x^{O(1)} \) and \(\Delta_L \neq 0 \), we have

\[
\sum_{n \in A(x)} 1_{S(\xi; D)}(L(n)) w_n \ll \xi^{-1} \Delta_L \ \frac{D}{\varphi(\Delta_L)} \ \frac{B^k}{\varphi(B)^k} \ \mathcal{S}_{B}(\mathcal{L}) \#A(x)(\log R)^{k-1} I_k(F),
\]

where

\[
\Delta_L = a_0 \prod_{i=1}^k |a_j b_0 - a_0 b_j|.
\]

Proof. We first split the sum into residue classes \(v_0 \) modulo \(V = \prod_{p \leq 2k^2} p \) for which \(L(v_0) \) is coprime to \(\prod_{p \leq 2k^2} p \mid D \) and each of the \(L_i(\xi) \) are coprime to \(W \) (the other residue classes make no contribution because of the support of \(w_n \) and \(1_{S(\xi; D)} \)). We use the Selberg sieve upper bound

\[
1_{S(\xi; D)}(L(n)) \leq \tilde{\lambda}_1^{-2} \left(\sum_{\substack{d_0 \mid L(n) \\ d_0 < x^\xi \\ (d_0, D) = 1}} \tilde{\lambda}_{d_0} \right)^2.
\] (9.49)

(This holds for any choice of the values of \(\tilde{\lambda}_d \in \mathbb{R} \) with \(\tilde{\lambda}_1 \neq 0 \)). For the residue class \(v_0 \mod V \), this gives

\[
\sum_{n \in A(x) \mod v_0} 1_{S(\xi; D)}(L(n)) w_n \leq \frac{1}{\tilde{\lambda}_1^2} \sum_{n \in A(x) \mod v_0} \left(\sum_{\substack{d_0 \mid L(n) \\ (d_0, D) = 1, d_0 < x^\xi}} \tilde{\lambda}_{d_0} \right)^2 \left(\sum_{d \in D_k \mid L(n) \ \forall 1 \leq i \leq k} \lambda_d \right)^2.
\] (9.50)

We restrict the support of \(\tilde{\lambda}_{d_0} \) in a similar way to that of \(\lambda_d \). We force \(\tilde{\lambda}_{d_0} = 0 \) if \(p|d_0 \) for any prime with \(p|W_0 \) where

\[
W_0 = D V \Delta_L.
\] (9.51)

Similarly, we force \(\tilde{\lambda}_{d_0} = 0 \) if \(d_0 > x^\xi \). Note that we allow \(\tilde{\lambda}_{d_0} \neq 0 \) if \((d_0, B) \neq 1 \). These conditions mean we can drop the constraints \(d_0 < x^\xi \), \((d_0, D) = 1 \) since \(\tilde{\lambda}_{d_0} = 0 \) if either of these do not hold.

1547

https://doi.org/10.1112/S0010437X16007296 Published online by Cambridge University Press
We return to (9.50). Expanding the squares and swapping the order of summation gives
\[
\frac{1}{\chi^2_1} \sum_{n \equiv v_0 \pmod{V}} \frac{1}{n} \left(\sum_{d_0 \mid L(n)} \tilde{\lambda}_{d_0} \right)^2 \left(\sum_{d \in D_k} \lambda_d \right)^2 \sum_{d \mid L(n) \forall 1 \leq i \leq k} d = \frac{1}{\chi^2_1} \lambda_{d_0} \tilde{\lambda}_{d_0} \sum_{d \in D_k} \lambda_d \lambda_e \sum_{n \equiv v_0 \pmod{V}} \frac{1}{n} \sum_{d, e \in D_k} \lambda_{d,e} = 1. \quad (9.52)
\]

