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Abstract

The main result proved in this paper is the following. Suppose X, X2 are two subspaces of a
space X such that X = Int(X) U X2 = X; UInt(Xz). Then the pair (X1, X2) is a p-excisive
pair in sheaf cohomology for any family of supports ¢ on X. This result settles an open
question and includes all known results on (-excisiveness in sheaf cohomology as its special
cases. We construct several examples to illustrate our main theorem and to show that it is, in
fact, quite sharp.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Rewvision): primary 55 N 30;
secondary 55 N 40.

1. Introduction

Let ¢ be a family of supports on a given topological space X. Recall that a
pair (X1, X32) of subspaces of X is said to be p-excisive if the inclusion map
(X1,X1 N X2) — (X1 U X,, X3) induces isomorphism

H;n(xluxz)(Xl UXQ,XZ;%)—) ‘;nxl(Xl,Xl ﬂXg;M)

in sheaf cohomology for any sheaf & of R-modules on X. As usual this implies
that the Mayer-Vietoris sequence of sheaf cohomology for the pair (X3, X3), with
respect to any sheaf &/ on X and with supports in ¢, is exact. The results on
p-excisiveness stated in the following theorem are well known ([1], page 68).
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THEOREM. A pair (X1,X32) of subspaces of a space X is p-excisive for a
given family o of supports on X if any one of the following conditions is satisfied:

(1.1) X = Int(X;) UInt(X2).

(1.2) X = X; U X, and both Xy, X are closed in X.

(1.3) X = Int(X;) U Xy = X3 UInt(X3) and X1, X2, X1 N X2 are all p-taut
in X.

The result (1.3) above, discovered in the context of sheaf cohomology, is rela-
tively new, and as pointed out in [2], substantially enlarges the class of excisive
pairs (and hence the validity of Mayer-Vietoris exact sequences) for sheaf coho-
mology as well as for Alexander-Spanier cohomology.

The first attempt to answer this question was made in [2] where the first
author has shown that under a hypothesis which is only slightly weaker than the
condition X = Int(X;) U X2 = X; UInt(X3), the tautness conditions stated in
(1.3) are really needed. The main question, however, remained unresolved.

The basic objective of this paper is to answer the above question completely.
We prove (Theorem 2.1) that the tautness conditions in (1.3) are superfluous.
Our proof exploits the so called second resolution of a sheaf due to Godement.
The usual known methods of proving similar or weaker results do not seem to
generalize to this case. It must be pointed out here that this is yet another
example of a situation where Godement’s second resolution works so nicely and
others do not seem to be even applicable. Note that results (1.1) and (1.2)
are now special cases of our Theorem 2.1 and hence our main result not only
generalizes all of the previously known results on -excisiveness, but also gives
a unified proof of all of them. We also show that Theorem 2.1 is quite sharp.
This is done by constructing an example (Example 4.3) of a pair (X;, X2) of
subspaces of a space X such that X = Int(X;) U X3 and X1, X2, X1 N X, are
all p-taut in X, but even then the pair (X;, X2) is not p-excisive. Finally we
go on to illustrate our theorem by constructing subspaces X;, X, of a space X
and a family ¢ of supports on X such that X = Int(X;) U X3 = X3 U Int(X>)
and X;, X3, X1 N X, are not p-taut, but the Mayer-Vietoris sequence of the pair
(X1, X2) for the sheaf cohomology of a sheaf on X with respect to o is exact
(Example 4.4). The construction of all these examples leads us to study the
sheaf cohomology of some contractible spaces with exotic supports. These are
developed in Section 3. Various computations of sheaf cohomology with these
exotic supports turn out to be quite interesting and we have described several
situations which seem to indicate that they may have potential applications in
some other contexts also.

Unless stated otherwise, we have used the constant sheaf Z of integers through-
out the paper. For brevity H},(X;Z) has been denoted by only H;(X). For a
family o of supports, the extent E(yp) of  is the union of all members of ¢. If
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A C X, then H 4(A) has been denoted by only Hy(A). For all other defini-
tions, notations and results we refer to [1].

2. Main result—the general excision theorem

In this section we propose to prove the following exicision theoem for sheaf
cohomology which generalizes all the known results on excisive pairs and also
settles an open question in this area (see the introduction).

