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THE KELVIN IMPULSE: APPLICATION TO
CAVITATION BUBBLE DYNAMICS
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Abstract

The Kelvin impulse is a particularly valuable dynamical concept in unsteady fluid
mechanics, with Benjamin and Ellis [2] appearing to be the first to have realised
its value in cavitation bubble dynamics. The Kelvin impulse corresponds to the
apparent inertia of the cavitation bubble and, like the linear momentum of a
projectile, may be used to determine aspects of the gross bubble motion, such as
the direction of movement of the bubble centroid.

It is defined as
I=p / ¢nds,
8

where p is the fluid density, ¢ is the velocity potential, S is the surface of the
cavitation bubble and n is the outward normal to the fluid. Contributions to the
Kelvin impulse may come from the presence of nearby boundaries and the am-
bient velocity and pressure field. With this number of mechanisms contributing
to its development, the Kelvin impulse may change sign during the lifetime of
the bubble. After collapse of the bubble, it needs to be conserved, usually in the
form of a ring vortex. The Kelvin impulse is likely to provide valuable indicators
as to the physical properties required of boundaries in order to reduce or elim-
inate cavitation damage. Comparisons are made against available experimental
evidence.

1. Introduction

The Kelvin impulse, as one might anticipate, has the dimensions of momentum.
It is related to the concept of impulse in particle mechanics, an analogy that is
exploited later. However, care needs to be exercised in relating it to the change
in momentum from one instant to the next, because of the possible unbounded
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nature of the fluid that may occur in theoretical fluid mechanics. Perhaps be-
cause of this indefinite nature of the impulse, it has not been exploited as fully
as it should have been. Lamb [9] has a number of comments to make about the
impulse, stating:

“whatever the motion of the solid and fluid at any tnstant, it might be gener-
ated instantaneously from rest by a properly adjusted impulsive wrench”.

Later on he says:

“the wrench is in fact that which would be required to counteract the tmpulsive
pressure on the surface”, and later again: “Kelvin called this the ‘impulse’ of the
system under consideration”

Many years later Benjamin and Ellis [2] stated:

“...again if the liquid remained simply connected as the cavity closed up, the
Kelvin impulse would have to vanish, which we cannot allow in the absence of an
external retarding force. Thus the cavity must deform in such a way as to make
the liguid multiply connected—circulation can then appear in the liquid and we
are left in the limit with a vortex system possessing the original Kelvin tmpulse”

And from the same paper, another quote:

“One should always reason in terms of the Kelvin impluse, not in terms of the
Auid momentum. . .”

The Kelvin impulse corresponds to the apparent inertia of a cavitation bubble
and, like the linear momentum of a particle, may be used to determine aspects
of the gross bubble motion such as the movement of the bubble centroid. Thus,
from this perspective, the study of a cavitating liquid can be reduced to modelling
collectively the behaviour of the individual bubbles, a very great simplification.

The concept of the Kelvin impulse is introduced by considering an impulse
from particle mechanics in the next section, followed by a section which develops
the ideas of the Kelvin impulse in a semi-infinite fluid. A relation is obtained
between the Kelvin impulse and a momentum flux-like term on the half-space
boundary. These ideas may be extended to a finite number of bubbles next to
the boundary. It is also possible to relate the motion of the centroid of the
bubble to the Kelvin impulse in several selected examples. In the far-field we
can approximate the fluid motion due to a cavitation bubble by a source or a
source and a dipole combination. This representation may be exploited to yield
the Kelvin impulse, by an analytic integration on the half-space boundary. This
yields further information and valuable insight into the interaction mechanics of
cavitation bubbles near boundaries. Some of these predictions will be related to
examples of experimental observation.
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2. Impulse in particle mechanics

If a force F of variable magnitude acts on a particle of constant mass m we
have, from Newton’s second law of motion, that

dv
=m—— 1
F mdt’ (2.1)

where v is the velocity and ¢ is time, and when integrated from (0, ¢), this yields
t

I= / F dt = my(t) — mv(0). (2.2)
)

The quantity fot F dt is known as the impulse I and represents the change in
momentum of the particle along the line of action of the force. If the particle
starts from rest, the impulse is the actual momentum of the particle at time ¢,
i.e. .