We see that by our restrictions on the support of \(\lambda_d, \tilde{\lambda}_{d_0}\), there is no contribution to (9.52) unless \(d_0, e_0, d, e\) are such that \((d_0 e_i, d_j e_j) = 1\) for all \(0 \leq i \neq j \leq k\), and \(d, e < R\) and \(d_0, e_0 < x^\xi\). (To avoid confusion, we recall that \(d = \prod_{i=1}^{k} d_i\) and \(e = \prod_{i=1}^{\xi} e_i\).) For such values, we can combine the congruence conditions using the Chinese remainder theorem, which shows the inner sum is \(#\mathcal{A}(x; q, a)\) for some \(a\) and \(q = V \prod_{i=1}^{k} |d_i, e_i|\). We see that \(q < V R^2 x^{2\xi} < x^\theta\) since \(\xi \leq \theta/10\). We substitute \(#\mathcal{A}(x; q, a) = #\mathcal{A}(x)/q + O(F_q^{(1)})\), and the contribution from \(F_q^{(1)}\) can be seen to be negligible by an identical argument to that in the proof of Proposition 9.1. We are therefore left to evaluate
\[
\frac{\#\mathcal{A}(x)}{V \chi^2_1} \sum_{d_0, e_0} \tilde{\lambda}_{d_0} \lambda_{e_0} \sum_{d, e \in D_k} \lambda_d \lambda_e \sum_{n \equiv v_0 \pmod{V}} \frac{1}{n} \sum_{d, e \in D_k} \lambda_{d,e} = 1. \quad (9.53)
\]

We let \(\omega^*\) be the totally multiplicative function defined by
\[
\omega^*(p) = \begin{cases} \# \left\{ 1 \leq n \leq p : L(n) \prod_{i=1}^{k} L_i(n) \equiv 0 \pmod{p} \right\}, & p \mid B, \\
1, & p \mid B. \end{cases} \quad (9.54)
\]

We note that with this choice, \(\omega^*(p) = \omega(p)\) if \(p \mid \Delta_L\) and \(p \mid B\), and \(\omega^*(p) = \omega(p) + 1\) otherwise. We also define
\[
y_{r_0} = \mu(r_0^r) \phi^*(r_0^r) \sum_{d_0} \frac{\lambda_{d_0}}{d_0} \tilde{\lambda}_{d_0} \sum_{d, d_0} \frac{\lambda_d \lambda_e}{d, e} = \mu(r_0^r) \phi^*(r_0^r) \sum_{d_0} \frac{\tilde{\lambda}_{d_0}}{d_0}. \quad (9.55)
\]

By Möbius inversion, we see that this definition of \(\tilde{y}_{r_0}\) implies that
\[
\tilde{\lambda}_{d_0} = \mu(d_0) d_0 \sum_{d_0 \mid r_0} \frac{\tilde{y}_{r_0}}{d_0^2}. \quad (9.56)
\]

For \((r_0, W_0) = 1\) and \(r_0 < x^\xi\) we choose
\[
\tilde{y}_{r_0} = \frac{W_0}{\phi(W_0)}, \quad (9.57)
\]

and \(\tilde{y}_{r_0} = 0\) otherwise. This gives rise to a suitable choice of \(\tilde{\lambda}_{d_0}\) supported on \(d_0 < x^\xi\) with \((d_0, W_0) = 1\). Since \(\xi \gg k (\log \log x)^2/(\log x)\), Lemma 8.3 shows that
\[
\tilde{\lambda}_1 \sum_{r_0 < x^\xi} \frac{\tilde{y}_{r_0} \phi^2(r_0)}{\phi(r_0)} = \xi \log x + O(\log \log x) \gg \xi \log x. \quad (9.58)
\]

As in the proof of Proposition 9.1 (this is exactly the same argument but for \((k + 1)\)-dimensional vectors instead of \(k\)-dimensional ones) changing variables using (9.55) shows that
Dense clusters of primes in subsets

\[\sum_{d_0,e_0} \frac{\hat{\lambda}_{d_0} \hat{\lambda}_{e_0}}{[d_0,e_0]} \sum_{d,e \in D_k} \frac{\lambda_d \lambda_e}{[d,e]} \sum_{r,s,r_0,s_0} \frac{y_{r,r_0} y_{s,s_0}}{\varphi_{\omega^*}(rr_0) \varphi_{\omega^*}(ss_0)} \prod_{p | rr_0 ss_0} S_p(r,s,r_0,s_0), \]

