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Abstract

Genetically informative research designs are becoming increasingly popular as a way to strengthen causal inference with their ability to control
for genetic and shared environmental confounding. Co-twin control (CTC) models, a special case of these designs using twin samples,
decompose the overall effect of exposure on outcome into a within- and between-twin-pair term. Ideally, the within-twin-pair term would
serve as an estimate of the exposure effect controlling for genetic and shared environmental factors, but it is often confounded by factors not
shared within a twin-pair. Previous simulation work has shown that if twins are less similar on an unmeasured confounder than they are on an
exposure, the within-twin-pair estimate will be a biased estimate of the exposure effect, even more biased than the individual, unpaired
estimate. The current study uses simulation and analytical derivations to show that while incorporating a covariate related to the nonshared
confounder in CTCmodels always reduces bias in the within-pair estimate, it will be less biased than the individual estimate only in a narrow
set of circumstances. The best case for bias reduction in the within-pair estimate occurs when the within-twin-pair correlation in exposure is
less than the correlation in the confounder and the twin-pair correlation in the covariate is high. Additionally, the form of covariate inclusion is
compared between adjustment for only one’s own covariate value and adjustment for the deviation of one’s own value from the covariate
twin-pair mean. Results show that adjusting for the deviation from the twin-pair mean results in equal or reduced bias.
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Co-twin control (CTC) or discordant twin models are a special case
ofwhat are commonly referred to as between-withinmodels (Begg&
Parides, 2003; Carlin et al., 2005; McGue et al., 2010). CTC models
make use of the genetic and environmental relationships within
twin-pairs to estimate an exposure effect controlling for all factors
sharedwithinapair.Monozygotic (MZ)twinsshareall genetic factors
and rearing environment, so any difference in outcome must be due
to factors not sharedwithin the twin-pair. If an exposure has a causal
effect on an outcome, the outcome levels will differ within exposure
discordant twin-pairs. In this way, the unexposed twin acts as the
counterfactual to their exposed co-twin; they are an approximation
of what the twin would have looked like had they not been exposed.
The same logic can be extended to genetic relationships other than
twins, as in sibling comparison designs (Lahey & D’Onofrio, 2010).

The power in theCTCdesign lies in its ability to implicitly control
for all factors shared within a twin-pair even when they are unmeas-
ured (McGue et al., 2010). For this reason, CTC designs are widely
used as a stronger method of causal inference than using genetically
unrelated individuals (Donovan & Susser, 2011). Examples of their
use range from the effects of cannabis on intelligence (Jackson et al.,
2016) and educational attainment (Meier et al., 2018; Verweij et al.,
2013) to alcohol’s effect on stroke risk (Kadlecová et al., 2015) or

hippocampal volume (Wilson et al., 2018) and to how lifestyle fac-
tors influence cancer risk (Hübinette et al., 2001; Milán et al., 2003;
Swerdlow et al., 1999). Despite the increasing popularity of the CTC
design, it has not been fully explored methodologically. Work by
Frisell and colleagues has shown that bias can be introduced in
the CTC estimates in the presence of nonshared confounding
(Frisell et al., 2012). The magnitude of this bias is a function of
the within-twin-pair correlation in the exposure and the confounder.
This work also shows that measurement error in the exposure will
bias the CTC estimate toward the null.

The current study builds on these findings by testing whether
the inclusion of a measured covariate can counteract the non-
shared confounding bias. In other words, can the bias induced
by a nonshared confounder be reduced when a measured covariate
is included in the CTC model? Incorporating potential confound-
ers as covariates in a regression model is a popular way of control-
ling for confounding bias (Greenland &Morgenstern, 2001). If the
covariate is a perfect measure of the confounder, doing so will
eliminate all confounding bias. Most often, however, the covariate
measures the confounder with some error, resulting in residual
confounding bias (Becher, 1992). Using analytic derivations and
simulations, we investigate whether covariate inclusion will reduce
the bias in the CTCmodel estimates more than in a model treating
the twins as individuals and explore what parameters affect the bias
reduction in this scenario. Lastly, the impact of measurement error
in not only the exposure, but also the measured covariate, is inves-
tigated. The interpretation of CTC model estimates is discussed in
light of our findings.
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Co-Twin Control Model