I= / Fdt = mo(t). 23)
0

This result may be generalised further still by allowing the mass to also be a
function of time m(t), a factor of some relevance later when we consider the
added mass of a cavitation bubble, which will clearly be a function of time
because of the changing volume of the bubble. It should also be noted at this
stage that the sign of I in (2.3) determines the direction of translation of the
particle, a factor that is exploited in later sections.

We now develop similar ideas for a liquid.

3. The Kelvin impulse

The Kelvin impulse for a cavitation bubble in a liquid is defined as, [3],

I=p / énds, (3.1)

where p is the fluid density, ¢ is the velocity potential, S the surface of the cavi-
tation bubble and n is the outward normal to the fluid (i.e. into the bubble - see
Figure 1). This expression arises naturally from consideration of the conservation
of momentum in an inviscid incompressible fluid moving irrotationally.

Because the liquid is incompressible, conservation of mass requires that the
velocity field u be solenoidal, i.e.

V-u=0, (3.2)
while the motion being irrotational yields
V xu=0, (3.3)
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FIGURE 1. Illustrates the half space contro! volume near a ‘composite’ boundary that is
used in determining relations for the Kelvin impulse.

such that the velocity may be represented by the gradient of a potential ¢ as
u=Vg. (3.4)
Combining (3.4) and (3.2) yields the field equation as Laplace’s equation:
Vip =0. (3.5)

Purely inviscid flow leads to the pressure being expressed by the Bernoulli ex-
pression, 5

p=po- pa—f - %pIUIZ- (36)
Equation (3.6) could be generalised by the inclusion of the hydrostatic pressure
term, but at this stage we wish to restrict our analysis to the inertial aspects
of the fluid motion. The above equations are what may be called “point-wise”
equations, i.e. are valid at every point in the fluid. However, much valuable in-
formation may be obtained from global balances as against local balances above.
This naturally leads us to the next section on the global conservation of linear
momentum.

4. Global conservation of linear momentum

Let us consider a finite control volume V of fluid bounded by a bubble, the
half-space boundary £, and the material control surface ¥ within the liquid (see
Figure 1). The linear momentum of the volume of liquid in this fixed frame of
reference is represented by

P=p‘/‘;udv, (4.1)

https://doi.org/10.1017/503342700000067111 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006111

(5] Kelvin impulse and cavitation bubbles 131

which, on the use of the Gauss divergence theorem, may be equated to

P= p/ ¢ndS
SUZUZI,

=p{/s¢ndS+/EUEb¢ndS}.

It can now be seen how the Kelvin impulse arises naturally in this study, for it
is the first term on the right of equation (4.2). It is also clear that the second
integral is not well specified for an infinite or semi-infinite fluid, since ¢ = O(1/R)
and dS = O(R?).

The apparent problems may be circumvented if we consider the rate of change
of momentum in the finite material control volume by equating this to the pres-
sure forces acting at the boundaries, i.e.

@ = —/ pndS. (4.3)
dt SUSUE,

Since all the integrals are finite, it is expeditious to break the momentum up
into the Kelvin impulse and the remaining integral over the control surface and
boundary. Thus we have

dl / d
_——=— pndS — — ¢nds. 44
dt SUTUE, dt Jsus, (44)

Now for a cavitation bubble the saturated vapour pressure inside the bubble is
constant which leads to a null contribution to the right hand side of (4.4) from
the surface integral over S. On exploiting the Bernoulli pressure condition and
the Reynolds transport theorem, we may write (4.4) as

dl 1 ]
=P /E - <§(V¢)2n - a—:VqS) ds. (4.5)

Equation (4.5) is now in a suitable form to allow the control surface £ to extend
out to infinity because the integral is O(R~*) leading to zero contribution in the
limit.

Thus on integration we have a very similar expression to the elementary par-
ticle mechanics expression in (2.3) of

(4.2)

t
1= / ondS =To+ / F(t)dt, (4.6)
s 0
where I is the initial Kelvin impulse and
F(t) = p /E ., { 5(Vé)n anw} ds. (4.7)

If we were to include buoyancy forces, (4.7) would be modified by the addition
of pgV(t)cosd to the RHS, where g is the gravitational acceleration, V (¢), the

https://doi.org/10.1017/503342700000067111 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006111

132 J. R. Blake l6)

bubble volume and 4 is the angle between the gravity vector and the outward
normal to the half-space boundary.
The theory may also be extended to N bubbles, yielding

N N
I=ZIn=pZ/ ¢nds. (4.8)
n=1 n=1 Sn

The relations (4.6) and (4.7) will still hold provided the potential ¢ is now the
sum of the contributions from all the bubbles, i.e.