(9.59)

where

\[S_p(r,s,r_0,s_0) = \begin{cases} p - 1, & p | (r,s)(r_0,s_0), \\ -1, & p | rr_0 \text{ and } p | ss_0 \text{ but } p | (r,s)(r_0,s_0), \\ 0, & (p | rr_0 \text{ and } p | ss_0) \text{ or } (p | ss_0 \text{ and } p | rr_0). \end{cases} \]

(9.60)

Thus we may restrict to \(rr_0 = ss_0 \). Using the bound \(y_{r,r_0} y_{s,s_0} \ll y_{r,r_0}^2 + y_{s,s_0}^2 \), we see that (by symmetry) the right-hand side of (9.59) may be bounded by

\[\sum_{r,r_0} \frac{y_{r,r_0}^2}{\varphi_{\omega^*}(rr_0)^2} \sum_{s,s_0} \prod_{p | rr_0} \sum_{p | rr_0} |S_p(r,s,r_0,s_0)| \leq \sum_{r,r_0} y_{r,r_0}^2 \prod_{p | rr_0} p + \omega^*(p) - 2 \left(\frac{p + \omega^*(p) - 2}{p - \omega^*(p))^2} \right) \]

\[= \sum_{r,r_0} \frac{y_{r,r_0}^2}{\prod_{p | rr_0} (p + O(k))}. \]

(9.61)

To evaluate this, we express \(y_{r,r_0} \) in terms of \(y_f \) and \(\tilde{y}_{r_0} \). Substituting (7.8) into (9.55), we find that for \((r_0, rW_0) = 1 \) and \(r \in D_k \),

\[y_{r,r_0} = \mu(r_0r) \varphi_{\omega^*}(rr_0) \sum_{d_0, \rho_0 | d_0} \mu(d_0) \sum_{f_0, \rho_0 | f_0} \frac{\tilde{y}_{f_0}}{\varphi(f_0)} \sum_{d, \rho | d \rho | f} \mu(d) \sum_{f \varphi_{\omega}(f)} y_{f_0}. \]

\[= \mu(r_0r) \varphi_{\omega^*}(rr_0) \sum_{f_0, \rho_0 | f_0} \frac{y_{r_0} \tilde{y}_{f_0}}{\varphi_{\omega}(f_0)} \sum_{d_0, \rho_0 | f_0} \mu(d_0) \mu(d). \]

(9.62)

The inner sum is 0 unless every prime dividing one of \(f, f_0 \) but not the other is a divisor of \(rr_0 \). In this case the sum is \(\pm 1 \). Thus, using the fact that \(y_r \geq y_f \) and \(\tilde{y}_{r_0} \geq \tilde{y}_{f_0} \) (since \(F \) is decreasing), we have the crude bound

\[y_{r,r_0} \leq \varphi_{\omega^*}(rr_0) y_{r_0} \tilde{y}_{r_0} \sum_{d_0, \rho_0 | f_0} \sum_{r_0 | f_0} \mu^2(f_0) \varphi_{\omega}(f_0) \varphi_{\omega}(f). \]

(9.63)