A generalized linear regression model, treating twins as individuals
(the individual-level model), is given by

g E YijjXij

� �� � ¼ β0 þ βXij; (1)

where Xij is the exposure of person j in twin-pair i, Yij is their
outcome and g{ } is a link function allowing the generalized linear
model to be extended to different forms of regression, like linear
or logistic regression. For example, in a linear regression model,
Y follows a normal distribution with the identity link func-
tion (g{μ}= μ).

The CTC model decomposes the exposure effect from the
individual-level model (β) into a within-twin-pair and between-
twin-pair effect by incorporating the twin-pair mean. The CTC
model is given as

g E YijjXij;Xi

� �� � ¼ β0 þ βW Xij � Xi

� �þ βBXi; (2)

where Xi is the mean exposure of twin-pair i. The within-twin-pair
estimate (βW) is the estimate of the exposure effect controlling for
all genetic and shared environmental factors. The between-twin-
pair estimate (βB) is an estimate of the magnitude of confounding
due to shared factors. In general, the within-twin-pair effect is of
more interest to researchers than the between-pair effect.

Interpretation of the within-pair effect is commonly made by
comparing βW from the CTC model to β from the individual-level
model (McGue et al., 2010). When these estimates are not signifi-
cantly different from one another, β= βW, this would suggest that
the observed association is not due to confounding factors, consis-
tent with a causal effect of exposure on outcome. When βW is sig-
nificantly different from β but is not 0, β 6¼ βW > 0, this suggest
that the observed association is partially due to confounding factors.
And, finally, when the within-pair effect is not significantly different
from 0, βW= 0, this would suggest that the entire association is due
to confounding and is not consistent with a causal interpretation.

Bias Due to Nonshared Confounding

Prior statistical analysis of CTC models by Frisell et al. (2012) has
shown that bias is induced in the within-twin-pair estimate in the
presence of factors that are not perfectly shared within a twin-pair.
Environmental confounding within-twin-pairs will increase bias in
the within-twin-pair term as a function of the degree to which such
confounding reflects influences that are unshared within a pair. If
all confounding variables are perfectly shared within a twin-pair,
the estimate of the effect of the exposure (βW) will be uncon-
founded. As the correlation between confounding variables
decreases within a twin-pair, the estimate of the effect of the expo-
sure (βW) will be biased upward. In some cases, this bias will exceed
that of the individual-level effect βð Þ. To illustrate this, we assume
that the confounding variable affects both the exposure and the
outcome, but that the exposure does not have a causal effect on
the outcome. If we select twin-pairs in which the members of
the pair are discordant on the exposure, they will also likely be
more discordant on the confounding variable than unselected
twin-pairs (the correlation of the confounding variable between
members of a pair will be reduced). This will in turn increase
the correlation between the confounder and the exposure variables
and create a spurious relationship between the exposure and the
outcome. The impact of nonshared confounders on the bias of β

and βW depends on the ratio of the within-pair correlation of
the confounding variable �Cð Þ to the within-pair correlation of
the exposure variable �Xð Þ. If the within-pair correlation in the
confounder is greater than the within-pair correlation in the expo-
sure, the within-twin-pair term is less biased than the individual-
level term (if �C > �X then bias βWð Þ< bias βð Þ). If the correlation
between confounders is less than the correlation between exposure,
the within-twin-pair term is more biased than the individual-level
term (if �C < �X then bias βWð Þ> bias βð Þ). If the correlations are
equal, both estimates will have the same amount of bias. Unless
�C ¼ 1, however, bias will always exist in the within-pair estimate
(Frisell et al., 2012).

