J. Austral. Math. Soc. 21 (Series A) (1976), 428-437.

ON THE FIXED POINTS OF SYLOW SUBGROUPS OF TRANSITIVE PERMUTATION GROUPS

Dedicated to George Szekeres on his 65th birthday

MARCEL HERZOG and CHERYL E. PRAEGER

(Received 6 December 1974)

Communicated by Jennifer Seberry Wallis

Abstract

Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing |G|. If P has t long orbits and f fixed points in Ω , then it is shown that $f \leq tp - i_p(n)$, where $i_p(n) = p - r_p(n)$, $r_p(n)$ denoting the residue of n modulo p. In addition, groups for which f attains the upper bound are classified.

Let G be a finite permutation group on a set Ω of n points which is transitive on Ω , and let P be a Sylow p-subgroup of G for some prime p dividing |G|. In Praeger (1973) the following question was asked: Can we bound the number of points of Ω fixed by P? It was shown there that the number of fixed points f is at most $\frac{1}{2}(n-1)$. This is the "best possible" bound in terms of the degree n, for the alternating group A_{2p-1} on 2p-1 points has $f = p - 1 = \frac{1}{2}(n-1)$.

In this paper we obtain upper bounds for f in terms of the number of long P-orbits, (that is, orbits containing at least two points), and the length of the longest P-orbit. Of course these new bounds must coincide with the previous bound for the group A_{2p-1} . In addition we classify those groups for which f attains the upper bounds.

Most notation is standard and the reader is referred to Wielandt's book (1964). If G acts on a set Σ with kernel K, then the constituent of G on Σ is denoted by $G^{\Sigma} \simeq G/K$; and we shall denote by $fix_{\Sigma} G$, $supp_{\Sigma}G$, the set of fixed points of G in Σ , and the set of points of Σ permuted nontrivially by G, (that is, the "support of G"), respectively. If the set Σ is clear from the context we shall often omit the subscript and write simply fix G, and supp G. For an integer n and a prime $p, i_p(n)$ will denote the integer satisfying $n + i_p(n) \equiv 0 \pmod{p}$, $1 \leq i_p(n) \leq p$. Also $r_p(n)$ will denote the residue of n mod p, that is, $i_p(n) + r_p(n) = p$.

The alternating and symmetric groups of degree n are written as A_n and S_n as usual, and PSL(m + 1, q), ASL(m, q) will denote respectively the projective and affine special linear groups of dimension m over a field of q elements.

We shall prove the following results:

THEOREM 1. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing |G|. If P has t long orbits and f fixed points in Ω , then

$$f \leq tp - i_p(n)$$

COROLLARY 2. (a) $f \leq \frac{1}{2}(n-i_p(n)) \leq \frac{1}{2}(n-1)$.

(b) If the t long P-orbits have length $p^{\alpha 1}, \dots, p^{\alpha t}$, then $f \leq \frac{1}{2}(n-\Sigma(p^{\alpha i}-p)-i_p(n)) \leq \frac{1}{2}(n-p^{\alpha}+p-i_p(n))$ where $\alpha = \max_{1\leq i\leq t} \{\alpha_i\}$.

COROLLARY 3. If $f \ge n/(p+1)$ then P has an orbit of length p.

COROLLARY 4. If G is d-transitive, where $d \ge 2$, then either (i) P has order p, or (ii) $f \le \alpha_d n$ where α_d is 3/8, 1/3, 1/4, when d is at least 2, 3, 4 respectively, or (iii) $G \supseteq A_n$.

(Note that similar results may be proved if d > 4).

THEOREM 5. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing |G|. Suppose that P has t long orbits and f fixed points in Ω , and suppose that $f = tp - i_p(n)$. Then

(i) if G is imprimitive then t > 1, n = t(2p - y), where $ty = i_p(n) < p$, and P has t orbits of length p. Also G "involves" A_{2p-y} (see Remark 6(b)).

(ii) if G is primitive then t = 1, $f = r_p(n)$, and G is (f + 1)-transitive. Further if the long P-orbit has length p then $G \supset A_n$ provided that $f \ge 3$, or $p \le 3$.

REMARKS 6. (a) By Corollary 2(a) we see that the bound obtained in Praeger (1973) can be deduced from Theorem 1.