We let \(f_0 = r_0 \rho_0 g_0 \) and \(f_i = r_i f_i, g_i \) for \(1 \leq i \leq k \), where \(f_i = f_i/(f_i, rr_0) \) is \(f_i \) with any factors of \(rr_0 \) removed, \(g_i | r \) and \(f_i | r_0 \) for \(1 \leq i \leq k \). We see the constraint \(f/(f_0, f_0) | rr_0 \) means that \(f'_0 = \prod_{i=1}^k f'_i \). Therefore we can bound the double sum above by

\[\frac{1}{\varphi(r_0) \varphi_{\omega}(r)} \sum_{f' \in D_k} \frac{1}{\varphi(f') \varphi_{\omega}(f')} \sum_{g_i | r_0, \forall 1 \leq i \leq k} \frac{1}{\varphi_{\omega}(g)} \sum_{(g_0, W_0) = 1} \frac{1}{\varphi(g_0)} \]

\[= \frac{1}{\varphi(r_0) \varphi_{\omega}(r)} \prod_{p | WB} \left(1 + \frac{\omega(p)}{(p-1)(p-\omega(p))} \right) \prod_{p | r_0} \left(1 + \frac{\omega(p)}{p-\omega(p)} \right) \prod_{p | r, p | W_0} \left(1 + \frac{1}{p-1} \right). \]

(9.64)
The first product is $O(1)$ since it is over primes $p > 2k^2$. Thus, simplifying the remaining products, we obtain

$$y_{r_0} \leq y_r y_{r_0} \left(\prod_{p \mid (r, W_0)} \frac{p - \omega^*(p)}{p - \omega(p)} \right) \left(\prod_{p \mid r_0, p \mid W_0} \frac{p(p - \omega^*(p))}{(p - 1)(p - \omega(p))} \right) \leq y_r y_{r_0}. \quad (9.65)$$

Here we have used the fact that $\omega^*(p) = \omega(p) + 1$ if $p \mid W_0$.

Recalling the definitions (9.57) and (7.8) of y_{r_0} and y_r, and applying Lemma 8.4, we find that (since $\xi \gg k(\log \log x)^2/(\log x)$)

$$\sum_{r, r_0} \frac{(y_{r, r_0})^2}{\prod_{p \mid r_0}(p + O(k))} \ll \left(\sum_{r_0 < \xi} \prod_{p \mid r_0}(p + O(k)) \right) \left(\sum_{r \in \mathcal{D}_k} \prod_{p \mid r}(p + O(k)) \right) \ll (\log R)^{k+1} \frac{W^k B^k W_0 \mathcal{G}_{WB}(\mathcal{L})^2}{\phi(WB)^k \phi(W_0)} \times \prod_{p \mid W_0} \left(1 + \frac{O(k)}{p^2} \right) \prod_{p \mid WB} \left(1 + \frac{\omega(p)}{p + O(k)} \right) \left(1 - \frac{1}{p} \right)^k I_k(F). \quad (9.66)$$

We note that the first product is $O(1)$ and the second product is $O(\mathcal{G}_{WB}(\mathcal{L})^{-1})$, since all primes in the products are greater than $2k^2$ and $\omega(p) \leq k$. Thus, we obtain (recalling $\lambda_1 \gg \xi \log x$)

$$\frac{\#A(x)}{V \lambda_1^2} \sum_{r, r_0} \frac{(y_{r, r_0})^2}{\prod_{p \mid r_0}(p + O(k))} \ll \xi^{-1} (\log R)^{k-1} \frac{\#A(x) W_0 W^k B^k \mathcal{G}_{WB}(\mathcal{L})}{\phi(W_0) \phi(W)^k} I_k(F). \quad (9.67)$$

We now sum over residue classes $v_0 \mod V$, for which $L(v_0)$ is coprime to $\prod_{p \leq 2k^2, p \mid D} p$ and each of the $L_i(v_0)$ are coprime to W. The number N of such residue classes is given by

$$N = \prod_{p \mid D_L} (p - \omega(p) - 1) \prod_{p \mid D_L} (p - \omega(p)) \prod_{p \mid D_0} (p - 1) \prod_{p \mid D_0} p. \quad (9.68)$$

This then gives

$$\sum_{n \in A(x)} 1_{S(\xi; D)}(L(n)) w_n \ll \xi^{-1} \frac{B^k}{\phi(B)^k} (\log R)^{k-1} \mathcal{G}_{WB}(\mathcal{L}) I_k(F) \frac{NW_0 W^k}{\phi(W_0) \phi(W)^k}. \quad (9.69)$$