THEOREM 2.1. Let X be a topological space and Xy, X, be two subspaces
of X such that X = Int(X;) U Xy = X; UInt(X3). Then the pair (X;,X,) s
p-excistve for any family © of supports on X.

Before proving the result we must point out that the two equations X =
Int(X;) U X2 = X; UInt(X3) are clearly equivalent to the single equation X =
Int(X;)UInt(X2)U(X; NX2). This remark has been implicitly used in the proof.

Let & be any sheaf of R-modules on X. As stated in the introduction, we
shall use the second canonical resolution # *(X; ) of & (due to Godement [5])
in the proof of the above theorem (see [1], page 28 for details). Let F5(X;.%) =
I',#?(X; ). Then for any family of supports ¢ on X, the cohomology of the
cochain complex

0 F)X: ) > F(X; )~ - FR(X; ) — -+

gives the sheaf cohomology H (X;%) of X with coefficients in & and sup-
ports in . Recall that the cochain groups F?(X;.% ) can be defined (analogous
to Alexander-Spanier cochain complex) as a quotient of modules MP(X; %),
here M?(X;.%) denote the module of all functions f: X?*! — & such that
f(zo,...,2p) € &, with pointwise operations. The surjective homomorphism
¥p: MP(X;) — FP(X; %) defining FP(X;.% ) as the quotient has the follow-
ing elements in its kernel [ibid]: f € Kery, if for each (g + 1)-tuple (zo, ..., )
(g=0,...,p—1) there is an open neighbourhood U(zy, ..., Z,) of 24 in X such
that if
z1 € U(zo),z2 € U(z0,21),...,2p € U(z0y-..,Zp-1),

then f(zo,...,zp) = 0. Now for any subspace A of X, let M?(X, A;.%) denote
the set of all those f € MP(X;%) such that f(zo,...,2p) = 0 if z; € A for
eachi =0,...,p. If FP(X, A; %) denotes the module ¢,(M?(X, A;.%)), then
it is known ([ibid], page 64) that the cochain complex F*(X, A; %) defines the
relative cohomology groups H*(X, A; %) of the pair (X, A). Now let (X3, X2)
be any pair of subspaces of X. Define M?(X, X, X5; &) = M?(X, X; &) N
M?(X, X2; %) and let FP(X, X1, X2; %) = tp(MP(X, X1, X2;%)). Then the
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presheaf U — FP(U,UNX1,UNX2;.% ) defines a flabby sheaf #7(X, X, X2;.%)
as the kernel of the surjective homomorphism
FPX, X, H) > FP(Xe, X1 N X3 ).

If we put I'p,. 7 ?P(X, X1, X2;.%) = FB(X, X1, X2; %) etc., then it is a conse-
quence of 3 x 3 lemma and relative cohomology of various pairs that the sequence
0— Fo(X, X1, X0, ) = F(X, X1, %) = Fgnx, (X2, X1 N X9;%) — 0
of cochain complexes is exact. Hence the pair (X1, X2), where X = X; U X3 is
p-excisive, if and only if HZ (X1 U X2, X1, Xa2;% ) = 0 for each p > 0 [ibid, page

67). .

PROOF OF THE THEOREM. With the given hypothesis of the theorem viz,
X =Int(X1)UX2=X; UInt(X,) we shall show that the sheaf #F*(X, X;, X2;.%)
on X itself is a zero sheaf for any sheaf & on X. Then it will follow from
the above discussion that (X;,X2) is p-excisive for any . To prove that
FP(X,X1,X2;) = 0, it is clearly enough to prove the following: If f €
MP(X, X; & )NMP(X, X9; ), then f € Ker)p; here 9, is the homomorphism
defined above. Now we proceed to prove this contention.

Let B = X — (Int X; UInt X3). Then B is a closed set of X contained in
X1 NX,. (If B= our proof yields the proof of Theorem (1.1). Theorem (1.2)
is clearly a special case of our Theorem.) Let V = Int(X;) N Int(X3). Then V
is an open set of X contained in X; N X,. For each (¢ + 1)-tuple (zo,...,zq)

we will define an open neighbourhood U(zo,...,z,) of z4 in X by induction
(g+1 < p—1). For g =0, we define
X if o € B,

Int(X;) if zo € Int(X;) -V,
Int(X3) if 2o € Int(X3) -V,
14 ifzgeV.
Now suppose U(zyo, ...,z,) have been defined (for ¢ + 1 < p — 1) and have the
following properties.
(a) U(zo,...,zq) = X implies z, € B,
(b) U(zo,...,zq4) = Int(X,) implies z, € Int(X;) -V,
(¢) U(zo, ... zq) = Int(X?) implies z, € Int(X3) — V, and
(d) U(zo,...,zq) =V implies z, € V.