(b) In Theorem 5, if G is imprimitive, then G has the following structure:

(i) G has a set of blocks of imprimitivity in Ω , $\Sigma_1 = \{B_1 = B, \dots, B_r\}$ such that $1 \leq |B| < p$.

(ii) G^{Σ_1} has a set of blocks of imprimitivity in $\Sigma_1, \Sigma_2 = \{C_1 = C, \dots, C_s\}$, (where each C is a subset of Σ_1), such that $|\Sigma_2| = s \ge 1$, |C| = 2p - y, and $s |B| = t \le ty = i_p(n) < p$.

(iii) P lies in the kernel K of the action of G on Σ_2 . For each C in Σ_2 , K acts on C as a primitive group of degree 2p - y containing a p-element of degree p. If p is 2 or 3 then $K^c \supseteq A_{2p-y}$ by Wielandt (1964) 13.3, while if $p \ge 5$ then, (since $y \le \frac{1}{2}ty \le \frac{1}{2}p$), the p-element fixes at least 3 points and again $K^c \supseteq A_{2p-y}$, by Wielandt (1964) 13.9. COROLLARY 7. If $f = \frac{1}{2}(n-1)$ then f = p-1, t = 1, n = 2p-1 and $G \supseteq A_n$.

1. Proof of Theorem 1 and the corollaries

Let G, P, f, t be as in the statement of Theorem 1. We first note some properties of the function i_p .

LEMMA 1.1. (a) If n = ab, where a and b are positive integers, then $i_p(n) \le ai_p(b)$, and equality holds if and only if $ai_p(b) \le p$.

(b) If $n = \sum a_i$, for positive integers a_i , $1 \le j \le r$, then $i_p(n) \le \sum i_p(a_i)$ and equality holds if and only if $\sum i_p(a_i) \le p$.

(c) $i_p(n-j) = i_p(n) + j$ for any integer j satisfying $0 \le j \le r_p(n)$.

PROOF. (a) Since $i_p(n) - ai_p(b) \equiv -n + ab \equiv 0 \pmod{p}$ and $i_p(n) - ai_p(b) \leq p - 1$, it follows that $i_p(n) \leq ai_p(b)$, and the condition for equality is clear.

(b) Since $i_p(n) - \sum i_p(a_j) \equiv 0 \pmod{p}$, and $i_p(n) - \sum i_p(a_j) \leq p - 1$, the result (b) follows.

(c) Set $n = tp - i_p(n)$. Then $n - j = tp - (i_p(n) + j)$ where $1 \le i_p(n) \le i_p(n) + j \le i_p(n) + r_p(n) = p$. Hence by the definition of i_p , $i_p(n - j) = i_p(n) + j$.

Before proving the theorem we shall prove some results about Sylow subgroups of transitive imprimitive groups.

LEMMA 1.2. Suppose that G is transitive and imprimitive on Ω and let $\Sigma = \{B_1 = B, \dots, B_r\}$ be a set of blocks of imprimitivity for G in Ω , where $|\Sigma| = r$, |B| = b. Let P be a Sylow p-subgroup of G for a prime p dividing |G|. Let Γ be a long P-orbit of length p^a containing a point of a block B of Σ , and let P_B be the setwise stabiliser of B in P. Then

(a) $\Gamma \cap B$ is a block of imprimitivity for P, P_B is transitive on $|\Gamma \cap B|$, and $|\Gamma| = |P : P_B| ||\Gamma \cap B|$.

(b) If the orbit of P in Σ corresponding to the orbit Γ in Ω has length p^b then P has an orbit of length at least p^{a-b} in any block of Σ fixed setwise by P.

(c) P acts "similarly" on each block of Σ which it fixes setwise, that is, if B, C are two blocks in fix₂P, then there is an element g in N(P) such that $B^{g} = C$ and g induces a correspondence between P-orbits in B and P-orbits in C.

(d) $|fix_{\Omega} P| = |fix_{\Sigma} P| |fix_{B} P|$, where B is any block of $fix_{\Sigma} P$.