Finally, by calculation we find that

$$\frac{NW_0 W^k}{\phi(W_0) \phi(W)^k} = \frac{\mathcal{G}_B(\mathcal{L}) \Delta_L D}{\mathcal{G}_{WB}(\mathcal{L}) \phi(\Delta_L D)} \prod_{p \mid \Delta_L V} \frac{p - 1}{p} \prod_{p \mid \Delta_L D} \frac{(p - \omega(p) - 1)p}{(p - \omega(p))(p - 1)} \leq \frac{\mathcal{G}_B(\mathcal{L}) \Delta_L D}{\mathcal{G}_{WB}(\mathcal{L}) \phi(\Delta_L) \phi(D)}. \quad (9.70)$$

This gives the result. \hfill \Box

Proposition 9.5. Let w_n be as described in § 7. For $L \in \mathcal{L}$ and $\rho \leq \theta/10$, we have

$$\sum_{n \in A(x)} \left(\sum_{p \mid L(n)} 1 \right) w_n \ll \rho^2 k^4 (\log k)^2 \mathcal{G}_B(\mathcal{L}) \#A(x) (\log R)^k I_k(F).$$
Dense clusters of primes in subsets

Proof. We let \(L(n) = L_m(n) = a_m n + b_m \) be the \(m \)th function in \(L \). As with Propositions 9.1 and 9.2, we consider the sum restricted to \(n \equiv v_0 \pmod{W} \) for some \(v_0 \) with \((\prod_{i=1}^k L_i(v_0), W) = 1\), since the other choices of \(v_0 \) make no contribution. This means we can also restrict the sum to \(p \nmid W \).

Expanding the square and swapping the order of summation gives

\[
\sum_{n \in A(x)} \left(\sum_{p \mid L(n)} \sum_{d \in D_k} \lambda_d \lambda_e \sum_{n \equiv v_0 \pmod{W}} 1 \right) w_n = \sum_{p < x^p} \sum_{d \in D_k} \lambda_d \lambda_e \sum_{n \equiv v_0 \pmod{W}} 1. \tag{9.71}
\]

The inner sum is empty unless \((d_i e_i) = 1\) for all \(i \neq j \) and \((d_i e_i, p) = 1\) for all \(i \neq m \). In this case, by the Chinese remainder theorem, we can combine the congruence conditions and see that the inner sum is \#\(A(x; q, a)\) for \(q = [d_m, e_m, p] \prod_{i \neq m} [d_i, e_i] \) and some \(a \). We write \#\(A(x; q, a)\) as in the proof of Proposition 9.1. We treat the error \(E_q^{(1)} \) from making this change in the same manner as in Proposition 9.1, noting that all moduli \(q \) we need to consider are square-free and satisfy \(q < WR^2 x^p < x^p \), and for any \(q \) there are \(O(\tau_{r^2k+1}(q)) \) choices of \(d, e, p \) which give rise to the modulus \(q \). Thus these error terms make a negligible contribution.

We use (7.8) to change to our \(y_r \) variables, which gives us a main term of

\[
\frac{\#A(x)}{W} \sum_{p < x^p} \sum_{d \in D_k} \lambda_d \lambda_e \prod_{i \neq m} \frac{1}{[d_i, e_i, p]} = \frac{\#A(x)}{W} \sum_{p < x^p} \sum_{r, s \in D_k} \frac{y_r y_s}{\varphi(r) \varphi(s)} \prod_{p \mid rs} S_{p'}(r, s, p). \tag{9.72}
\]

