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1. Introduction and preliminaries

The aim of this paper is to give solutions of some of the problems raised in
Wiegold (1974). The main content is the proof of Theorems A and B following,
which are improvements of Theorems 4.5 and 3.4 respectively of Wiegold (1974).
All unexplained notation will be as in that paper, which would perhaps best
be viewed as a preliminary to this one.

THEOREM A. Let G be a finite non-trivial perfect group, s the size of the
smallest simple image of G, and c any real number greater than 1. Then
d(G") £ clog,n for all sufficiently large n.

This theorem is fairly nearly best possible, as can be seen from §4 of Wiegold

(1974).

THEOREM B. Let G be a finite imperfect group, and set d(G)= «,
d(G|G") = B.

() If B =2, then d(G") = pn for n = ;::

(i) If B =1, then d(G") =n for n 2 20+ 1.

Examples in §4 show that these bounds are somewhere near the truth. More
precisely: Lemma 3.3 of Wiegold (1974) shows that if n’ is any integer such that
d(G™) = Bn’, then d(G™) = pn for n = n’; so that the settling-down of the
growth sequence to its eventual linear behaviour is sudden and permanent. The
examples referred to are of groups whose growth sequences have not settled
down to linearity until n excesess about (1/8}a + loga) or so. In fact I believe
that these examples are close to the right answer, though this would be very
much harder to establish than Theorem B, which is comparatively easy. For an
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application of Theorem B to presentations of direct products of finite groups,
see Cossey, Gruenberg and Kovéacs (1974).

For finite soluble groups, Theorem B can be improved as follows (see also
Gaschiitz (1959):

THEOREM B'. Let G be a finite non-trivial soluble group, and set d(G) = «,
d(G/G") = B. Then d(G") = Bn for n = «/f.

These theorems depend on the following result, which is a consequence
of Satz 3 of Gaschiitz (1955). I am grateful to L. G. Kovacs and M. F. Newman
for pointing out this approach to me; it is considerably easier and more efficient
than an ad hoc approach I had adopted to prove a result like Theorem B. This
ad hoc method has the minor advantage that it applies to finitely generated
(infinite) soluble groups as well; however, as the main interest is in finite groups,
1 shall not go into details.

LemMMA 1.1. Let G be a finite group, R(G) the intersection of the maximal
normal subgroups of G, set G/R(G) = G, and let r be any positive integer.
Then d(G") £ k if and only if d(G) £ k and d(G}) £ k.

Clearly, G* = A x B, where 4 is a direct product of abelian simple groups
with d(4) = d(G/G’) = B, let us say as usual, and B is a direct product of non-
abelian simple groups. Furthermore, G, = A" x B, so that by Wiegold (1974),
Lemma 5.1, for instance, d(Gg) = max(fn,d(B")). We already know from
Wiegold (1974), Theorem 4.5, that d(B") is eventually roughly logarithmic in n,
so that d(GY%) is eventually fn whenever n = 1; by Lemma 1.1, so therefore is
d(G™). The main import of what follows is to study d(B") in a little more detail.

Our final preliminary is well-known, though I can find no reference in the
literature. The proof is routine.

LemMma 1.2. Let S1,S,,--+,S, be pairwise non-isomorphic simple groups
(abelian or not, infinite or not), let my,m,,---,m, be positive integers, and let
F be a group containing normal subgroups N,,N,,--,N, such that F|N; = St
for each i = 1,2,---,r. Then F[{(j=;N; = ST' x 872 x - x S,

2. Proof of Theorem A

Let G be a finite perfect group and S, S,, -+, S, the different simple images
of G, so that G, 2 S x S5 x -+ x Sy (with G, as in Lemma 1.1) for suitable
positive integers my, m,,---,m,. For each positive integer n, G = ST x Sy*"
x .-+ x Sy, and so by a simple application of Lemma 1.2 with F free, we
get:

LemMA 2.1. For every n, d(Gy) = max{d(S7"):1 < i< r}.

The next result is an immediate consequence of Wiegold (1974; 4.4).
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LeMMA 2.2. For every finite non-abelian simple group S, and every real
number e>1, d(S8") < elogs;n for sufficiently large n.

Theorem A is now easy to prove. With the notation and assumptions set up
in the statement of the theorem and in this section, we know from Lemma 1.1
that we need only to show that d(G}) < clog,n for large enough n; so by Lemma
2.2, we have only to show that d(S7""") < clog,n for large enough n. But this
is clear since, firstly, for e > 1 we have d(S;"") = e(logjs,| n + logs, m,) for large
enough n (Lemma 2.2), and secondly, |S,~| = s for each i and the m; are constants
depending only on G.

3. Proof of Theorem B

Here everything depends on the following lemma, which is perhaps of minor
independent interest.

LemMma 3.1. Let X be any finitely generated group, and Y any finite
perfect group. Then d(X x Y) £ max(d(X),d(Y))+ 1.

Proor. It is a simple consequence of Wiegold (1974; Lemma 3.1) that there
exists an element y of Y such that [y, Y] = Y. (This is slightly stronger than an
unpublished theorem of P. M. Neumann — which would do for our purposes —
stating that Yis the normal closure of a single element.) Let r = max(d(X), d(Y)).
Then, supplementing a minimal generating set of one or other of these groups
with dummy generators (if necessary), we get a generating set x,, x,, -, x, for X
and a generating set y,, y,, -, ¥, for Y. The following elements generate X x Y:

(xl’ yl): (xZ’ J’2), "',(xr, yr),(ls y) .