PROOF. (a) Let $g \in P$ and suppose that $(\Gamma \cap B) \cap (\Gamma \cap B)^{g}$ contains a point α . Then $\alpha \in B \cap B^{g}$ and hence $B^{g} = B$. Also $\Gamma^{g} = \Gamma$ and so $(\Gamma \cap B)^{g} = \Gamma \cap B$ and $\Gamma \cap B$ is a block of imprimitivity for P in Γ . Clearly P_{B} is the setwise stabiliser of $\Gamma \cap B$ in P, and hence $|\Gamma| = |\Gamma \cap B| |P : P_{B}|$. If $\alpha \in \Gamma \cap B$ then P_{α}

is a subgroup of P_B and $|\Gamma| = |P : P_{\alpha}| = |P : P_B| |P_B : P_{\alpha}|$. Hence the length of the P_B -orbit containing α is $|P_B : P_{\alpha}| = |\Gamma \cap B|$ and so P_B is transitive on $\Gamma \cap B$.

(b) Now $|P:P_B|$ is the length of the P-orbit in Σ corresponding to Γ . Hence $|P:P_B| = p^b$ and $|\Gamma \cap B| = p^{a-b}$. Assume that fix P is nonempty, (otherwise the result is vacuously true). Let $C \in \text{fix}_{\Sigma} P$; then P is a Sylow p-subgroup of G_c , the setwise stabiliser of C. Let P' be a Sylow p-subgroup of G_B containing P_B , and let $g \in G$ be such that $B^g = C$. Then $P'^g \leq G_c$ and we can choose h in G_c such that $P'^{gh} = P$. Then the P-orbit in C containing $(\Gamma \cap B)^{gh}$ has length at least p^{a-b} .

(c) If $B, C \in fix_{\Sigma}P$ then P is a Sylow p-subgroup of both G_B and G_C . Choose g in G such that $B^g = C$ and then $P^g \leq G_C$. Then choose h in G_C such that $P^{gh} = P$. Then $gh \in N(P)$ and $B^{gh} = C$.

(d) Clearly all the points in $fix_{\Omega}P$ lie in $\cup \{B \mid B \in fix_{\Sigma}P\}$, and by (c) each block in $fix_{\Sigma}P$ fixes the same number, $|fix_BP|$ (where $B \in fix_{\Sigma}P$), of points. The result follows.

PROOF OF THEOREM 1. Our proof is by induction on the degree n. The result is clearly true if n is 2 or 3, so assume that the result is true for transitive groups of degree less than n. The result is true if f = 0 so assume that f > 0.

Suppose first that G is imprimitive on Ω and let $\Sigma = \{B_1, \dots, B_r\}$ be a set of blocks of imprimitivity for G, where $|B_i| = b$, $|\Sigma| = r$. Set $f_{\Sigma} = |\operatorname{fix}_{\Sigma} P|$, $f_B = |\operatorname{fix}_B P|$, for B in fix P, and let t_{Σ} , t_B be the number of long P-orbits in Σ and B respectively. Suppose first that for B in fix P, P acts nontrivially on B. Then by induction $f_B \leq t_B P - i_p(b)$. Also the number of long P-orbits in blocks fixed by P is $f_{\Sigma}t_B \leq t$, and we have by 1.1, that $f_{\Sigma}i_p(b) \geq i_p(f_{\Sigma}b) = i_p(n)$ (since $n = rb \equiv f_{\Sigma}b$ (mod p)). Thus $f = f_{\Sigma}f_B \leq f_{\Sigma}(t_Bp - i_p(b)) \leq tp - i_p(n)$. If on the other hand P fixes pointwise each block in fix P, then $f = bf_{\Sigma}$, and by 1.2 (b) it follows that $t = bt_{\Sigma}$. Hence $f = bf_{\Sigma} \leq b(t_{\Sigma}p - i_p(r)) = tp - bi_p(r) \leq tp - i_p(n)$, (by induction and 1.1).

Hence we may assume that G is primitive. Let $\alpha \in \text{fix } P$ and let $\Gamma_1, \dots, \Gamma_r$ be the long G_{α} -orbits, $r \ge 1$. Then by Wielandt (1964) 18.4, P acts nontrivially on each Γ_i . Let P have t_i long orbits and f_i fixed points in Γ_i , and let $|\Gamma_i| = n_i$, $1 \le j \le r$. Then by induction,

$$f = 1 + \sum f_j \le 1 + \sum (t_j p - i_p(n_j)) = 1 + tp - \sum i_p(n_j) \le tp + 1 - i_p(n-1) = tp - i_p(n)$$

(by 1.1). This completes the proof.