Here if \(p' \neq p \) then \(S_{p'}(r, s, p) = S_{p'}(r, s) \), given by (9.5), whereas if \(p' = p \) then

\[
S_{p}(r, s, p) = \sum_{d \mid r \atop \gcd(d, p) = 1} \frac{\mu(d) \mu(e) d e}{[d, e, p] \prod_{i \neq m} [d_i, e_i]} = \begin{cases} (p - 1)^2, & p \mid (r_m, s_m), \\ -(p - 1), & p \mid r_m s_m, p \mid (r_m, s_m), \\ 1, & p \mid r_m s_m. \end{cases} \tag{9.73}
\]

We let \(u = (r_1/(r_1, p), \ldots, r_k/(r_k, p)) \) be the vector formed by removing a possible factor of \(p \) from the components of \(r \). We note that for any \(s \in D_k \) and \(p \mid W \) we have

\[
\sum_{r \in D_k \atop (r, W_i) = 1} \prod_{i \neq m} \frac{S_{p'}(r, s, p)}{\varphi(r)} = \frac{\prod_{s \in D_k} S_{p'}(s, u)}{\varphi(u)} \sum_{r \in D_k \atop (r, W_i) = 1} \frac{S_{p}(r, s, p)}{\varphi(r)} \prod \frac{\mu((s_m, p))}{\varphi'(u)} \left(1 + \frac{\omega(p) - 1}{p - \omega(p)} \right) \left(1 - \frac{1}{p - \omega(p)} \right) = 0. \tag{9.74}
\]

Here the first term in parentheses represents the contribution when \((r, p) = 1 \), the second term represents the contribution when \(p \mid r \) but \(p \nmid r_m \) (and so there are \(\omega(p) - 1 \) choices of which index can be a multiple of \(p \)) and the final term represents the contribution when \(p \mid r_m \).

We substitute \(y_r = y_u + (y_r - y_u) \) into our main term. By (9.74) we find the \(y_u \) term makes a total contribution of 0, leaving only the contribution from \((y_r - y_u) \). Similarly, we let \(v \) be the
vector obtained by removing a possible factor of \(p \) from \(s \). We make the equivalent substitution
\[y_s = y_v + (y_s - y_v), \]
with the \(y_v \) term making no contribution. By Lemma 8.2 we have
\[(y_r - y_u)(y_s - y_v) \ll Y_u Y_v T_k^2 (\log p)^2 / (\log R)^2. \]
(9.75)

Substituting this bound into our main term (9.72), we obtain the bound
\[
\ll \frac{T_k^2 \#A(x)}{W} \sum_{p < x} \frac{1}{p} \left(\frac{\log p}{\log R} \right)^2 \sum_{u,v \in D_k} \frac{Y_u Y_v}{\varphi_w(u) \varphi_w(v)} \prod_{p' \mid uv} |S'_{p'}(u,v)| \sum_{r,s \in D_k} \frac{|S_p(r,s,p)|}{\varphi_w(r) \varphi_w(s)}.
\]
A calculation reveals that the inner sum is \(O(\varphi_w(u)^{-1} \varphi_w(v)^{-1}) \) for all \(p \mid WB \). This gives the bound
\[
\ll \frac{T_k^2 \#A(x)}{W} \sum_{p < x} \frac{1}{p} \left(\frac{\log p}{\log R} \right)^2 \sum_{u,v \in D_k} \frac{Y_u Y_v}{\varphi_w(u) \varphi_w(v)} \prod_{p' \mid uv} |S'_{p'}(u,v)|
\ll \frac{T_k^2 \rho^2 \#A(x)}{W} \sum_{u,v \in D_k} \frac{Y_u^2 + Y_v^2}{\varphi_w(u) \varphi_w(v)} \prod_{p' \mid uv} |S'_{p'}(u,v)|. \]
(9.77)

Here we have dropped the requirement that \((u,p) = (v,p) = 1 \) and used \(Y_u Y_v \leq Y_u^2 + Y_v^2 \) for an upper bound.