U(zo) =

Then we define U(zg,...,Zq+1) as follows.
(&) If U(zg,--- ,24) = X, then z, € B and we define
X if 2441 € B,

Int(Xl) if Tg+1 € Int(Xl) -V,
Int(Xg) if Tg+1 € Int(Xg) -V,
|4 if Tg+1 € V.

U(Io,...,1q+1) =
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(b") If U(zo,...,zq) = Int(X;), then z, € Int(X;) — V and we define
Int(Xl) if Tg+1 € Int(Xl) -V,
U(Io,...,xq+1)= A
1% if zg41 € V.
(¢') If U(zg, ..., z4) = Int(X3), then z, € Int(X2) — V and we define
Int(Xz) if Tg+1 € Int(Xg) -V,
U(zo,...,zq+1)= .
v ifrg41 €V.
(d') If U(zo,...,zq4) =V, then 2, € V and we define

U(2o,...,2q+1) =V for every z,41 € V.

Thus U(zo, - . ., Z4+1) have also been defined and satisfy the inductive hypothesis.
Therefore, by induction U(zy, ..., z,) have been defined for all ¢ such that ¢+1 <
p—1. Now if
T3 € U(Xg),zg (S U(zg,xl), ey Ip € U(Io, ce ,:I:p_l),

then it is easy to see that zp,z1,...,z, belong (respectively) to a decreasing
sequence Ag 2 A; 2 -+ D Ap_1 of subsets of X where A; = B, Int(X,), Int(X5)
or V for eachz=0,1,...,p— 1. In any case 2¢,...,2p € X; Or Zg,...,2p € X2
and so f(zo,...,2p) = 0. This proves our assertion and that completes the proof
of our theorem.

Next let us recall the definition of Alexander-Spanier cohomology of a topo-
logical pair (X, A) with coefficients in a R-module G. This turns out to be the
cohomology of the cochain complex C*(X, A)/Cg(X) where CP(X, A) denotes
the R-module of all those functions o: XP*t! — G which are locally zero on A,
and C§(X) is the R-module of all functions §: X?*! — G which are locally zero
on X([6], page 309). Just as in the proof of the above theorem one can rather
easily modify the arguments and prove the following:

If X =Int(X;)U X2 = X; UInt(X3) and a: XPH! — G is locally zero on X,
as well as locally zero on Xg, then « 1s locally zero on X. To see this suppose
# is an open covering of X; and 77 is an open covering of X, (members of %
and 77 are open in X) such that « is zero on members of Z N X; as well as on
7" N X3z. Then one can easily see that « is zero on each member of the open
covering (Z NInt(X;)) U(Z NInt(X2)) U(Z NZ7") of X. This implies that the
kernel of the onto cochain map

C*(X, Xl) — C*(XQ,Xl N X2)
consists of only locally zero functions on X and so by passing to the quotients
(by C3(X)), we obtain that the inclusion map (X2, X; N X3) — (X, X;) in-
duces isomorphism in the Alexander-Spanier cochain complexes C (X, X;) —
ol (X2, X1 N X3). Hence it induces isomorphism in cohomology. This prove the
foliowing corollary which generalizes the known results on excisive couples for
Alexander-Spanier cohomology.
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COROLLARY 2.2. If X;, X5 are two subspaces of a space X such that X =
Int(X;) U X2 = X; UInt(X3), then (X1,Xz2) is an excisive couple for the
Alezander-Spanter cohomology.

REMARK 2.3. It can easily be verified that Theorem 2.1 (respectively Corol-
lary 2.2) is equivalent to the following General Excision Theorem for sheaf coho-
mology (respectively Alexander-Spanier cohomology). Let (X, A) be a topological
pair and B be a subset of X such that B C Int A and B C A, then the subset B
can be excised from the pair (X, A). In particular, if A is closed then Int A can
always be excised for each of these cohomology theories.