Additionally, random measurement error in the exposure can
lead to twin-pairs being incorrectly classified as concordant or dis-
cordant, which is important given that only discordant twin-pairs
are informative for the within-pair effect in CTC models. As
measurement error increases, the within-twin-pair estimate
increasingly underestimates the true effect. Both biases due to con-
founding and measurement error affect the estimates from CTC
models as well as more general between-within models (i.e., any
models in which an exposure–outcome relationship is decomposed
into a within- and between-cluster effect).

Inclusion of a Measured Covariate to Reduce Bias

While nonshared confounding may induce bias in the within-
twin-pair effect, most researchers attempt to control for this by
including covariates in the CTC regression model. The rationale
is that the covariates incorporated into the model are an imperfect
measure of unmeasured confounding variables, and by controlling
them, bias due to confounding is thereby reduced. Figure 1 shows a
causal diagram for one twin-pair where the exposure–outcome
relationship is confounded by an unmeasured variable, C, that also
affects the measured covariate, Z.

A standard way to include covariates in CTCmodels is given by

g E YijjXij;Xi;Zij

� �� � ¼ β0 þ βW Xij � Xi

� �þ βBXi þ βZZij; (3)

where Z is the measured covariate. Sjölander et al. (2012), how-
ever, show that this model specification does not properly adjust
for the covariate and causes βW to lose its causal interpretation.
Briefly, by conditioning on Xi, a spurious association is induced
between the exposure of twin 1 Xi1ð Þ and the covariate of their
co-twin Zi2ð Þ and between the outcome of twin 1 Yi1ð Þ and the
covariate of twin 2 Zi2ð Þ. Essentially, Zi2 becomes a collider var-
iable, a common effect of two or more variables (Greenland,
2003), and an artificial confounder of the exposure–outcome
relationship. Given this model specification, even in the absence
of a true causal effect βYX ¼ 0, βW will not equal 0. The authors
show that a simple modification of the model can recapture the
causal interpretation of βW:

g E YijjXij;Xi;Zij;Zi

� �� � ¼ β0 þ βW Xij � Xi

� �þ βBXi þ βZ Zij � Zi

� �
;

(4)

where Zi is the mean covariate value of twin-pair i (Sjölander et al.,
2012). The current study explores both forms of covariate inclusion
to evaluate whether confounding bias can be reduced, with particu-
lar interest in bias reduction in βW. We focus on whether, or to what
extent, bias remains in the within-pair estimate even if the causal
interpretation is retained as in equation 4.
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Bias Reduction with a Covariate under a Linear Model

Assuming that all effects in the causal diagram (Figure 1) are linear
and that all variables are continuous, we are able to derive the exact
mathematical formula for the regression coefficients. We further
assume, without loss of generality, that all variables other than
error terms are standardized (a mean of 0 and a standard deviation
of 1). We can then ignore the intercept term so that the true causal
model is given by

Yij ¼ βYXXij þ βYCCij þ "Yij
; (5)

Xij ¼ βXCCij þ "Xij
; (6)

Zij ¼ βZCCij þ "Zij
: (7)

With this data-generating structure, all confounding between
X and Y is due to C, with Z being a measure of C that has no
direct effect on X or Y. We let var Cð Þ ¼ σ2C ¼ 1, varð"Yij

Þ ¼ σ2Yij
,

varð"Xij
Þ ¼ σ2Xij

and varð"Zij
Þ ¼ σ2Zij

. Because the causal diagram

assumes twin-pairs, we have cov Ci1;Ci2ð Þ¼�Cσ
2
C , cov "Yi1

; "Yi2

� � ¼
�"Yσ

2
"Y , cov "Xi1

; "Xi2

� � ¼ �"Xσ
2
"X and cov "Zi1

; "Zi2

� � ¼ �"Zσ
2
"Z .

Furthermore, we make the assumptions that each twin’s error terms
(ϵ) are independent of all other variables and there is no correlation
between the error terms of different variables within a twin-pair.

