SMALE'S MEAN VALUE CONJECTURE FOR ODD POLYNOMIALS

T. W. NG

(Received 3 July 2002; revised 15 January 2003)

Communicated by P. C. Fenton

Abstract

In this paper, we shall show that the constant in Smale's mean value theorem can be reduced to two for a large class of polynomials which includes the odd polynomials with nonzero linear term.

2000 Mathematics subject classification: primary 30C15, 30F45, 30 C 20.
Keywords and phrases: Smale's mean value conjecture, univalent functions, omitted values.

1. Introduction and main result

Let P be any polynomial; then b is a critical point of P if and only if $P^{\prime}(b)=0$, and v is a critical value of P if and only if $v=P(b)$ for some critical point b of P.

In 1981 Steve Smale proved the following interesting result about critical points and critical values of polynomials.

THEOREM A ([3]). Let P be a non-linear polynomial and a be any given complex number. Then there exists a critical point b of P such that

$$
\begin{equation*}
\left|\frac{P(a)-P(b)}{a-b}\right| \leq 4\left|P^{\prime}(a)\right| \tag{1}
\end{equation*}
$$

or equivalently, we have

$$
\begin{equation*}
\min _{b, P^{\prime}(b)=0}\left|\frac{P(a)-P(b)}{a-b}\right| \leq 4\left|P^{\prime}(a)\right| \tag{2}
\end{equation*}
$$

[^0]Smale then asked whether one can replace the factor 4 in the upper bound in (1) by 1 , or even possibly by $(d-1) / d$. He also pointed out that the number $(d-1) / d$ would, if true, be the best possible bound here as it is attained (for any nonzero A, B) when $P(z)=A z^{d}-B z$ and $a=0$ in (1). The conjecture has been verified for $d=2,3,4$, and also in some other special circumstances (see [1,4] and the references therein).

It is easy (see [1]) to show that Smale's conjecture is equivalent to the following:
NORMALISED CONJECTURE. Let P be a monic polynomial of degree $d \geq 2$ such that $P(0)=0$ and $P^{\prime}(0) \neq 0$. Let b_{1}, \ldots, b_{d-1} be its critical points. Then

$$
\begin{equation*}
\min _{i}\left|\frac{P\left(b_{i}\right)}{b_{i}}\right| \leq N\left|P^{\prime}(0)\right| \tag{3}
\end{equation*}
$$

holds for $N=1$ (or even $(d-1) / d$).
Let M_{d} be the least possible value of N such that (3) holds for all degree d polynomials. Recently, in [1], it was shown that $M_{d} \leq 4^{(d-2) /(d-1)}$. In this paper we shall prove that for a very large class of polynomials (which includes the non-linear odd polynomials), one can take $N=2$ in (3).

ThEOREM 1. Let P be a polynomial of degree $d \geq 2$ such that $P(0)=0$ and $P^{\prime}(0) \neq 0$. Let b_{1}, \ldots, b_{d-1} be its critical points such that $\left|b_{1}\right| \leq\left|b_{2}\right| \leq \cdots \leq\left|b_{d-1}\right|$. Suppose that $b_{2}=-b_{1}$, then

$$
\begin{equation*}
\min _{i}\left|\frac{P\left(b_{i}\right)}{b_{i}}\right| \leq 2\left|P^{\prime}(0)\right| \tag{4}
\end{equation*}
$$

COROLLARY 1. If P is a nonlinear odd polynomial with nonzero linear term, then (4) holds for P.

Proof. If P is a non-linear odd polynomial (that is, $P(-z)=-P(z)$), then $P(0)=0$. Hence, $P(z)=z^{k} Q\left(z^{2}\right)$ for some odd number $k \geq 1$ and non-constant polynomial Q with $Q(0) \neq 0$. Since the linear term of P is nonzero, $P^{\prime}(0) \neq 0$. Clearly, $P^{\prime}(z)=R\left(z^{2}\right)$ for some suitable polynomial R. Therefore, we can take $b_{2}=-b_{1}$ and apply Theorem 1 to complete the proof.