PROOF OF COROLLARY 2. It is sufficient to prove part (b). Since $n = \sum p^{\alpha i} + f$, it follows that $\frac{1}{2}(n - p^{\alpha} + p - i_p(n)) \ge \frac{1}{2}(n - \sum (p^{\alpha i} - p) - i_p(n)) = \frac{1}{2}(f + tp - i_p(n)) \ge f$.

[4]

PROOF OF COROLLARY 3. Suppose that $f \ge n/(p+1)$, and that all long *P*-orbits have length at least p^2 . Then $tp^2 \le n - f \le pf \le p(tp - i_p(n)) < tp^2$, a contradiction.

PROOF OF COROLLARY 4. Assume that $f > \alpha_d n$, that G is not alternating or symmetric, and that P has order at least p^2 . If p = 2, then $n \leq f/\alpha_d \leq 4f \leq 4$, so $G \supseteq A_n$. Hence $p \ge 3$, and therefore $\alpha_d \ge 1/(p+1)$. So by Corollary 3, P has an orbit Δ of length p. Let Q be the pointwise stabiliser of Δ in P; then |P:Q| = pso Q is nontrivial. Also let $|\operatorname{fix} Q| = f + qp$; that is, Q fixes q orbits of P of length p. Let $M = N(P) \cap N(Q)$, and let l = |N(P): M| be the number of conjugates of Q by elements of N(P). Now distinct conjugates of Q fix disjoint sets of long P-orbits, so there are at least ql orbits of P of length p. By Praeger (1974), P has an orbit of length at least p^2 . Hence if P has t long orbits then $3l \leq qlp < tp \leq n - f \leq f(\alpha_d^{-1} - 1) \leq 3f$, that is, l < f. Now by Wielandt (1964) 3.7, N(P) is 2-transitive on fix P, and so (by Ito (1960) Hilfsatz 1) M is transitive on fix P. We shall show that N(Q) is transitive on fix Q : let $\alpha \in \text{supp } P \cap \text{ fix } Q$, and let P' be a Sylow p-subgroup of G_{α} containing Q. Then P', P are both Sylow p-subgroups of N(Q) and so $P'^{g} = P$ for some g in N(Q). Hence αg lies in fix P, and so the N(Q)-orbit containing fix P also contains α . Since α was chosen arbitrarily, N(Q) is transitive on fix Q.

Thus by Theorem 1, $f \leq qp - i_p(f) < qp$; and so $|\operatorname{supp} Q| = n - qp - f \leq n - 2f - i_p(f) < n(1 - 2\alpha_d) - 1$. By results of Bochert on minimal degree (Wielandt (1964) 15.1, or de Séguier (1912), 52-54) it follows that $G \supseteq A_n$, contradiction. This completes the proof.

2. Proof of Theorem 5

Let G, P, t, f be as before. The next two lemmas deal with the cases where t and f are as small as possible, that is, t = 1, and $f = r_p(n)$.

LEMMA 2.1. Suppose that G is transitive and P is a Sylow p-subgroup of G for a prime p dividing |G|. If P has only one long orbit then the number of points f fixed by P is $r_p(n)$ and G is (f + 1)-transitive.

PROOF. The result is trivially true if P has no fixed points so assume that f > 0. Let Γ be the long P-orbit in Ω . We shall show that G is primitive. Let B be a block of imprimitivity for G containing a point α of Γ . If B also contains a point of fix P, then B is fixed setwise by P, and since P is transitive on Γ it follows that B contains Γ . However this means that P fixes each block in the set $\Sigma = \{B^s, | g \in G\}$ setwise and so by 1.2 (d) fixes the same number of points in each block in Σ . Since the unique long P-orbit Γ lies in B it follows that $B = \Omega$. If on the other hand B is a subset of Γ then B is a block of imprimitivity for the

transitive group P^r and so $|B| = p^x$ for some $x \ge 0$. Since $f \ne 0$, then *n* is not divisible by *p*, and since |B| divides *n* it follows that x = 0 and $B = \{\alpha\}$. Hence the only blocks of imprimitivity for *G* are trivial and so *G* is primitive. Hence *G* is a Jordan group. From Kantor (to appear), either *G* is (f + 1)-transitive (and hence $f = r_p(n)$), or *G* is an affine or projective linear group or a Mathieu group and it is easy to check that the Sylow *p*-subgroups of such groups have more than one long orbit, (if f > 0). This completes the proof.