We are interested in the true causal effect of X on Y βYXð Þ.
Regressing Y on X and C would result in an unbiased estimate
of the exposure effect. However, C is unmeasured and leaving it
out results in a biased estimate of the exposure effect. We explore
the bias when regressing Y on X and Z instead. Because Z is a mea-
sure of C, including it in the regression model may reduce the
confounding bias induced by the unmeasured confounder C.
Furthermore, we are interested in whether the inclusion of Z
reduces the bias more for the within-twin-pair effect (βW) than
the individual-level effect βð Þ.

Confounding Bias with Covariate Inclusion

The derived estimate of the exposure effect from the individual-
level model without adjusting for a covariate (equation 1) is

β ¼ βYX þ βYCβXC : (8)

The derived estimate of the exposure effect from the CTC model
without adjusting for a covariate (equation 2) is

βW ¼ βYX þ βYCβXC
1��"X
1��C

� � : (9)

The full derivation steps can be found in Frisell et al. (2012). It is
clear that both estimates are a function of the true causal effect
βYXð Þ plus a bias term. Because the within-twin-pair correlation
in the exposure, �X , is a linear combination of �"X and �C (i.e.,
�X ¼ �"Xσ

2
"X þ β2XC�C), the difference in bias between the β and

βW is a function of the relative magnitudes of �X and �C . When
�X ¼ �C , then by definition resulting in β ¼ βW . Following similar
reasoning, when �X > �C , �"X will be greater than �C resulting in
1��"X
1��C

� �
> 1. This illustrates how bias in βWwill be larger than bias

in β when the within-pair correlation in the exposure is greater
than the within-pair correlation in the confounder.

After inclusion of a covariate Z, the derived exposure estimate
from the individual-level model becomes (see supplementary
material for full derivation)

βcov ¼ βYX þ βYCβXC 1� β2ZC
� �

1� β2ZCβ
2
XC

: (10)

The bias term now additionally depends on how well Z mea-
sures C (the magnitude of βZC), which confirms our intuition.
The estimate for the within-pair effect when adjusting for a cova-
riate in the standard way (equation 3) is given by

βWcovstd
¼ βYX 1�β2XC�C�σ2"X �"Xð ÞþβYCβXC 1��Cð Þ�βZCβXC 1��Cð Þ βYXβXCβZCþβYCβZCð Þ

2 1�β2XC�C��"X σ
2
"Xð Þ� βZCβXC 1��Cð Þ½ �2 :

(11)

The estimate for the within-pair effect when adjusting for a
covariate in a way that retains the correct causal interpretation
(equation 4) becomes

βWcov
¼ 2 1� β2ZC�C � ��Zσ

2
�Z

� �� 	
βYX 1� β2XC�C � ��Xσ

2
�X

� �þ βYCβXC 1� �Cð Þ� 	

� 2βZCβXC βYXβXCβZC þ βYCβZCð Þ 1� �Cð Þ2½ �
2 1� β2ZC�C � ��Zσ

2
�Z

� �
1� β2XC�C � ��Xσ

2
�X

� �� 	� 2βZCβXC 1� �Cð Þ½ �2
:

(12)

The interpretation of this estimate is not intuitively clear, though it
must depend on the within-twin-pair correlation in exposure �Xð Þ,
the confounder �Cð Þ and the covariate �Zð Þ. Like the individual-
level estimate, it also depends on the magnitude of βZC , that is,
how well the covariate measures the confounder.

Results

To help interpret how covariate inclusion affects bias in CTCmod-
els, we simulated paired data according to the data-generating
structure in Figure 1. Details of the simulation setup are included
in the supplementary material. While the simulation is not strictly
necessary after deriving exact estimates of β and βW, we include it
here as a visual depiction of the patterns of bias to show the con-
sistency with results from the derivations (Supplemental Figure 1).
The simulation code can also be adapted to show that the patterns
of results hold for other forms of regression (i.e., logistic regres-
sion), though not shown here. The values chosen for each param-
eter were mostly arbitrary, though we attempted to choose
practical values (R code is included in the Appendix if readers wish
to test other parameter combinations). The general pattern of
results holds for all values chosen, though in some cases a particu-
lar combination of parameters is not possible (e.g., low �Z , high �C
and high βZC). For this reason, some lines in the figures illustrating
the results may abruptly cut off when an inadmissible situation
occurs. Figure 2 essentially recapitulates the work of Frisell et al.
(2012), whereas Figure 3 extends this to a variety of situations.
In both figures, only derivation results are shown for ease of clarity
(Supplemental Figure 1 displays simulation results overlaid on the
derivation results to show their concordance). In Figure 3, solid
lines denote the exposure effect estimate with covariate inclusion,
while dashed lines denote the same estimate without covariate
inclusion to better show the change in bias between these models.
The true causal exposure effect was 0 for all simulations βYX ¼ 0ð Þ.

