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Abstract

Let G be a transitive permutation group on a set §) of n points, and let P be a Sylow p-subgroup
of G for some prime p dividing | G |. If P has ¢ long orbits and f fixed points in (), then it is shown
that f <tp —i,(n), where i,(n)=p —r,(n), r.(n) denoting the residue of n modulo p. In addition,
groups for which f attains the upper bound are classified.

Let G be a finite permutation group on a set {} of n points which is
transitive on (), and let P be a Sylow p-subgroup of G for some prime p dividing
| G |. In Praeger (1973) the following question was asked: Can we bound the
number of points of 2 fixed by P? It was shown there that the number of fixed
points f is at most 3(n — 1). This is the ‘“best possible’” bound in terms of the
degree n, for the alternating group A,,_. on 2p —1 points has f=p—-1=
Yn-1).

In this paper we obtain upper bounds for f in terms of the number of long
P-orbits, (that is, orbits containing at least two points), and the length of the
longest P-orbit. Of course these new bounds must coincide with the previous
bound for the group A,,_;. In addition we classify those groups for which f
attains the upper bounds.

Most notation is standard and the reader is referred to Wielandt’s book
(1964). If G acts on a set 3 with kernel K, then the constituent of G on X is
denoted by G*= G/K; and we shall denote by fixs G, supp:G, the set of fixed
points of G in 3, and the set of points of 3 permuted nontrivially by G, (that is,
the “‘support of G”’), respectively. If the set 3 is clear from the context we shall
often omit the subscript and write simply fix G, and supp G. For an integer n and
a prime p,i,(n) will denote the integer satisfying n +i,(n) = 0(modp), 1=
i,(n) = p. Also r,(n) will denote the residue of n mod p, that is, i,(n) + r,(n) = p.
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The alternating and symmetric groups of degree n are written as A, and S, as
usual, and PSL(m + 1,q), ASL(m, q) will denote respectively the projective and
affine special linear groups of dimension m over a field of g elements.

We shall prove the following results:

THEOREM 1. Let G be a transitive permutation group on a set Q) of n points,
and let P be a Sylow p-subgroup of G for some prime p dividing |G |. If P has t
long orbits and f fixed points in Q, then
f=wp—in).

COROLLARY 2. (a) f=3(n—i,(n))=¥n—-1).
(b) If the t long P-orbits have length p*',---,p*, then f=
in=-3(@*-p)—i,(n))=3i(n—p°+p—i(n)) where a = max,z;=, {a:}.

CoroLLary 3. If f= n/(p + 1) then P has an orbit of length p.

CoroLLARY 4. If G is d-transitive, where d = 2, then either (i) P has order p,
or (ii) f = asn where aq is 3/8,1/3, 1/4, when d is at least 2, 3, 4 respectively, or
(iii) G 2 A..

(Note that similar results may be proved if d > 4).

THEOREM 5. Let G be a transitive permutation group on a set { of n points,
and let P be a Sylow p-subgroup of G for some prime p dividing | G |. Suppose that
P has t long orbits and f fixed points in , and suppose that f = tp — i,(n). Then

(i) if Gis imprimitive thent>1, n =1t(2p — y), where ty = i,(n)<p, and P
has t orbits of length p. Also G “involves” A.,_, (see Remark 6(b)).

(i) if G is primitive then t = 1, f = r,(n), and G is (f + 1)-transitive. Further
if the long P-orbit has length p then G D A, provided that f =3, or p =3.

REMARKs 6. (a) By Corollary 2(a) we see that the bound obtained in Praeger
(1973) can be deduced from Theorem 1.

(b) In Theorem S, if G is imprimitive, then G has the following structure:

(i) G has a set of blocks of imprimitivity in €, 3, ={B, = B, - - -, B,} such
that 1=|B|<p.

(ii)) G* has a set of blocks of imprimitivity in %,,3,={C,=C,---, G},
(where each C is a subset of %), such that |3;| =s=1, |C|=2p—y, and
s|Bl=t=ty=i(n)<p.

(iii) P lies in the kernel K of the action of G on %,. For each C in X, K acts
on C as a primitive group of degree 2p — y containing a p-element of degree p.
If pis2 or 3 then K€ D A,,_, by Wielandt (1964) 13.3, while if p = 5 then, (since
y =3ty =ip), the p-element fixes at least 3 points and again K€ 2 A,,_,, by
Wielandt (1964) 13.9.
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CoroiLLArRY 7. Iff=3(n —Dthenf=p—-1,t=1,n=2p—-1and G 2 A..

1. Proof of Theorem 1 and the corollaries

Let G, P, f, t be as in the statement of Theorem 1. We first note some
properties of the function i,

Lemma 1.1. (a) If n = ab, where a and b are positive integers, then i,(n) =
ai, (b), and equality holds if and only if ai,(b) = p.