LEMMA 2.2. Let
$$G$$
 be as in Theorem 5.

(a) If $f = r_p(n)$ then t = 1 and G is (f + 1)-transitive.

(b) If G is d-transitive for some integer $d \ge 1$, then either $f = r_p(n)$, or $d \le r_p(n)$.

PROOF. (a) If $tp = f + i_p(n) = r_p(n) + i_p(n) = p$, then t = 1 and (a) follows from 2.1.

(b) If $d > r_p(n)$, and if H is the stabiliser in G of $r_p(n) + 1 \leq d$ points of Ω , then p divides |G:H| and it follows that $f = r_p(n)$.

Thus if either t = 1 or $f = r_p(n)$, then by Remark 6(c), and 2.1 and 2.2, the conclusions of Theorem 5 are valid, so assume that $t \ge 2$, and $f > r_p(n)$. Our proof is by induction on the degree *n*. If *n* is 2 or 3, the theorem is true so we assume that the result is true for transitive groups of degree less than *n*. First we deal with the imprimitive case.

LEMMA 2.3. If G satisfies the conditions of Theorem 5, and if G is imprimitive then the conclusions of the theorem hold.

PROOF. Let $\Sigma = \{B_1 = B, \dots, B_r\}$ be a set of nontrivial blocks of imprimitivity for G, where $|\Sigma| = r$ and |B| = b. Suppose first that for B in fix_{Σ} P, P acts nontrivially on B. Let t_B , t_{Σ} , f_B , f_{Σ} be as in the proof of Theorem 1. Then by Theorem 1 and 1.2,

$$tp - i_p(n) = f = f_{\Sigma}f_B \leq f_{\Sigma}(t_Bp - i_p(b)).$$

Now $f_{\Sigma}t_B$ is the number of long *P*-orbits in the set of blocks in fix_{Σ} *P*; hence $f_{\Sigma}t_B \leq t$ and equality holds if and only if *P* acts trivially on Σ . Hence

$$tp - i_p(n) \leq tp - f_{\Sigma}i_p(b) \leq tp - i_p(f_{\Sigma}b) = tp - i_p(n)$$

by 1.1 and since $n \equiv f_{\Sigma}b \pmod{p}$. Thus it follows that $f_B = t_B p - i_p(b)$, $f_{\Sigma}i_p(b) = i_p(n)$, and that P acts trivially on Σ . Hence $f_{\Sigma} = r$ and $ri_p(b) = i_p(n)$. By induction $b = t_B(2p - y)$ where $t_B y = i_p(b)$. Thus $n = rb = rt_B(2p - y) = t(2p - y)$ where $ty = r(t_B y) = ri_p(b) = i_p(n)$. Also the structure of G follows from the induction hypothesis.

Hence we may assume that for B in fix_{Σ} P, P acts trivially on B. Thus $f_B = b$ and $t_{\Sigma} = t/b$. Since P acts nontrivially on Σ , it follows from Theorem 1 that $f = f_B f_{\Sigma} \leq b(t_{\Sigma}p - i_p(r)) = tp - bi_p(r) \leq tp - i_p(n)$. Hence $f_{\Sigma} = t_{\Sigma}p - i_p(r)$ and $bi_p(r) = i_p(n)$. The rest then follows by induction as in the previous case.

Thus we assume that G is primitive, and that $t \ge 2$ and $f > r_p(n)$. By the results of the next two lemmas it will follow that G is $(r_p(n) + 1)$ -transitive, which contradicts 2.2 (b), thus completing the proof of Theorem 5.

LEMMA 2.4. Suppose that G satisfies the conditions of Theorem 5. If G is d-primitive, for some $1 \le d \le r_p(n)$ then G is (d+1)-transitive.