N
6= én. (4.9)
n=1

5. Motion of the bubble centroid in an infinite fluid

If we represent the volume of the bubble, surface S, by D, then the position
vector x, for the centroid may be written as

1
Xe = Vb/Dde, (5.1)

where V}, is the volume of the bubble. If we consider the rate of change of Vyx,
with time, we arrive at the following:

d(Vbxc) _ d /
= Dde, (5.2)
which on applying the Reynolds transport theorem yields
(v,,xc - / (5.3)

where 8 is the position vector of a point on S (see also (10]).
Green’s formula for the potential in an infinite fluid is

b= (Zi% ~ 6o (%)) ds, (5.4)

where r = |x — 8|, noting the definition of the normal n. In the far-field where
|x| is much greater than |s|, we may approximate the following expressions in

the integral, as in [10]:
1 1 8-X 1
—s~ W e TO\RE (5:5)

(5.6)
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Thus in the far-field the potential behaves like

1 a¢ x 8¢ ) < 1 )
~— | £ = . 2% _n¢)ds — . 5.7
¢ 4r|x| J, On ds + 47|x|3 /s (San ng +0 |x|3 (57)
The first quantity is the source strength
o¢
=- [ 5.
m(t) = - [ 325, (58)
while the second term is the far-field dipole strength d(t), given by
_ o4
a(t) = /s (nd) - s-a—n> ds. (5.9)
Thus we may write
-m(t) d(t)-x 1
~ - — 1
O~ G anpP T O\ P (5-10)

as a representation of the bubble in the far-field.
In addition, for an #nfinite fluid, we may also express the dipole strength in
terms of the motion of the centroid and the Kelvin impulse as follows:
at) = Lwx) + 11 (5.11)
dt P
However these relations will be modified for a semi-infinite fluid because of
the necessary changes to the Green’s function so that the boundary conditions on
the half-space boundary can be satisfied. We delay further discussion of relations
such as (5.11) until the next section, when the known Green’s functions (or point
source solutions) have been defined.

6. Point source solutions

After the derivation and physical discussion of the previous two sections, we
move to exploit the option of evaluating the impulse over the half-space bound-
ary. In a quite simple way, we may approximate the dominant motion of a
cavitation bubble by a source. If we also allow the bubble to translate, we may
also include a dipole. Recently Kucera and Blake [8] have developed a low-order
singularity method (LOSM), consisting of a source and a dipole to model the
growth and collapse of clouds of bubbles most effectively, with the theory only
breaking down late in the collapse phase.

A number of point source solutions near a half-space boundary are well-known
([3]). Several of these are listed below. In all the examples, we consider a source
of time-varying strength m(t), a distance h from the plane boundary defined by
z=0.
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(i) Rigid boundary. The boundary condition for no flux through the

boundary is
o¢ _
;9;—0 onz=0. (6.1)
The expression for the potential ¢, is
-m 1 1
= G [((z TRE AR T (G R T 72)1/2] ' (6.2)
The general expression for a dipole of vector strength (dg,d,,d;) is
by = — ds z—h _ (z+h)
4T T ar (- h)Z+ 2R3 ((z + h)2 + 12)3)
dy Y Y
e [((z B PR 7 (NS P r2)3/2] (6:3)

d, P4 z
T [((z— B2+ 720 T (@ + R +r2)3/2] !

where r = (y? + 22)!/2 is the radius in cylindrical polar coordinates.
It is possible to extend the ideas developed by Lighthill [10] to a semi-infinite
fluid. The Green’s formula for the potential near a rigid boundary is

3]
o= — ( Y- ¢—) (6.4)
where the Green’s function G in this case is defined by
G=1/|x—s|+1/|x—4|, (6.5)

where 8 is the position vector of a point on the bubble surface and &' is the
position vector of the image point in the z = 0 plane boundary.
In an analogous way to Section 5, the far-field approximations become

_ (8 +8')-x (_1_)
G= le + —a <P +0 R (6.6)
and oG 2 1
n-x
% = ——lxla +0 (W) . (67)

This leads to the following far-field expression for ¢:

b o+ | - 50 3) 09

In other words, the source field is twice as strong in the far-field because of the
zero flux through the rigid boundary, while the dipole field is given by

() = 2/3 {dm - %(s + s’)%} ds. (6.9)
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If we restrict ourselves to axisymmetric motion in the z-direction (i.e. normal
to the rigid boundary) we have that

(s+8')-e; =0,
leading to
da(t) =2 [ (9l - e.) dS: (6.10)
that is,
4:(0) = >L(0), (6.11)

yielding a far-field behaviour for the potential ¢ of
g=-ml) _ &z, ( ! ) . (6.12)

“anlx] ~ 2mobcP O\

The Kelvin impulse is thus associated with the equivalent of translational motion
in the far-field (i.e. a dipole).