(b) If n = Za, for positive integers a, 1 =j=r, then i,(n)=3i(a;) and
equality holds if and only if 3i,(a;)) = p.

(c) i,(n—j)=i,(n)+j for any integer j satisfying 0=j=r,(n).

PROOF. (a) Since i,(ny—ai,(b)= —n+ab =0 (mod p) and
i,{n)—ai,(b)=p -1, it follows that i,(n)=ai,(b), and the condition for
equality is clear.

(b) Since i,(n)—2i,(a;) = 0 (mod p), and i,(n)— 2i,(a;) = p — 1, the result
(b) follows.

(c) Set n=1tp—i(n). Then n—j=1tp—(i,(n)+j) where 1=i(n)=
i,(n)+j=1i,(n)+r,(n)=p. Hence by the definition of i, i,(n —j)=i,(n)+]j.

Before proving the theorem we shall prove some results about Sylow
subgroups of transitive imprimitive groups.

LeEMMA 1.2. Suppose that G is transitive and imprimitive on Q and let
3 ={B,= B, -,B,} be a set of blocks of imprimitivity for G in Q, where |[%| =1,
| B| = b. Let P be a Sylow p-subgroup of G for a prime p dividing |G |. Let T be a
long P-orbit of length p® containing a point of a block B of X, and let Py be the
setwise stabiliser of B in P. Then

(a) I'N B is a block of imprimitivity for P, Py is transitive on |I'N B |, and
[IT|=|P:Pg||TNBJ.

(b) If the orbit of P in X corresponding to the orbit T in () has length p® then P
has an orbit of length at least p*~" in any block of X fixed setwise by P.

(c) Pacts “similarly” on each block of % which it fixes setwise, that is, if B,
C are two blocks in fixs P, then there is an element g in N(P) such that B® = C and
g induces a correspondence between P-orbits in B and P-orbits in C.

(d) |fixa P=|fixs P||fixs P|, where B is any block of fixs P.

Proor. (a) Let g € P and suppose that (I'N B) N (I'N B)® contains a point
a. Then o« € BN B® and hence B® = B. AlsoI* =T andso(I'NB)* =TNB
and 'N B is a block of imprimitivity for P in I'. Clearly Py is the setwise
stabiliserof TN B in P,and hence [I'| = |[TNB||P:Ps|.lf a ET' N B then P,
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is a subgroup of Pg and |[I'|=|P:P,|=|P:Pg||Ps:P,|. Hence the length of
the Pg-orbit containing @ is | Ps : P. | =|T' N B | and so Ps is transitive on ' N B,

(b) Now | P : Pg | is the length of the P-orbit in 3 corresponding to I'. Hence
|P:Pg|=p®and | N B|=p*" Assume that fix P is nonempty, (otherwise the
result is vacuously true). Let C € fix s P; then P is a Sylow p-subgroup of G, the
setwise stabiliser of C. Let P’ be a Sylow p-subgroup of Gz containing Pp, and
let g € G be such that B* = C. Then P"® = G and we can choose h in G such
that P'** = P. Then the P-orbit in C containing (I' N B)®* has length at least
pafb.

(c) If B, C€ fixs P then P is a Sylow p-subgroup of both Gz and Ge.
Choose g in G such that B®* = C and then P® = G¢. Then choose h in G¢ such
that P** = P. Then gh € N(P) and B® = C.

(d) Clearly all the points in fix,P lie in U{B | B € fixy P}, and by (c) each
block in fixy P fixes the same number, |fixg P | (where B € fixy P), of points. The
result follows.

Proofr oF THEOREM 1. Our proof is by induction on the degree n. The
result is clearly true if n is 2 or 3, so assume that the result is true for transitive
groups of degree less than n. The result is true if f =0 so assume that f > 0.

Suppose first that G is imprimitive on {2 and let 2 = {B,, - - -, B,} be a set of
blocks of imprimitivity for G, where |Bi[=b, |2|=r. Set fs=|fixs P|, fs =
|fixs P |, for B in fixs P, and let t5, 1 be the number of long P-orbits in % and B
respectively. Suppose first that for B in fixs P, P acts nontrivially on B. Then by
induction fz = P — i,(b). Also the number of long P-orbits in blocks fixed by P
is fsts =t, and we have by 1.1, that fsi,(b)= i,(fsb)=i,(n) (since n =rb = f;b
(mod p)). Thus f=fsfs = fs(tsp — i, (b)) = tp — i,(n). If on the other hand P
fixes pointwise each block in fixy P, then f = bfs, and by 1.2 (b) it follows that
t=bts. Hence f=bfs=b(tsp —i,(r))=1tp — bi,(r)=tp — i,(n), (by induction
and 1.1).