3. Cohomology groups with exotic supports

Let X,Y be two spaces with the family of supports ¢ and 3 repsectively. A
map f: X — Y is said to be proper (w.r.t. ¢ and ¢) if f~}(K) € ¢ for each
K € ¥. It is a well known fact that if L is a constant sheaf, then any two
properly homotopic maps induce identical homomorphisms from Hj(Y,L) —
H}(X,L) ([1], Theorem 11.4, page 56), that is, homotopy axiom holds for the
sheaf cohomology of constant sheaves. In this section we are going to make use
of this homotopy axiom and the exactness of Mayer-Vietoris sequence in sheaf
cohomology to perform some interesting computations of cohomology groups of
some contractible spaces with exotic supports. Let us consider the following
situation:

Suppose ¢ is a family of supports on a space X. For any subset A of X, the
inclusion map A — X is clearly proper with respect to ¢ N A and ¢. Suppose
A consists of a single point of X. Then the constant map ¢: X — A, however,
need not be proper. But if ¢ N A consists of only the null set, then obviously
this constant map is also proper. Identity map Ix: X — X is always proper.
In case X is contractible, we want to know under what conditions the identity
map [x and the constant map c¢: X — X (which are proper) are also properly
homotopic. We shall give an example later (Example 3.4(c)) to show that these
proper maps need not be properly homotopic. If a family ¢ of supports contains
only the null set we shall refer it as the “empty support”; if it contains a singleton
set and the null set then we shall refer it as a “point support” family. A space
X will be said to be ¢-contractible if the identity map of the space X is properly
homotopic to a constant map to one of its points. It follows from the homotopy
axiom stated above that in case the point is not in Ext(y), then HZ(X) = 0
for all p, but in case the point is in Ext(p), then HE(X) = 0 for all p # 0 and
HY(X;Z) ~ Z (for coefficients in the constant sheaf Z of abelian groups).

First of all, let us prove the following
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PROPOSITION 3.1. Let E be any starlike (not necessarily open or closed)
subset of R™ and o = cld |R™ — E be the family of all closed subsets of R™ which
are contained in R™ — E. Then R™ is p-contractible to the star-centre p of E.

PROOF. Star-centre of E is the point p of E from which all other points
of E can be joined by a line segment lying in £. We shall show that the usual
homotopy F': R" xI — R"™ defined by F(z,t) = (1—t)z+tp is a proper homotopy.
It is only necessary to verify that if K € o, then F~!(K) € ¢ x I. Since F is
continuous and K is closed in R®, F~1(K) is obviously closed in R® x I. Then
only thing to be observed is that F~1(K) C K’ x I where K’ is the union of all
infinite line segments starting from points of K moving away from p. Thus K'
is closed in R™, and by definition of ¢, belongs to ¢. Hence F~1(K) € p x I.

It is clear from the proof above that instead of R™ we can take any starlike
subset Y of R™ provided the star-centres of both Y and E are same or else we
can choose such a centre. The whole point in obtaining a ¢-contraction is that
the support family must be such that whenever Q € Ext{p), then any point Q’
with the property that @ divides the line segment PQ’ internally must also be
in Ext(p). In fact we have

COROLLARY 3.2. Let E be any bounded convezx subset of R™ and ¢ be a
family of supports on E. Suppose there is a point p € E — Ext(p) such that
whenever @ € Ext(p), the produced portion QQ' of the line segment PQ' through
Q must also be in Ext(p). Then E i3 p-contractible to the point P.

As a special case it is apparent from the above corollary that if the family of
supports ¢ consists of subsets all contained in the boundary of a disc D™, then
D™ is p-contractible to any of its interior points. It follows from the homotopy
axiom for constant sheaves that HE(D™) = 0, for every p > 0.

Now we are going to make use of the above corollary to mention some other
examples which will be used later on.

EXAMPLE 3.3. Let ¢ = cld|K where K is some closed convex subset of
the unit interval I = [0, 1] containing exactly one of the end points. Then I is
p-contractible to any point of I — K and so HZ(I) = 0, for every p > 0.

We shall always bear in mind the special case when ¢ is a point support.

EXAMPLE 3.4. Let J = (0,1) be the open interval and ¢ = cld |K where K
is some closed convex subset of R contained in (0, 1) (for example, @ is a point
support). Suppose z € K. Then because (0, z] and [z, 1) both are p-contractible
to any point of (0,z]— K and [z, 1) — K respectively, H,((0,z]) = 0 = Hy([z,1)).
Hence by Mayer-Vietoris exact sequence H(J) ~ HQ({z}) ~ Z, H5(J) = 0,
p# 1L
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(a) We note that a similar result holds if ¢ = cld|J.