Proof of Theorem 1. We may assume that $P\left(b_{i}\right) \neq 0$, for all i, for otherwise, we are done. Therefore, $r=\min _{i}\left\{\left|P\left(b_{i}\right)\right|\right\}>0$ as there are only finitely many critical values. Let $\mathbb{D}(0, r)$ be the open disk with center $w=0$ and radius r. Then $\mathbb{D}(0, r)$ contains no critical values of P. Since $P(0)=0$ and $P^{\prime}(0) \neq 0$, by the inverse function theorem, $P^{-1}(z)$ exists in a neighbourhood of 0 with $P^{-1}(0)=0$. By the Monodromy Theorem, $P^{-1}(z)$ can be extended to a single valued function on the whole $\mathbb{D}(0, r)$.

Let $f: \mathbb{D}(0,1) \rightarrow \mathbb{C}$ be defined by $f(z)=P^{-1}(r z)$. Then f is an univalent function and omits all the b_{i} 's. This will give some restrictions on the size of $\left|f^{\prime}(0)\right|$ which is equal to $r / \mid\left(P^{\prime}(0) \mid\right.$. In fact, we have the following result of Lavrent'ev.

ThEOREM B ([2]). Let $0 \leq \theta \leq 2 \pi$. Suppose $f: \mathbb{D}(0,1) \rightarrow \mathbb{C}$ is an univalent function which omits the set $A=\left\{R e^{\{\theta+(2 \pi j) / n\} i} \mid 1 \leq j \leq n\right\}$, then $\left|f^{\prime}(0)\right| \leq 4^{1 / n} R$.

Recall that $\left|b_{1}\right| \leq\left|b_{2}\right| \leq \cdots \leq\left|b_{d-1}\right|$, so $\min _{i}\left\{\left|b_{i}\right|\right\}=\left|b_{1}\right|$. Since $b_{2}=-b_{1}$, we can take $n=2$ in Theorem B. Now

$$
\begin{aligned}
\min _{i}\left|\frac{P\left(b_{i}\right)}{b_{i}}\right| \frac{1}{\left|P^{\prime}(0)\right|} & \leq \frac{\min _{i}\left\{\left|P\left(b_{i}\right)\right|\right\}}{\min _{i}\left\{\left|b_{i}\right|\right\}\left|P^{\prime}(0)\right|}=\frac{r}{\min _{i}\left\{\left|b_{i}\right|\right\}\left|P^{\prime}(0)\right|} \\
& =\frac{\left|f^{\prime}(0)\right|}{\min _{i}\left\{\left|b_{i}\right|\right\}}=\frac{\left|f^{\prime}(0)\right|}{\left|b_{1}\right|} \leq \frac{4^{1 / 2}\left|b_{1}\right|}{\left|b_{1}\right|} \leq 2
\end{aligned}
$$

and we are done.
Note added in proof. From the proof of Theorem 1 and Corollary 1, it is easy to see that if for some k th root of unity λ we have $p(\lambda z)=\lambda p(z)$ identically and $p^{\prime}(0) \neq 0$ (for example, polynomials of the form $z Q\left(z^{k}\right), Q(0) \neq 0$), then (3) holds with $N=4^{1 / k}$. Of course for k at least 3 there are not so many of these polynomials, but interestingly for the conjectured extremal example of $p(z)=A z^{n}-B z$, this holds with $k=n-1$.

Acknowledgement. I thank Edward Crane and the referee for helpful suggestions.

References

[1] A. F. Beardon, D. Minda and T.W. Ng, 'Smale's mean value conjecture and the hyperbolic metric', Math. Ann. 322 (2002), 623-632.
[2] M. A. Lavrent'ev, 'On the theory of conformal mappings', Trav. Inst. Phys.-Math. Stekloff 5 (1934), 159-245; English translation: Transl., II. Ser, Amer. Math. Soc. 122 (1984), 1-63.
[3] S. Smale, 'The fundamental theorem of algebra and complexity theory', Bull. Amer. Math. Soc. 4 (1981), 1-36.
[4] —_, 'Mathematical problems for the next century', in: Mathematics: frontiers and perspectives (eds. V. Arnold, M. Atiyah, P. Lax and B. Mazur) (Amer. Math. Soc., Providence, 2000) pp. 271-294.

Room 408
Run Run Shaw Building
Department of Mathematics
The University of Hong Kong
Pokfulam Road
Hong Kong
e-mail: ntw@maths.hku.hk
J. Aust. Math. Soc. 75 (2003) 412

[^0]: The author's work was partially supported by a UGC grant of Hong Kong (Grant No. HKU 7020/03P) and a grant from URC of HKU.
 (C) 2003 Australian Mathematical Society 1446-7887/03 $\$$ A2.00 +0.00