Figure 2 shows how nonshared confounding induces bias in
both the individual-level and within-pair exposure effect, and
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how the bias is affected by the relationship between the within-pair
correlation in the exposure and the confounder in the absence of
covariates (Frisell et al., 2012). The blue line indicates the estimated
exposure effect from the individual-level model, while the red line
indicates the within-pair effect from the CTC model. Because no
covariates are included in either model, bias does not depend on
the magnitude of βZC . Each panel shows the bias under the possible
relationships between �X and �C : �X < �C , �X ¼ �C and �X > �C .
As was found in the previous work, when �X > �C , the βW estimate
from CTC models is a more biased estimate of the exposure effect
than the individual-level β.

We now consider each relationship between �X and �C sepa-
rately. Figure 3(A) illustrates the bias when the twin correlation
is greater for the covariate than the exposure �C > �Xð Þ with the
inclusion of a covariate. In this case, based on findings from
Frisell et al. (2012), we expect that βW will be less biased than β.
We do indeed see that for most values of �Z and βZC . As βZC
increases, meaning the covariate is an increasingly accurate mea-
sure of the confounder, the bias decreases in both βW and β, as
would be expected. The magnitude of �Z , the within-pair correla-
tion in the covariate, affects the rate at which the bias decreases in
the βW coefficients only. When �Z is high, the rate of decrease in
bias of the βW estimate is the highest. Comparing both forms of

covariate inclusion, when βZC is low, βWcov
and βWcovstd

perform sim-
ilarly. As the value of βZC increases, βWcovstd

shows less bias at low
values of �Z ; while βWcov

shows less bias at high values of �Z .
Figure 3(B) illustrates the bias with the inclusion of a covariate

when �X ¼ �C . In this case, we expect that βW will have the same
amount of bias as β. This occurs only when �Z is also the same (i.e.,
�X ¼ �C ¼ �Z). When �Z is low, the within-pair effect is more
biased than the individual-level effect. The reverse is true when
�Z is high. As in the previous scenario, as �Z increases in magni-
tude, the rate of bias reduction also increases but only for the
within-pair effect. Comparing both forms of covariate inclusion
in this scenario, βWcovstd

shows similar bias to β across all values
of βZC and �Z . As the value of βZC increases, βWcov

shows increased
bias at low values of �Z but reduced bias at high values of �Z .

Finally, Figure 3(C) illustrates the bias with the inclusion of a
covariate when �X > �C . This is the ‘worst case’ scenario where
we expect that βW will have more bias than β. As βZC increases,
the bias in both estimates decreases. Additionally, as �Z increases,
there comes a point at which βW is less biased than β. It is clear,
however, that this only occurs when �Z is high and for narrow
ranges of βZC. Finally, comparing both forms of covariate inclu-
sion, we see a similar relationship between βWcov

and βWcovstd
as

in Figure 3(A). When βZC is low, βWcov
and βWcovstd

perform simi-
larly. As the value of βZC increases, βWcovstd

shows less bias at low
values of �Z , while βWcov

shows less bias at high values of �Z .
Interestingly, βWcovstd

never results in less bias than β even at very
high values of βZC and �Z .