(ii) Free surface (zero potential). The expression for a source is

¢s = F [((x _ h)2 +1-2)1/2 - (($+ h)2 +T2)l/2] ) (613)
while for a dipole,
_& [ z—h + z+h ]
ba= 4m [((xz — h)2 +72)3/2 ' ((z + h)2 + 72)3/2
- [ Y - Y (6.14)
4 | ((z —h)2+72)3/2  ((z + k)2 +72)3/2 )

d, z F4
T 4w [((:z: —h)2 471232 ((z+h)? + r2)3/2] ‘

(iii) Two-fluid interface. The linearised dynamic boundary condition on
the interface at z =0 is

p161 = pag2, (6.15)

where 1 refers to the lower fluid and 2, the upper fluid. If the source is in the
fluid of density pi, the expressions for the potential in both fluids are as follows:

15 =

—-m 1 1 —p2 1
[ ( (6.16)

n (e =R+ bty (& + B2 +12)172

-m P 1
21 p1+ p2 ((z — h)? 4+ r2)1/2°

P25 = (6.17)
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and for a dipole

é —_d_z[ 2—h P1—p2 z+h
T T (@ =m2 3 T pit s ((z+ )2+ 72)3/2J
_d_v[ y _p—p y 1 (618
i G-+~ pim(@rie s @
_ g [ ol _ph—p z ]
dm [ ((z —h)2 +72)3/2  pi 4 py ((z + h)? +12)3/2 ]
¢13 = _d_z P1 z—h _ -d_y 21 y
4m pr + p2 ((x —h)2 +12)3/2  4mp; + pg ((z — h)2 +12)3/2
d, P1 z

T 4mpi+p2 (- b2+ 1) (6.19)

(iv) Inertial boundary. As a model for an inertial boundary we suppose a
material of mass per unit area ¢ forms the boundary, but with no rigidity. The
kinematic condition for ¢(r,t), the displacement of the boundary, is

% _ 99

% = 3. OBT= 0. (6.20)

The linearised dynamic boundary condition for an inertial boundary is

9%¢

32 = Poo — P- (6.21)

[+

When the linearised Bernoulli pressure condition of

¢
P=Poo—p It (6.22)
is substituted into (6.21) and integrated, the following mixed boundary condition

is obtained:

) _ _
v pp=0 onz=0. (6.23)

The point source solution for this boundary condition is

s = —— 1 1

5T Tar [[(I—h)2+'r2]1/2 +[(:1:+h)2+r2]1/2
20/0 [ S end 24
—2p/o . E+p0 o(¢r) EJ, (6.24)
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and the dipole is,
_dg [ z—h : (z+h)
i [G=W+ 777 G+ P+ )7

e—E(z+h)
—2p/o / 0 hter) de]

§+p/o
4| y
i [[e=h2+ P2 (a+hp + r23/2
w gg-E(th) (6.25)
—29/‘7; —ETP/_UJI(ET) df]
_ g z z
ar [ ((z — h)2 4 r2)3/2 '*‘((:,c + h)2 +r2)1/2
z [ geSlath)
“2/’/‘7; WJI(ET) df] )

where Jj is a Bessel function of first kind and zeroth order.

(v) Membrane boundary. As a model for a boundary with both inertia
and a restoring force we consider a membrane boundary which satisfies the kine-
matic relation (6.20) and dynamic relation for the displacement ¢(r,t) as follows:

a& — TV = (6.26)

922 Poo — P .
where ¢ is the mass per unit area and T the tension in the membrane. Using the
linearised Bernoulli pressure condition of (6.22) leads to the following boundary

condition for ¢ on the membrane:

2
37 (ag_‘: - p¢) —TV? (‘;_i’) 0. (6.27)

The point source solution for the membrane boundary is

. m 1 1
“ [((z —RP ) (@ = R+ )

oo 1/2
= [T () e

{/ m(t — 1) s1n( 53) df} d&]. (6.28)