(b) If we take I = [0, 1] and ¢ = cld |K where K is some closed convex subset
of R contained in Int(I), then it follows that H.(I) ~ Z and HE(I) = 0, for
every p # 1.

(c) This example shows, by the way, that J can not be p-contractible to any
of its interior points for ¢ defined above.

PROPOSITION 3.5. Let D™ be an n-disc and Int(D") C E C D™. Suppose
K 13 another disc contained in Int(D") end ¢ = cld|K. Then,

Z ifp=n,
HP(E) ~
‘p( ) { 0 otherunse.
A similar (well known) result holds when ¢ = cld |Int(D™) (that is, compact

supports).

PROOF. Since Int(D") is open in E, it is p-taut in E and so H;(E, Int(D"))
~ H;|E—Int(D")(E) =0, that is, H},(E) ~ H;(Int(D™)). We shall compute the
case when E = D™. Without loss of generality we can assume that D" is the
standard n-simplex A®. When n = 1, the result follows from Example 3.4(b).
Let us assume the result to be true for all k¥ < n. Suppose vy is a vertex of
A". We divide A™ into two closed subsets A, B having non-empty interiors such
that AN B is a (n — 1)-simplex with vy as vertex. Now if a is any boundary
point of A disjoint from A N B and b is any boundary point of B disjoint from
AN B, then A, B both are p-contractible to points a and b respectively. Hence
by Mayer-Vietoris exact sequence for the pair (A4, B) we have

2 fp=mn,

H2(D") ~ H2(AU B) ~ H2"'(An B) = H2~1(A™? z{
(p( ) <p( ) © ( ) ® ( ) 0 otherwise.

COROLLARY 3.6. Let K be any compact disc in R™ and ¢ = cld|K. Then
Z ifp=n,

HP (R™) =~
p( ) {0 otherwise.

COROLLARY 3.7. Let ¢ be the family of supports consisting of all closed

subsets of the union of m-disjoint compact discs K, ..., K,,. Then,
1o1o---01 .
——— ifp=n,
Hg(R") ~ m — copies
0 otherwise.

PROOF. Take m-disjoint open balls B(K;,;), each ball containing one disc
K; (=1,2,...,m). Since W = |J B(K;,r;) is open in R", it is p-taut and so
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HY(R™ W) ~ HZ[R,,_W(R") = 0, for every p > 0. Hence HL(R™) ~ HE (W),
for every p > 0. Now by induction and Mayer-Vietoris exact sequence we obtain

m 1o ---01
HE(W) ~ @Hf,(B(Ki, r;)) &~ { m — copies
i=1 0

if p=mn,

otherwise.

PROPOSITION 3.8. Let D™ be an n-disc and Int(D™) C E C D™. Suppose
© 18 a family of supports on D™ containing the family cld | Int(D") and ezactly
one line segment joining a point of Int(D™) with a boundary point of D™. Then
H g(E)=0.

PROOF. Again since Int(D") is open in E, it is ¢-taut in E and so
H(E,Int(D")) ~ ;|E—Int(D")(E) = 0, since E is (| E—Int(D"))-contractible.
Hence Hong(E) ~ Hy o D,,)(Int(D")). Let 1 be the family of supports con-
taining ¢ and all closed subsets of D™ which are contained in the boundary of
D™, Then ¥ NInt(D™) = o N Int(D") and we shall compute H;(D™). Assume
again that D™ is the standard n-simplex A™ and the boundary point of A™ which
is joined by a line segment (lying in @) to a point of Int(A™) be assumed as a
vertex vg. If n = 1, then the result follows by Example 3.3. Hence assume the
result to be true for all k£ < n. As before, let A, B be two closed subsets of A™
having non-empty interiors such that A® = AU B, AN B is a (n — 1)-simplex
having vy as a vertex. Then it is clear that A, B are -contractible and hence
t-acyclic and by induction hypothesis A N B is also ¢-acyclic. Therefore, by
Mayer-Vietoris sequence, A U B is ¢-acyclic.