PROOF. If d > 1 let H be the stabiliser in G of d-1 points of fix P, $\alpha_1, \dots, \alpha_{d-1}$, and let $\Delta = \Omega - \{\alpha_1, \dots, \alpha_{d-1}\}$. If d = 1 let H = G and $\Delta = \Omega$. Then H is primitive on Δ . Assume that H is not 2-transitive and let $\Gamma_1, \dots, \Gamma_r$ be the long H_{α} -orbits where $\alpha \in \text{fix}_{\Delta} P$ (since $f > r_p(n) \ge d$, fix_{\Delta} P is non-empty), and $r \ge 2$. By Wielandt (1964) 18.4, P acts nontrivially on each Γ_i . Let $|\Gamma_i| = n_i$ and let P have t_i long orbits and f_i fixed points in Γ_i for $1 \le i \le r$. Then by Theorem 1, $tp - i_p(n) = f = d + \Sigma f_i \le d + \Sigma (t_i p - i_p(n_i)) = tp + d - \Sigma i_p(n_i) \le tp - i_p(n)$ by 1.1. Hence for all i, $f_i = t_i p - i_p(n_i)$, and $\Sigma i_p(n_i) = i_p(n) + d$.

By induction $n_i = t_i(2p - y_i)$ where $t_i y_i = i_p(n_i)$. Thus $|\operatorname{supp} P| = \Sigma(t_i p) \leq (\Sigma t_i y_i)p = (i_p(n) - d)p \leq p^2$. Thus H contains a p-element of degree $qp, q \leq t \leq p$, and it follows from a result of Manning (1911), that

$$n-d+1 = |\operatorname{supp} H| \le \max \{qp+q^2-q, 2q^2-p^2\}.$$

Since $2q^2 - p^2 \leq q^2 < qp + q^2 - q$, we have

$$n - d + 1 = 1 + \sum t_i (2p - y_i) \leq qp + q^2 - q \leq tp + t^2 - t.$$

Now $\sum t_i(2p - y_i) \ge 2tp - p$ and so $(p - t)(t - 1) \le -1$, a contradiction. Thus G is (d + 1)-transitive.

LEMMA 2.5. Suppose that G satisfies the conditions of Theorem 5 and that $f > r_p(n)$. If G is d-transitive for some $2 \le d \le r_p(n)$, then G is d-primitive.

PROOF. Since $f > r_p(n)$, then by 2.2 (b) $p > d \ge 2$, and in particular $p \ge 3$. Let H be the stabiliser in G of d-1 points of fix P, $\alpha_1, \dots, \alpha_{d-1}$, and let $\Delta = \Omega - \{\alpha_1, \dots, \alpha_{d-1}\}$. Suppose that H is imprimitive on Δ . Now $|\operatorname{fix}_{\Delta} P| = f - d + 1 = tp - i_p(n) - d + 1 = tp - i_p(n - d + 1)$ by 1.1, and so by induction, n - d + 1 = t(2p - y) where $ty = i_p(n - d + 1)$ and $|\operatorname{supp} P| = tp$. Since H is imprimitive, $t \ge 2$. Now if $t \le \frac{1}{2}(p-1)$ it follows from Wielandt (1964) 13.10 that $f = t(p - y) + d - 1 \le 4t - 4$, that is, $d + 3 + t(p - y - 4) \le 0$. Hence $p - 3 \le y = i_p(n - d + 1)/t \le (p - 1)/t$, that is, $p \le 3 + 2/(t - 1) \le 5$. Since also $2 \le t \le \frac{1}{2}(p - 1)$ it follows that t = 2 and p = 5, a contradiction to Wielandt (1964) 13.10. Hence

434

435

 $t \ge \frac{1}{2}(p+1)$ and as $ty \le p$, also y = 1 and so H "involves" A_{2p-1} (see Remark 6(b)).

By Remark 6(b), *H* has a set of blocks in Δ , $\Sigma_1 = \{B_1 = B, \dots, B_r\}$ such that $1 \leq |B| < p$. Also H^{Σ_1} has a set of blocks $\Sigma_2 = \{C_1, \dots, C_s\}$, (where each *C* is a subset of Σ_1), where $|C_i| = 2p - 1$, $s |B| = t = i_p(n - d + 1) < p$. Then *P* lies in the kernel *K* of the action of *H* on Σ_2 , and for each *C* in Σ_2 , $K^C \supseteq A_{2p-1}$. Since all long *P*-orbits have length *p* it follows from Praeger (1974) that *P* has order *p*, and hence K^{Σ_1} is isomorphic to A_{2p-1} or S_{2p-1} .