This is because commutating the element (1, y) with a suitable word in the preced-
ing elements produces every element of the form (1,[y,g]), g an element of Y,
and thus gives the whole of the second component of the direct product.

The bound given here is best possible. For example, if 4 denotes the alter-
nating group of degree 5, then d(A) = d(4*°) = 2, whereas d(A4%°) = 3. There
are numerous other examples.

COROLLARY 3.2. For every finite perfect group B and every positive integer n,
dBY £dB)+n—1.

This is straightforward. It is also asymptotically a very weak result, since
we know that eventually d(B") behaves roughly logarithmically in n. Its virtue
lies in the fact that it is valid for all n, and it is strong enough to give part (i) of
Theorem B. On the other hand, its weakness is one of the main reasons for think-
ing that Theorem B is not quite all that it might be.

We can now prove part (i) of Theorem B. It is an unsatisfactory feature
of the article that we need a quite different argument to deal with part (ii). Other
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than searching for a substantial improvement of Corollary 3.2, which I have done
without success, I see no possibility of eradicating this difficulty.

Let then G be a finite imperfect group with d(G) = a, d(G/G") = B = 2.
Then, with G, as in Lemma 1.1, G, = A x B where 4 is an abelian group with
d(A) = B, and B is a direct product of non-abelian simple groups. Then
d(G,) = max(p,d(B)) = y say, where y < «. Moreover d(Gy) = max(fn, d(B"),
and by Corollary 3.2, d(Gy) = fn provided that fin = y + n—1, that, is pro-
vided n = (y—1)/(f—1). This is certainly true if n = (x—1)/(f—1); and to
complete the proof of the theorem, we need only observe that Lemma 1.1 applies
with k = pn, since for n = (a—1)/(f—1) we have d(G}) = fn = B((a—1)}(f—1))
> «, and therefore d(G") £ fn. But d(G") = d(G;) since G, is a homomorphic
image of G, and so d(G") = fn for n = (a—1)/(f—1), as required.

For part (ii), we use the ad hoc methods mentioned in the introduction.
Let G be a finite imperfect group with G/G’ cyclic and d(G) = «. By Wiegold
(1974), Lemma 3.1, there is an element a of G generating G mod G’ and such that
[a,G] = G’. It therefore follows that there are elements b,, b, -+, b, of G’ such
that G = {a,b,,--*, b,>. By Wiegold (1974; Lemma 3.3) all we need to do is
to show that d(G***') = 2a + 1; to do this we actually exhibit generators. Write
elements of G2**! as strings of length 2a + 1; then it is a matter of not too
difficult but tedious calculation to show that the 2« + 1 “‘cyclic rearrangements’’
of the element

(d, 1, bl’ 1: b27 19 Tty la ba)

generate G***'. We shall omit the proof because of its length and routine nature.
The proof of Theorem B’ follows the same lines as that if Theorem B.

4. Examples

The examples to be exhibited here are just those of Wiegold (1974; § 5);
all we do is to look at them from a slightly different angle. The reader is reminded
that all unexplained notation is to be found in Wiegold (1974).

Let K be a finite non-abelian simple group, so that for « = 2 the group
K"*K) js y-generator. For neatness we write h(n, K) = h(n) for each n, and agree
that logarithms are taken to the base |K|. Set G = K"*® x 4, where 4 is an
abelian group on f generators, so that d(G/G’) = §.

Now let ¢ be any positive real number less than 1, let kK be any positive real
number, and 6 the integer part of (1/8)(x + cloga) + k. Then d(G% = B8 if
and only if d(K"®?) < 0; and a careful look at § 4 of Wiegold (1974) shows
that this is so if and only if

h()0 < h(B6);
by Wiegold (1974); this is equivalent to
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(4.1) 0 TuH)|H[S ZuHE|H]”,

where p is the Mdbius function of K and the sum is taken over all subgroups
of K. As in Wiegold (1974), write &(m) for ZH¢K;1(H)|K: H“"‘. Then 4.1 is
equivalent to

4.2) 0(1 + &(o)) = | K751 + &(B6))

By definition of 6, the right hand side of this inequality is not more than
| K [a¢, while the left hand side is greater than ((1/8)(x + cloga) + k— 1)1 +&()).
Now fix K, ¢, k, . Then 8 — oo as « — co,and by Wiegold (1974; §4),¢(m) —» 0
as m — 00; thus, as ¢ < 1, it follows that 4.2 fails for almost all «, and therefore
that d(G®) > B0 for almost all . Summing up, we can state:

THEOREM 4.1. Given any positive integer B =1 and any positive real
numbers k, ¢ with ¢ <1, there exists an integer o' such that for all « = o’
there exists a finite group G with d(G) = a, d(G/G') = B and d(G") > fn for
n < [(1/B) (o + cloga) + k], where s is the size of the smallest simple non-
abelian image of G.

Although the examples given here seem unnatural, Lemma 1.1 shows how
they are prototypical for the growth sequences of imperfect groups.
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