Discussion

The current study extends work by Frisell et al. (2012) by showing
that the inclusion of a covariate as a proxymeasure of a confounder
always reduces bias in individual-level and CTC exposure effect
estimates. However, in situations in which we expect the within-
pair estimate (βW) tomemore biased than the individual-level esti-
mate (β), the inclusion of a covariate results in less bias in βW, com-
pared with β, in only a limited set of circumstances. It remains that
in most situations likely encountered in practice, βW will be a
biased estimate of the true causal exposure effect. This result has
important implications for the use and interpretation of CTC,
and more broadly between-within, models.

As previously shown in CTCmodels, when the within-twin-pair
correlation in the exposure is greater than the within-pair

Fig. 1. Causal diagram shown for one twin-pair (subscripts of 1 and 2 represent each
twin). Variables X, Y and C represent the exposure, outcome and unmeasured con-
founder, respectively. Z represents the measured covariate. βYX is the true causal
effect of exposure on outcome. βZC is the effect of the confounder on the covariate.
Double-headed arrows represent familial factors that cause aggregation of pheno-
types within families.
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Fig. 2. (Colour online) Results recreated from Frisell et al. (2012). Blue lines denote the exposure estimate from individual-level models, while red lines denote the
exposure estimate from CTC models. The true causal effect is 0 (βYX ¼ 0). The within-twin-pair correlations in the exposure and the confounder are �X and �C ,
respectively. For each scenario �C = 0.5, while �X varies between 0.3, 0.5 and 0.7. The bias in the individual-level effect and thewithin-twin-pair effect does not depend
on βZC , the effect of the confounder on the covariate, because the covariate is not included in these models.
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Fig. 3. (Colour online) Exposure effect estimates with the inclusion of a covariate from individual-level and within-pair models when (A) the within-pair correlation in
the exposure is less than the within-pair correlation in the confounder; (B) the within-pair correlation in the exposure equals the within-pair correlation in the con-
founder; (C) the within-pair correlation in the exposure is more than the within-pair correlation in the confounder. For each scenario �C = 0.5, while �X varies
between 0.3, 0.5 and 0.7 (consistent with Figure 2). Additionally, each column represents a different value of �Z , the within-pair correlation in the covariate.
βZC is the effect of the confounder on the covariate. Blue lines denote the exposure estimate from individual-level models, red lines denote the exposure estimate
from CTCmodels as specified in equation 4 and green lines denote the exposure estimate from CTCmodels as specified in equation 3. Solid lines denote the exposure
effect estimate with covariate inclusion, while dashed lines denote the same estimate without covariate inclusion. The true causal exposure effect is 0 (βYX ¼ 0).
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correlation in the confounder (i.e., �X > �C), βW will be more biased
than the individual-level β. In this ‘worst case scenario’, one may
choose to include a covariate measure as a proxy of the confounder
in order to reduce this bias.While covariate inclusion reduces bias in
βW more than in β as illustrated in Figure 3, the current work shows
that βW will be less biased than β only when the within-pair corre-
lation in the covariate �Zð Þ is high and the covariate is an accurate
measure of the confounder (βZC is large). In comparing forms of
covariate inclusion, βWcovstd

generally shows less bias than βWcov
when

�Z is low but shows greater bias at high values of �Z . While it may be
the case that using βWcovstd

results in the greatest bias reduction in the
exposure effect estimate, this form of covariate inclusion does not
retain its assumed causal interpretation (Sjölander et al., 2012).
The increased bias reduction in select scenarios is not sufficient
to justify its use over βWcov

, which does retain the correct causal
interpretation.

The effect of βZC on these results is intuitive. If the covariate is
an accurate measure of the confounder, including it in the model
will clearly reduce confounding bias. The effect of �Z on bias reduc-
tion is less intuitive. Across all relationships between �X and �C ,
increasing values of �Z decrease the bias in the within-pair esti-
mate, as illustrated in Figure 3. In other words, holding �X and
�C constant, increasing �Z will reduce bias in βW (the individ-
ual-level estimate, β is not affected by the value of �Z). This occurs
for the same reason that increasing �C , holding �X constant, results
in lower levels of bias in βW as discussed in Frisell et al. (2012).
When twins are less discordant on the confounder, meaning that
�C is larger, they are also likely to be less discordant on the cova-
riate (�Z is larger). This decreases the correlation between the cova-
riate and the exposure variables resulting in less bias. Importantly,
the within-pair estimate is only unbiased when all confounders are
perfectly shared within a twin-pair.