7. Estimates of the Kelvin impulse for a point source

The sign of the z-component of the Kelvin impulse determines whether the
bubble either migrates towards or away from the boundary in much the same way
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as the impulse of a particle in (2.3). To obtain the point source representations
of the previous section, we have specified the boundary conditions on the plane
z = 0. We may also evaluate the z-component of the Kelvin impulse on this
boundary, which reduces to the simple form

uo=m+43wma (7.1)

where Iy, is the initial Kelvin impulse in the z-direction and

F(t) = p7r/:° r(u? — v?)dr (7.2)

with u and v being the velocities on z = 0 in the z and r directions respectively.
Calculating the initial Kelvin impulse for singularities poses some difficulties,
because we have not specified the surface S. However if we choose S to be a
sphere of very small radius R and take the limit as R tends to zero in the integral
definition (3.1) for the Kelvin impulse, we find that

I = { 0 source (1.3)
%7\ 1d,(0) dipole, '

where d;(0) is the initial dipole strength and where higher order singularities are
undefined because they are too singular (i.e. dS = O(R?),¢, = O(1/R"),n=1
for a source, n = 2 for a dipole, n > 2 undefined). From (5.11) it may be deduced
that the remaining 2/3 of the dipole strength comes from the time rate of change
of Vyx.. Of course, in practice, the initial condition for the bubble may be one of
finite size in which case the above statement would not be applicable, although
(7.3) would remain correct to first order for a bubble near a boundary. Indeed
if we considered a finite spherical bubble of initial radius Rp and velocity Up, in
an infinite fluid the well-known potential is given by

¢ = —R3Uq-x/(2IxIP), (7.4)
a potential produced by a dipole of strength d = 2rR§Uy. Thus the initial
Kelvin impulse [10] in this case is

Io = (2r/3)pR§Uo = (1/2)pV3 Uo. (7.5)

The quantity %pVb is often referred to as the added mass of a bubble in an
infinite fluid. For a bubble in an effectively infinite medium, the Kelvin impulse
will remain constant, equal to Iy in (7.5).

Upon substitution of the respective gradients of the potential ¢ into (7.2), we
obtain the following values for F;(t) corresponding to the listed boundaries.

(i) Rigid boundary.
F(t) = —pm?/(167h?). (7.6)
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(ii) Free surface (zero potential).

F.(t) = pm?/(167h?). (7.7)
(iii) Two-fluid interface.
Fz(t) = p1m*(p1 — p2)/(167h* (p1 + p2))- (7.8)
(iv) Inertial boundary.
Fu(t) = (om?®)/(4wh?)H (e), (7.9)
where
H(a) = a — 1/4 — 2a%**E, (2a), (7.10)

with the non-dimensional parameter o defined as o = ph/o and E; an expo-
nential integral, as in [1]. The limit as o tends to zero corresponds to the rigid
boundary limit (i.e. infinite mass for the boundary), while o tending to infinity
yields the free surface (zero potential) result.

For the case of the inertial boundary it is also possible to include a dipole d(t)
for the axisymmetric case. This yields the following expression for F;(t):

Fi(t) = h2 [mzH(a) - —G(a) + & F(a)] (7.11)

where the additional expressions G(a) and F(«) are defined as follows:
G(a) = —1/2 + a — 20* + 40%€** E; (20a) (7.12)
F(a) = —3/8+1/2a — 1/20% + a® — 2a%e?* E; (20). (7.13)

Graphical representations of H(a), G(a) and F(a) are illustrated in Figure
2. It is of interest to note that the contributions to the Kelvin impulse from
the source term do not depend on whether it is acting as a source or a sink (i.e.
F; « m?). In addition it depends on the inverse square of the distance from
the boundary. Thus the closer the bubble is to the boundary, the greater the
impulse. Clearly it would be desirable, in terms of increasing the impulse, if the
bubbles were attracted towards the boundary, corresponding to F; < 0. On the
other hand one of our prime objectives would be to reduce the Kelvin impulse
and the potential for causing physical damage to the boundary. This would
result if F; > 0, leading to the bubbles migrating away from the boundary.

(v) Membrane boundary.