If $t \le 7$ then since $t \le i_p(n-d+1) \le p-1$, we have a contradiction (by Wielandt (1964) 13.10, Manning (1909), and Weiss (1928)). Thus we assume that $t \ge 8$ and $p \ge 11$. Next suppose that $b = |B| < \frac{1}{4}(p+1)$. Then by "Bertrand's Postulate" (Hall (1960), 68) there is a prime q satisfying $\frac{1}{4}(p+1) < q \le \frac{1}{2}(p+1)-2 = \frac{1}{2}(p-3)$, if $\frac{1}{2}(p+1) \ge 7$, that is if $p \ge 13$. Then K contains an element g of order q which permutes exactly q blocks of Σ_1 in each block C of Σ_2 . Then since b < q, g permutes exactly (sb)q = tq points and fixes $d - 1 + t(2p - 1 - q) \ge d - 1 + t(3q + 5) > 3qt + 5$ points. This is a contradiction to Bochert's result on minimal degree (de Séguier (1964), 52-54). Hence if $p \ge 13$ then $b \ge \frac{1}{4}(p+1)$, and also if p = 11 then $b \ge \frac{1}{4}(p+1)$, (unless $b \le 2$, but then there is an element of order 3 in K permuting 3t points and leaving d - 1 + 18tpoints fixed, again a contradiction). Since $sb = t \le p - 1$ it follows that $s \le 3$.

Now let q be any prime satisfying

$$q>s, \qquad 2q<2p-1.$$

Suppose, for all q-elements g in H, that if g fixes a block B of Σ_1 setwise, then g fixes B pointwise. Let g be an element of order q in K which permutes exactly q blocks of Σ_1 in each block of Σ_2 . Then | supp g | = tq. Since 2q < 2p - 1, there is a conjugate g' of g in K which permutes a set of blocks of Σ_1 which is disjoint from supp_{Σ_1} g, and hence supp_{Ω} g' \cap supp_{Ω} g is empty. On the other hand if g' is a conjugate of g such that $supp_{\Omega} g' \cap supp_{\Omega} g$ is nonempty, then clearly $\langle g', g \rangle$ fixes at least d - 1 points of Ω , so we may assume that g' lies in H. Since q > s, then g' lies in K. If γ lies in supp $g' \cap$ supp g then the block B of Σ_1 containing γ is permuted nontrivially by both g and g', by our assumption about q-elements in H. If C is the block of Σ_2 containing B, then $\langle g', g \rangle$ permutes less than 2q blocks of Σ_1 in C. Hence $|\langle g', g \rangle^c|$ is not divisible by q^2 , and since $K^{C} \simeq K^{\Sigma_{1}}$ it follows that $|\langle g', g \rangle^{\Sigma_{1}}|$ is not divisible by q^{2} . Finally our assumption about q-element implies that the kernel of K on Σ_1 is a q'-group, and so $|\langle g', g \rangle|$ is not divisible by q^2 . Hence $\langle g' \rangle$ is conjugate to $\langle g \rangle$ in $\langle g', g \rangle$. Thus by a result of O'Nan, (Praeger (to appear) 1.5), G is AGL(m, 2) for some m (since $G \not\supseteq A_n$), and so G is 3-transitive. Hence d = 3 < p. Now the stabiliser of a point α in fix P,

 $G_{\alpha} = \operatorname{GL}(m,2) = \operatorname{PSL}(m,2)$ is 2-transitive on $n-1 = 2^m - 1$ points. Since p > 3 it is easy to show that fix $P - \{\alpha\}$ is a subspace of the projective space and hence $f = tp - i_p(n) = 1 + (2^a - 1) = 2^a$ for some $1 \le a < m$. Then $i_p(n) = n - 2f = 2^m - 2^{a+1} \le p$ and so $2^a = f \ge (t-1)p \ge (t-1)(2^m - 2^{a+1})$, that is $(t-1)(2^{m-a}-2) \le 1$. It follows that a = m - 1 and so $i_p(n) = 0$, a contradiction.

Thus if q is a prime satisfying (1) then there is a q-element in H which fixes a block B of Σ_1 setwise and permutes B nontrivially. Hence in particular, $q \leq |B|$.