The current results have important implications for the inter-
pretation of CTC results. As described above, interpretation of the
within-pair effect is commonly made by comparing βW from the
CTC model to β from the individual-level model. We show that
in the presence of nonshared confounding, CTC results can sup-
port a causal effect of exposure on outcome even when the true
causal effect is 0 βW ¼ β 6¼ 0ð Þ. This will occur even if a covariate
is included in the CTC model as a proxy measure of the
confounder.

Additionally, the within-pair estimate between the monozy-
gotic βWMZ

� �
and dizygotic βWDZ

� �
twin-pairs is usually compared

to identify whether genetic or shared environmental factors con-
found the exposure–outcome relationship. For instance, when
βWMZ

< βWDZ
< β, this suggests that the observed relationship is

confounded by genetic factors (McGue et al., 2010). This is because
MZ twin-pairs share all genetic factors, while DZ twin-pairs shared
approximately 50% of these factors. Both types of twin-pairs share
all common (rearing) environmental factors. Given heritable phe-
notypes, the within-pair correlation in exposure, confounder and
covariate will be greater for MZ compared with DZ twins influenc-
ing the comparison of βWMZ

and βWDZ
. Even in the case of a true,

nonzero effect of exposure on outcome, it would be possible to con-
clude that genetic factors confound the causal relationship
βWMZ

< βWDZ
< β

� �
when, in reality, they do not. This point has

been made previously (Frisell et al., 2012), but we highlight that
it continues to hold in the context of the current results.

Of additional note, it is likely that the exposure and covariate
are measured with some amount of error. It is well documented

that measurement error in an exposure will attenuate the exposure
effect estimate in a simple linear regression (Hutcheon et al., 2010;
Liu, 1988; Spearman, 1904). Furthermore, it has been shown that
the estimate from CTC models will be attenuated more than indi-
vidual-level models (Frisell et al., 2012; McGue et al., 2010). In the
case of multiple regression, where covariates are also subject to
measurement error, the estimated exposure effect may under or
overestimate the true causal effect (Liu, 1988; Rosner et al.,
1990). While we do not include derivations for β and βW in the
presence of measurement, the reliability of the covariate Z would
function as a measure of βZC. The effects of measurement error
would thus mirror the impact of βZC as shown in Figure 3.

While we show that exposure effect estimates fromCTCdesigns
are likely to be biased, we maintain that the CTC design can pro-
vide useful information when used appropriately. Results from
CTC studies can often be used to argue that an observed relation-
ship is not consistent with a causal exposure effect. For instance,
when βW= 0 and the expected level of measurement error does
not likely account for this magnitude of attenuation, it would sug-
gest that shared confounders explain at least part of the exposure–
outcome relationship. Results may also suggest that an observed
association cannot be entirely due to shared confounders within
a twin-pair. When βW 6¼ 0, this suggests that some influence
beyond shared confounders is contributing to the observed
relationship.

The best case for bias reduction in CTCmodel estimates occurs
when the within-twin-pair correlation in the exposure is less than
the within-twin-pair correlation in the confounder, when the
within-twin-pair correlation in the covariate is high, and the cova-
riate is an accurate measure of the confounder. Of these pieces of
information, only �X and �Z are known in practice. These values
should always be reported and a case should be made about the
likely relationships to the possible confounders to determine
whether CTC models are appropriate for a given situation.
Lastly, there are additional limitations of the CTC design that
the current study does not address, like reverse causality and the
potential causal influence of nonshared environmental factors
not included in the models (McGue et al., 2010). Future methodo-
logical work should be focused on the extent to which these factors
affect exposure effect estimates from CTC models.
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