Fo(t) = M”hz m2H(a)

2n+4 2n+2 20

Z < (2n + 1)1h27+2 By (2a) /0 (t =)+ 'm(r)m(t)dr |,

(7.14)
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FIGURE 2. Graphs of the functions H(a), G(a) and F(a) where a = ph/o.

where ¢ = (T'/0)!/? is the wave speed of the membrane and B, (2a) consists of
a finite sum of exponential integrals. It is of interest to note that this boundary
has “memory” effects in that it can extract or inject energy back into the fluid.
This is realised in moment-like terms on the RHS of (7.14). In all of these
expressions for F(t), a term equal to pgV (t) cosd representing buoyancy forces
may be added. Later we shall use this extra term when trying to assess the
relative importance of buoyancy forces when comparing this theory against both
experimental results and numerical simulations.

8. Estimates of the final Kelvin impulse for a bubble

To develop the theory further, it is convenient to scale all length dimensions
with respect to R,,, the maximum bubble radius, and time with respect to
Rm/(Ap)'/? where Ap is the pressure difference between the initial pressure pg
in the fluid at the location of the bubble prior to it being generated and the
vapour pressure p. inside the bubble (i.e. Ap = pg — p.). This leads to the
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definition of the dimensionless parameter,
Y = h/Rm,

which is the specification of the initial location of the bubble centroid.

In the previous section, values of F(t) were obtained for point source solutions
near different boundaries. To obtain the final Kelvin impulse (i.e. the Kelvin
impulse at completion) we need an expression m(t). If the bubble centroid is
located at a sufficient distance from the boundary (i.e. ~ > 1), the bubble
will remain almost spherical allowing us to use the expression for m(t) from the
Rayleigh bubble solution for a cavitation bubble in an infinite fluid. Thus the
source strength m(t) becomes

met) =Y = arR?R, (8.1)
dt
where 9 /1
o _2(1
R =2 ( = 1) (8.2)

may be obtained by integration of the dynamic boundary condition on the surface
of the bubble. This may be substituted into the relevant equations in Section 7
to yield the final Kelvin impulse as follows:

L(T.) = /0 " B, (8.3)

where T, is equal to the lifetime of the Rayleigh bubble (7, = 1.83...). We
postulate that when I;(T.) is less than zero, the bubble migrates towards the
boundary. Conversely if I,(T) is greater than zero the bubble will migrate away
from the boundary. On the other hand a near zero value of I;(T,) would indicate
the case of a “neutral” bubble when virtually no translation occurs.

If we include buoyancy forces we need to define an additional dimensionless
parameter 6 given by

8 = (pgRm/Ap)"/?, (8.4)

where g is the gravitational acceleration.

The general dimensional expression for (8.3) is

I(T.) = 2nv6R3, (App)*/?/(9h?)[2+26% B(11/6,1/2) cos 8 + xB(7/6,3/2)],

(8.5)
where
-1 :  Rigid boundary
X = +1 : Free surface (8.6)
H(a) ¢ Inertial boundary )

(p1 — p2)/(p1 + p2) : Two-fluid interface,
and # may be either 0 or 7 (i.e. the boundary is below the bubble (0), or above
the bubble (7)). B(z,y) is a beta function (see e.g. [1]). Clearly I.(T,) may
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be either positive or negative depending on the direction of the buoyancy force
and the type of boundary. We now consider four cases where competing effects
prevail and where some comparison with experiment or numerical simulation is
available.

(i) Buoyant bubble near a rigid boundary. Omitting the dimensional
terms in (8.5), the expression for the Kelvin impulse [5] at completion for a
cavitation bubble near a rigid boundary for § =0 is

I(T.) < [24?62B(11/6,1/2) — B(7/6,3/2)). (8.7)

Following the arguments presented earlier, if I,(T;) > 0 the bubble will migrate
away from the rigid boundary; for I,(T.) < 0, the bubble will migrate towards
the rigid boundary. The null impulse line corresponds to I;(T,) = 0 yielding the
following relation between the parameters:

v = [B(7/6,3/2)/2B(11/6,1/2)]}/? = 0.442. (8.8)

In Figure 3, this prediction for determining the migration characteristics of a
cavitation bubble near a rigid boundary [5] is tested out against a number of
numerical simulations for different values of (v, ). Although only a limited set
of simulations have been conducted it does appear to be a reliable estimator of
the migratory behaviour of bubbles.