REMARK 3.9. We must point out that if ¢ and ¥ are two point supports in
X and Y respectively and f: X — Y is a proper map (w.r.t. ¢ and ) which
is a local homeomorphism, then Hf(X) ~ HfZ(Y), for every p > 0. Also we
observe that if U is any open neighbourhood of the point defining ¢ and V is
any open neighbourhood of the point defining ¥, then clearly HZ(X) ~ HE(U)
and Hj(Y) ~ H} (V). Therefore sheaf cohomology with point supports can be
quite useful in deciding that two spaces X and Y are not locally homeomorphic.
We shall illustrate this by means of some examples.

EXAMPLE 3.10. A very often quoted example of two spaces X and Y which
have isomorphic homology and cohomology groups in all dimensions and for all
coefficients, but do not have isomorphic cup products is the following ([6], page
253): X =8P x 8%, p< qsay,and Y = SP v §9V SP*9. Here SP,S7 etc. are
spheres of dimension p and g respectively and Y is the one point union of S?,5?
and SP19. The main point of this example is to show that X, Y can not be dis-
tinguished only by the additive structures of homology and cohomology groups;
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it is only the multiplicative structure of cohomology which can distinguish them.
However, the concept of cohomology with point supports can be more precise
than cohomology with supports in cld. We now show that only the additive
structure of cohomology with point supports can distinguish between the above
spaces X and Y. Let ¢ be the point support in X defined by any point of X.
Then for each open neighbourhood U of that point

HE(U) ~ { z lfn—z.l,q orp+q,

0 otherwise.

But if 9 is the point support in Y defined by the distinguished point, then one
can easily see that for any open neighbourhood V of that point

I9oIZ fn=1,
Hj(V)~<{ Z ifn=p,qorp+gq,
0 otherwise.

If ¢ is the point support defined by any other point of Y and V is any open
neighbourhood of that point, then we can compute

) ~ {

These groups show, as pointed out in the above remark, that X and Y cannot
be locally homeomorphic even at one point.

Z ifn=porqgorp+gq,

0 otherwise.

EXAMPLE 3.11. There is yet another famous example of two spaces X
and Y ([6], page 275) where X = S3V S5 and Y = CP? x I which cannot
be distinguished even by their cohomology ring structures in the sense that
both have not only isomorphic homology and cohomology groups but also have
isomorphic cup and cap products, they can be distinguished by only higher
order Steenrod operations. Just as in Example 3.10, we can easily show that
these spaces can also be distinguished by only the additive structure of the point
support cohomology; in fact, if we take ¢ to be the point support of X containing
only the distinguished point, then HJ(X) ~ Z whereas H,,(Y) = 0 for any point
support ¥ in Y.

On large cohomology dimension. Recall that the large cohomology dimension
Dimz(X) of a space X is the largest integer n (or oo) for which there exists a
sheaf & of abelian groups on X and a family of supports ¢ on X such that
HZ(X;%) # 0. It was proved in [3] that Dimz(R) = 2, and using this result
it was proved in [4] that if X is an n-manifold then Dimz(X) = n + 1. In the
proofs, sheaves were explicitly constructed, but the family of supports ¢ was
only shown to exist, it was not explicitly constructed. Now we are going to use
the concept of point supports to give a direct proof of this result by explicitly
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constructing both the sheaf and the family ¢ of supports. It is interesting to
note that the family ¢ consisting of a point support does the job! We have

THEOREM 3.12 (DEO). If X is an n-manifold, then Dimz(X) =n + 1.

PROOF. It is obviously sufficient to prove the result for X = R™. Let B(1/m)
denote the closed ball of radius 1/m around origin and suppose B°(1/m) de-
notes the corresponding open ball. Let A,, = B(1/m) — B°(1/(m + 1)). Then
{Amim = 1,4,7,9,...} is a disjoint family of closed subsets of X. If we put
W =U{Am|lm=1,4,7,9,...}, and F = W U {0} where 0 is the origin, then W
is open in F'. Note that each A,, is of the same homotopy type as (n —1)-sphere.
Hence it is easy to compute

Ho(w) ~ { gl Tr oo
0 otherwise,

and
Dienli fp=n-1oro,

H? (F z{
ca(F) 0 otherwise,

where Z; =~ Z, for every i. Now the following part of the exact sequence of the
pair {F,W) (supports in cld)

= H' W) = HP(F) = HYUW) — HM(FW) = -

shows that H™(F,W) cannot be finitely generated. Since W is open in F, it is
taut and we find that ([1], page 59) H"(F,W) ~ H7(F) where o = cld |F - W
is the point support. Once again let us consider the following part of the exact
sequence of the pair (R", F) with supports in ¢,

-+ — H*R",F) - H*(R") —» H*(F) - H**}(R",F) —> --- .
© "] © ©

Since H3(R™) ~ Z and Hy(F) is not finitely generated, H3*!(R", F') # 0. Since
F is closed in R™, we find ([1], page 59) that

0# HZH(R", F) ~ HZV' (R", Zpn_r).
This proves that Dimz(R") =n + 1.