We recall from (9.5) that \(S'_{p'}(u,v) = 0 \) unless \(u = v \). By multiplicativity and from the definition (9.5) of \(S'_{p'}(u,v) \), we find that, given \(u \in D_k \),
\[
\sum_{v \in D_k} \frac{\prod_{p' \mid uv} |S'_{p'}(u,v)|}{\varphi_w(v)} = \prod_{p' \mid u} \left(\sum_{w \in D_k} \frac{|S'_{p'}(u,w)|}{\varphi_w(w)} \right) = \prod_{p' \mid u} \left(\frac{p - 1}{p - \omega(p)} + \frac{\omega(p) - 1}{p} \right). \]
(9.78)

(Here the first term in parentheses in the final product corresponds to the \(w \) such that \(p \mid (u,w) \) and the second term to the \(\omega(p) - 1 \) choices of \(w \) such that \(p \nmid (u,w) \)). Thus, we find
\[
\sum_{u,v \in D_k} \frac{Y_u^2 + Y_v^2}{\varphi_w(u) \varphi_w(v)} \prod_{p' \mid uv} |S'_{p'}(u,v)| \ll \sum_{r \in D_k} \frac{Y_r^2}{g(r)}, \]
(9.79)

where \(g \) is the multiplicative function defined by \(g(p) = (p - \omega(p))/2/(p + \omega(p) - 2) \). Applying Lemma 8.4, we see that this is
\[
\ll \frac{B^k W^k \mathcal{S}_{WB}(\mathcal{L})^2}{\varphi(WB)^k} (\log R)^k \prod_{p \mid WB} \left(1 + \frac{\omega(p)}{g(p)} \right)^k \left(1 - \frac{1}{p} \right) I_k(F_2). \]
(9.80)

By Lemma 8.6 we have \(I_k(F_2) \ll k^2 I_k(F) \). Since any prime \(p \mid WB \) has \(p > 2k^2 \) and \(g(p) = p + O(k) \), we see the product is \(\ll \mathcal{S}_{WB}(\mathcal{L})^{-1} \). Thus (9.80) is
\[
\ll k^2 \frac{B^k W^k \mathcal{S}_{WB}(\mathcal{L})}{\varphi(WB)^k} (\log R)^k I_k(F). \]
(9.81)

Putting this all together gives
\[
\sum_{n \equiv 0 \pmod{W}} \left(\sum_{p \mid L(n) \mid p \mid B} \frac{1}{\mathcal{S}_{WB}(\mathcal{L}) (\log R)^k I_k(F)} \right) \ll k^2 \frac{T_k^2 \rho^2 \#A(x) B^k W^{k-1} \mathcal{S}_{WB}(\mathcal{L})}{\varphi(WB)^k} \log R^k I_k(F). \]
(9.82)

Summing over the \(\varphi_w(W) \) residue classes mod \(W \) then gives the result. \(\square \)
Dense clusters of primes in subsets

Acknowledgements
I would like to thank Sary Drappeau, Andrew Granville, Dimitris Koukoulopoulos and Jesse Thorner for many useful comments and suggestions. This research was carried out while the author was funded by a CRM-ISM postdoctoral fellowship at the Université de Montréal.

References

Ben00 J. Benatar, The existence of small prime gaps in subsets of the integers, Preprint (2013), arXiv:1305.0348 [math.NT].

HI75 M. N. Huxley and H. Iwaniec, Bombieri’s theorem in short intervals, Mathematika 22 (1975), 188–194.

LP00 H. Li and H. Pan, Bounded gaps between primes of the special form, Preprint (2014), arXiv:1403.4527 [math.NT].

DENSE CLUSTERS OF PRIMES IN SUBSETS

James Maynard james.alexander.maynard@gmail.com
Centre de recherches mathématiques, Université de Montréal,
Pavillon André-Aisenstadt, 2920 Chemin de la tour, Room 5357,
Montréal (Québec), Canada H3T 1J4

Current address: Mathematical Institute, Radcliffe Observatory Quarter,
Woodstock Road, Oxford, OX1 6GG, UK