The equal internal bisectors theorem

By C. E. Walsh.

Much interest has always been aroused by this theorem, which asserts that a triangle is isosceles when two of the internal bisectors of its angles are equal. Recently McBride ${ }^{1}$ has given a proof, together with a selection from the numerous others which have been published. The following proof, based mainly on Euclid, Book III, differs from any I have come across, and establishes a slightly wider theorem.

Theorem. Let BD and CE be two equal lines drawn from the vertices B and C of a triangle ABC , meeting the opposite sides internally at D and E and intersecting at O . Then if AO bisects the angle A , the triangle ABC is isosceles.

[^0]Proof. Let the circles $A E C$ and $A B D$ cut $A O$ in X and Y respectively. Then each of the angles $X E C, X C E, Y D B, Y B D$ is in the same segment of a circle as $O A B$ or $O A C$, and is equal to $\frac{1}{2} A$. Consequently the triangles $X E C, Y D B$ are congruent, and the four lines $X E, X C, Y D, Y B$ are equal. It also follows that $X E$ is a tangent to the circle $E A O$, and $Y D$ to $D A O$, so that, XO.XA $=X E^{2}=Y D^{2}=Y O . Y A$. Accordingly X and Y must coincide, at the centre of a circle $B C D E$. In this circle the equal chords $B D$ and $C E$ subtend equal angles at the circumference. Therefore angles B and C are equal (or supplementary: this is impossible), and the triangle is isosceles.

74 Serpentine Avenue, Ballsbridge, Dublin.

A note on equilateral polygons

By A. D. Russell.

Theorem. If a circle cut all the sides (produced if necessary) of an equilateral polygon, the algebraic sum of the intercepts between the vertices and the circle is zero; i.e., if any side $A B$ of the polygon be cut by the circle in P and Q, then $\Sigma(A P+B Q)=0$, the intercepts being signed by fixing a positive direction round the contour of the polygon.

This was proved in a previous note, ${ }^{1}$ using Euclid III. 35, for the special case of a regular polygon; but the same proof applies to any equilateral polygon, which may be re-entrant or self-crossing.

Corollary. If n chords $P_{i} O Q_{i}(i=1, \ldots, n)$ of a circle are drawn through a point O parallel to the sides of an equilateral n-gon, the

[^1]
[^0]: ${ }^{1}$ J. A. McBride, Edin. Math. Notes, No. 33 (1943), 1-13, where many references will be found.

[^1]: ' "Theorem regarding a regular polygon and a circle cutting its sides," Mathematical Notes, No, 22, 1924.