Y
30
¥8=0-442
t
[ [ . t 20 [ o\
¥ 4 ¥ \ DIRECTION
OF JET
. [ ® 10 .
1 ' 4
-0-5 -04 -03 ~02 -01 01 0-2 03 04 05
i N 1 1 1 1 1 1 1 I » 6

RIGID BOUNDARY —M — ——

FIGURE 3. The v — 6§ parameter space for buoyant vapour bubbles near a rigid boundary
[5]. Numerical predictions are included for specific (v, §) examples.
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(ii) Buoyant bubble near a free surface. In a strict sense we should
also include a gravity term in the free surface boundary condition as was done
in Blake, Taib and Doherty [6]. However the lowest order approximation can
be obtained from the zero potential boundary condition because the dominant
term is the buoyancy of the bubble, not the gravitational restoring force on the
free surface, especially when v > 1. Thus the expression for I(T.) near a free
surface with § = m becomes

I(T.) o< [-2+%6°B(11/6,1/2) + B(7/6,3/2)), (8.9)
leading to exactly the same relation between the 4 and § parameters as for a
rigid boundary, albeit in this case the bubble is repelled by the free surface and

the boundary is on the uppermost side of the bubble (the coordinate system of
Figure 1 has been rotated through 7).

® Numerical
[ Experiment

FIGURE 4. The (v,6) parameter space for buoyant bubbles near a free surface [6]. Both
numerical predictions and experimental observations are included on the graph.

In Figure 4, comparisons are made between both the experimental observa-
tions of Dr. D. C. Gibson and the numerical simulations of Blake, Taib and
Doherty [6]. Again the Kelvin impulse appears to be a remarkable predictor of
the likely migratory response of a cavitation bubble near a free surface.

(iii) Two-fluid interface. This is similar to the free surface example in that
11 1\, p1—p2, (73
L(T, -2v26’B | —, -) B{-,= 1
(myw [-oen (B3)+ 2728 (13)], e
where 6 needs to slightly modified to 6 = (p;gRm/Ap)Y/?. Equating (8.10) to
zero yields the following relationship between ~ and é for the null impulse line:

6 = 0.442[p1 — p2)/(p1 + p2)]"/2. (8.11)
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Chahine and Bovis [7] show several results for bubbles near a water-white spirit
interface. For v = 2.2 the bubble moves towards the interface, suggesting buoy-
ancy forces dominate, while for v = 0.87 the bubble is repelled by the interface,
suggesting the interface interaction dominates. It is not possible to make a more
accurate comparison because of a lack of further details on the experimental
arrangements.

(iv) Inertial boundary, no translation or buoyancy. In the case of no
translation and negligible buoyancy forces, we set § = 0. The expression for the
Kelvin impulse now becomes

I.(T;) @ H(o) (8.12)
where a = ph/o. H(a) is equal to zero when
a=ag=0.7798... (8.13)

Recently Shima and Tomita [12] have conducted experiments on the growth and
collapse of a cavitation bubble near a composite surface consisting of a thin
sheet of rubber covering a layer of foam (see Figure 1). They concluded that
the “bubble migration depends not only on the characteristics of the boundary
surfaces but also on the position of the bubble from the surface”. Comparisons
can be made with the Shima and Tomita results, although our comparisons are
restricted to their “neutral collapse” cases when there is no translation of the
bubble. This would correspond to a null Kelvin impulse in our theory. After
rearranging, it is possible to show that the ratio of two quantities (h/R,, and
tp) measured by Shima and Tomita should be constant, i.e.

(h/Rm)/tr = aopr/(pRm), (8.14)

where tg is the thickness and pg the density of the rubber sheet respectively. In
theory the RHS of (8.14) should be constant (and hence also the LHS) because
both the density of the liquid and the rubber are constant (the compressibility
would occur in the light weight foam) together with R,, being constant. The
results for the three cases obtained by Shima and Tomita [12] are tabulated

below:
tr(mm) | (h/Ry) | (R/Rm)/tr
3.0 1.31 0.44
4.0 1.66 0.42
5.0 2.11 0.42

Even though this theory is restrictive in that it is linear theory, there does appear
to be a relatively close comparison with experiment for these few cases.
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9. Conclusions

It is clear that the Kelvin impulse can provide us with extensive “physi-
cal insight” into the anticipated behaviour of cavitation bubbles near different
boundaries. Furthermore, it also appears to provide us with remarkably accu-
rate prediction of the gross response characteristics of a bubble near a boundary
without the need to develop sophisticated numerical simulation schemes [5, 6].
It is likely that these ideas can be extended to multi-bubble and bubble-cloud
simulations.
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