4. Some examples

Next we give some examples to show that our Theorem 2.1 is quite sharp. In
this context first let us recall the following results proved in ({1}, page 68).
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PROPOSITION 4.1. Let X = X1 UXs and A=X1NX,. If p 18 a family of
supports on X such that

(A) (PN X1)| X1 — A=p|X — Xy C p|Int(X,), and

(B) X2 3 p-taut tn X, A is (p N Xy )-taut in X;, then the pair (X;,X2) 3
p-ezcisive.

COROLLARY 4.2. If X =Int(X;)UXs = X; UInt(X3) and X;, X2, X1 NX,
are all p-taut in X, then (X;,X2) i3 p-ezcisive.

As pointed out in the introduction it has been an open question whether or not
the tautness conditions in the above proposition and corollary are really needed.
In [2] an example has been constructed in which all conditions of Proposition
4.1 except (B) are satisfied and the pair (X3, X3) is not p-excisive. This showed
that the tautness conditions in the Proposition 4.1 are required and the condition
(A) alone is not enough for the pair (X;,X2) to be p-excisive. Note, however,
that the condition in the Corollary 4.2 corresponding to the condition (A) of the
Proposition 4.1 is stronger and our Theorem 2.1 shows that tautness conditions
in the Corollary are not needed. We are going now to produce an example
which will show that nothing weaker than the hypothesis of Theorem 2.1 can
imply that the pair (X, X5) is p-excisive. In fact in our example we will have
X = Int(X;) U X2 and X1, X1 N X3, X3 all p-taut in X, even then the pair
(X1, X2) is not p-excisive. We have

EXAMPLE 4.3. Let X = R? and ¢ = cld|X — D? where D? = {(z,y) €
X|z? +y* < 1}. Let X3 = {(z,y) € X|]y <0 and 2% +3% > 2} U{(-2,0),(2,0)},
and X; = {(z,y) € X]y > 0 or 22 +y? < 2}. Note that p is a paracompactifying
family of supports and since for such a family any subset of a completely para-
compact space is p-taut, X;, X, X; N X3 are all p-taut in X. Next we compute
the cohomology groups of the constant sheaf Z on Xy, Xz, X1 N X2, X with sup-
ports in N X1, N Xz, N (X1 N Xz), p respectively (which we indicate only
by ©). Since X is p-contractible to any point of Int(D?), HZ7(X) = 0. Similarly
because X3 is p-contractible to any point of Int(D?), H7(X2) = 0. However,
X, € p and since X is connected and contractible we get

Hg(Xl) ~Z and HP(X;)=0, foreveryp>0.

Also X; N X3 has two connected components (each p-contractible) and both are
members of ¢, therefore

HJ(X1NX3)~Z&®&17 and HE(X,NXz)=0, for every p > 0.
Thus the following part of the Mayer-Vietoris sequence for the pair (X;, X3)
0— HY(X) — HY(X1) @ HY(X2) —» HY(X1 N X3) = Hp(X) — - -
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takes the form 0 — Z — Z & Z — 0, which cannote be exact. Thus (X;, X>)
cannot be p-excisive.

This example shows that just as in the presence of condition (A), the condition
(B) in the Proposition 4.1 is needed, similarly in the presence of condition (B) the
condition (A) of the Proposition 4.1 is also needed, that is, both the conditions
of Proposition 4.1 are separately required.

Next we use the results of Section 3 to give an example to illustrate our
Theorem 2.1. We will give subspaces X3, X2 of a space X and a family ¢
of supports on X such that X = Int(X;) U X, = X; UInt(X;) and the pair
(X1, X32) is p-excisive although none of the space X;, X3, X; N X3 is p-taut in
X. Also this example is not covered under any of the known Theorem (1.1),
(1.2) or (1.3).