Now by Bertrand's Postulate there is a prime q satisfying $\frac{1}{2}p < q \leq p-2$ and as $s \leq 3$ clearly q satisfies (1). Hence $\frac{1}{2}p < q \leq |B| = b$, and since t = bs < pit follows that s = 1 and b = t. Again by Bertrand's Postulate, since $b \geq 8$, there is a prime q satisfying $\frac{1}{2}(b-1) < q \leq b-3$. Then (1) holds and so there is a q-element g permuting points of a block B in Σ_1 . If 2q > b then g permutes exactly q points, so by 2.1 the action on B is multiply transitive, and by Wielandt (1964) 13.10 it is alternating or symmetric. If $2q \leq b$ then we must have b = 2q; and then there is a prime q' such that $\frac{1}{2}b < q' \leq b-2$. Since b is even $q' \leq b-3$ and since (1) holds, there is a q'-element permuting points of a block B in Σ_1 . Again it follows that the action on B is alternating or symmetric.

Now since s = 1 we have H = K and if L is the setwise stabiliser of B in Σ_1 , then $L^B \supseteq A_b$ and $L^{\Sigma_1 - B} \supseteq A_{2p-2}$. Let M be the kernel of the action of H on Σ_1 ; then $L/M \supseteq A_{2p-2}$ and so M has A_b as a factor, that is, for each B in Σ_1 , $M^B \supseteq A_b$. Since M is 2-transitive on each of its orbits if follows from a result of O'Nan (to appear) (Theorem D) that $G_{\alpha_1 \cdots \alpha_{d-1}}$ is a normal extension of PSL (m, q) for some $m \ge 3$ and prime power q, and that $\alpha \cup B$ is some subspace of the projective geometry. Thus $1 + (2p-1)b = (q^m - 1)/(q-1)$ and $1+b = |\alpha \cup B| = (q'-1)/(q-1)$ for some 1 < t < m. It follows that $q \le b < p$, and then it is easy to show that fix $P - \{\alpha_1, \cdots, \alpha_{d-1}\}$ is a subspace. Hence

$$f - d + 1 = 1 + (p - 1)b = (q^{s} - 1)/(q - 1)$$

for some s > t, and therefore $pb = q^{m-1} + \cdots + q^s$. However this means that b is divisible by q^s whereas $1 + b = (q^t - 1)/(q - 1) < q^t < q^s$, a contradiction. This completes the proof of the lemma.

By our remarks preceding Lemma 2.4, the proof of Theorem 5 is complete.

PROOF OF COROLLARY 7. We assume that $f = \frac{1}{2}(n-1)$. Then the number of points permuted by P is $n - f = f + 1 \leq tp$, by Theorem 1. It follows that all long P-orbits have length p and that f = tp - 1. If G is imprimitive then by Theorem 5, n = t(2p - y) where $ty = i_p(n) = 1$, a contradiction to t > 1. Hence by Theorem 5, t = 1, f = p - 1, and n = 2p - 1. Since either $f \geq 3$ or $p \leq 3$ it follows that $G \supseteq A_n$.

References

- M. Hall, Jr. (1960), The Theory of Groups, (New York: Pergamon 1960).
- N. Ito (1960), 'Über die Gruppen PSL_n(q) die eine Untergruppe von Primzahlindex enthalten', Acta Sci. Math. 21, 206–217.
- W. M. Kantor 'Primitive groups having transitive subgroups of smaller, prime power degree', (to appear).
- W. A. Manning (1909), 'On the order of primitive groups', Trans. Amer. Math. Soc. 10, 247-258.
- W. A. Manning (1911), 'On the limit of the degree of primitive groups', Trans. Amer. Math. Soc. 12, 375-386.
- M. E. O'Nan, 'Normal structure of the one-point stabiliser of a doubly transitive permutation group, II', (to appear).
- C. E. Praeger (1973), 'Sylow subgroups of transitive permutation groups', Math. Z. 134, 179-180.
- C. E. Praeger (1974), 'On the Sylow subgroups of a doubly transitive permutation group', Math. Z. 137, 155-171.
- C. E. Praeger, 'Primitive permutation groups containing a *p*-element of small degree, *p* a prime', (to appear), J. Algebra.
- J. A. de Séguier (1912), Théorie des Groupes finis, (Paris: Gauthier-Villars).
- M. J. Weiss (1928), 'Primitive groups which contain substitutions of prime order p and of degree 6p or 7p', Trans. Amer. Math. Soc. 30, 333-359.
- H. Wielandt (1964), Finite Permutation Groups (New Yorl-London: Academic Press 1964).

Department of Mathematics, Institute of Advanced Studies.

Australian National University.

Canberra, Australia 2600.

[10]

437