EXAMPLE 4.4. Let X = R? and ¢ be the family of suports consisting of
only the origin of R2. Let

X1 ={(z,y) € Xly>00ry <0} U{(0,0)}, and
Xs = {(z,y) € X|z < 0or z>0}U{(0,0)}.
Then it is clear that X = Int(X;) U X2 = X; UInt(X3). Now we shall verify
that the Mayer-Vietoris sequence for the pair (X1, X3} for the constant sheaf Z
of integers and with supports in ¢ is exact and will show that none of the spaces
X1,X2,X1 N X, is p-taut in X.
To compute the cohomology groups of X; with supports in ¢ N X; (which we
indicate only by ¢), let us consider the following closed subsets of X;,
K ={(z,y) € X|y >0} U {(0,0)}, and
Kz = {(z,4) € Xly < 0} U{(0,0)}.
It is easy to see that K; and K5 are p-contractible to suitable points and hence
HZ(K,)=0= H;(K2). Since K1, K3 are closed in X;, we can apply the exac
Mayer-Vietoris sequence to get that -

H”(Xl)m{l ifp=1,
¥ 0 otherwise.
Similarly, we obtain :
H”(Xg)z{z if p=1,
e 0 otherwise.
By Proposition 3.5, we have
Z ifp=2,

30 ~ {

Now X1 N X, = Q1UQ2UQ3UQqaU{(0,0)} where Q1,Q2,Q3,Qq are the first,
second, third and fourth open quadrants of R%. Since Q; U {(0,0)}, @2U{(0,0)}

0 otherwise.
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are closed in @; U Q@2 U {(0,0)} and each is p-acyclic, we can apply the Mayer-
Vietoris sequence repeatedly to find that
IoZal ifp=1,
HP(X;NX3) =
‘p( ! 2) { 0 otherwise.

Thus the Mayer-Vietoris sequence for the pair (X1, X2), viz.,
— Hi(X) — H?,(Xl) &) H;(X2) — e

takes the form
0—-Zl—-I00Z0Z -7 —0,

which is exact.

Next we show that X; is not @-taut in X. For, any neighbourhood U of
X1 in X is obviously a neighbourhood of origin, and hence by Proposition 3.8,
H2(U) ~ Z. Also if V is any other neighbourhood of X; such that V C U,
then H2(V) = Z and the restriction homomorphism H2(U) — H2(V) is an
isomorphism. Hence HﬂH f,(U ) & Z, where U ranges over all neighbourhoods of
Xy in X. But H%(X;) = 0, which shows that X; cannot be ¢-taut in X. By
similar arguments one can easily verify that neither X5 nor X; N X3 is p-taut
in X.

Next suppose we take the same spaces X, X; and X5 and a different exotic
family of supports ¢ described as follows: Let ¢ be the smallest family of sup-
ports containing cld |Q; (¢ = 1,2,3,4) where Q; are open quadrants of R?> and
any straight line passing through origin (other than the coordinate axes). Then
we can compute using Proposition 3.8

Here and afterwards 5 means five copies of Z.

HE(Xs) {5 ifp=1,
A 0 otherwise,

7 ifp=1,
0 otherwise.
Also HE(X) is given by the following exact sequence
0— HL(X)—>4—1— HiX)—0.
If H:‘;(X) = 0, then H;,(X) = 3 and if Hé(X) =1, then Hé(X) =4.
In any case the Mayer-Vietoris sequence for the pair (X;, X3) takes the form
0—-3—-10—-7—-0
or
0-4-10—->7—-1-—0,

5 ifp=1,

0 otherwise.

HY(X:1 N Xo) = {

and these are exact.
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Finally let us take © to be the smallest family of supports containing cld |Q;
(1 =1,2,3,4) and origin. Then again we can compute using Proposition 3.8 and
Example 3.4(b)

1 ifp=1,

HE(X;)~ 4 4 ifp=2,
0 otherwise,

1 ifp=1,

HE(X2)~4{ 4 ifp=2,
0 otherwise,
3 ifp=1,

Hg(Xl NXy)~ 4 4 ifp=2,
0 otherwise,
5 ifp=2,
HE(X) ~

0 otherwise,

and the nontrivial part of the Mayer-Vietoris sequence for the pair (X, X2)
takes the form
0-2—-3—-25—-8—-4—-0,

which is exact.
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