Hence we may assume that G is primitive. Let « € fix P and let ['y,---, T,
be the long G, -orbits, r 2 1. Then by Wielandt (1964) 18.4, P acts nontrivially on
each I'. Let P have f long orbits and f; fixed points in T';, and let |I'; | = n,
1=j =r. Then by induction,

f=1+2f=1+30p—i(n)=1+1p —Zi,(n)=tp+1—i(n—1)=1p —i,(n)

(by 1.1). This completes the proof.

Proor or CoroLLaRry 2. It is sufficient to prove part (b). Since n =
2p*+f, it follows that ;(n—-p*+p—-i,(n)=i(n-2(p~ —p)—i(n))=
W(f+p—i(n)=f.
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ProoF ofF COROLLARY 3. Suppose that f= n/(p + 1), and that all long P-
orbits have length at least p>. Then p’=n—-f=pf=p(p—i(n))<tp? a
contradiction.

PrROOF OF COROLLARY 4. Assume that f > aun, that G is not alternating or
symmetric, and that P has order at least p>. If p =2, then n = f/ay =4f =4, s0
G D A.. Hence p = 3, and therefore a, = 1/(p + 1). So by Corollary 3, P has an
orbit A of length p. Let Q be the pointwise stabiliser of A in P; then |[P: Q|=p
so Q is nontrivial. Also let |fix Q| = f + gp; that is, Q fixes g orbits of P of
length p. Let M = N(P)N N(Q), and let | =|N(P): M| be the number of
conjugates of Q by elements of N(P). Now distinct conjugates of Q fix disjoint
sets of long P-orbits, so there are at least gl orbits of P of length p. By Praeger
(1974), P has an orbit of length at least p®. Hence if P has ¢ long orbits then
=qlp<tp=n—-f=flas'—1)=3f, that is, | <f. Now by Wielandt (1964)
3.7, N(P) is 2-transitive on fix P, and so (by Ito (1960) Hilfsatz 1) M is transitive
on fix P. We shall show that N(Q) is transitive on fix Q : let « € supp P N fix Q,
and let P’ be a Sylow p-subgroup of G, containing Q. Then P’, P are both Sylow
p-subgroups of N(Q) and so P'* = P for some g in N(Q). Hence ag lies in fix P,
and so the N(Q)-orbit containing fix P also contains «. Since a was chosen
arbitrarily, N(Q) is transitive on fix Q.

Thus by Theorem 1, f=gp —i,(f)<qp; and so [suppQ|=n—-gp—f=
n—=2f-i,(fy<n(l1-2a,)—1. By results of Bochert on minimal degree
(Wielandt (1964) 15.1, or de Séguier (1912), 52-54) it follows that G D A,
contradiction. This completes the proof.

2. Proof of Theorem 5

Let G, P, t, f be as before. The next two lemmas deal with the cases where ¢
and f are as small as possible, that is, t = 1, and f = r,(n).

LemMMA 2.1. Suppose that G is transitive and P is a Sylow p-subgroup of G for
a prime p dividing | G |. If P has only one long orbit then the number of points f
fixed by P is r,(n) and G is (f + 1)-transitive.

Proor. The result is trivially true if P has no fixed points so assume that
f>0.LetI be the long P-orbit in {}. We shall show that G is primitive. Let B be
a block of imprimitivity for G containing a point « of I'. If B also contains a
point of fix P, then B is fixed setwise by P, and since P is transitive on I’ it follows
that B contains I'. However this means that P fixes each block in the set
3 ={B*,| g.€ G} setwise and so by 1.2(d) fixes the same number of points in
each block in Z. Since the unique long P-orbit I lies in B it follows that B = Q.
If on the other hand B is a subset of I' then B is a block of imprimitivity for the
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transitive group P' and so | B| = p* for some x = 0. Since f# 0, then n is not
divisible by p, and since | B | divides n it follows that x =0 and B = {a}. Hence
the only blocks of imprimitivity for G are trivial and so G is primitive. Hence G
is a Jordan group. From Kantor (to appear), either G is (f + 1)-transitive (and
hence f = r,(n)), or G is an affine or projective linear group or a Mathieu group
and it is easy to check that the Sylow p-subgroups of such groups have more than
one long orbit, (if f > 0). This completes the proof.

LEmMA 2.2. Let G be as in Theorem 5.

(@) If f=r,(n) then t =1 and G is (f + 1)-transitive.

(b) If G is d-transitive for some integer d = 1, then either f =r,(n), or
d =r,(n).

Proor. (a) If tp = f+i,(n)=r,(n)+i,(n)=p, then t =1 and (a) follows
from 2.1.

(b) If d > r,(n), and if H is the stabiliser in G of r,(n)+ 1 £ d points of (1,
then p divides |G : H] and it follows that f = r,(n).

Thus if either t =1 or f = r,(n), then by Remark 6(c), and 2.1 and 2.2, the
conclusions of Theorem 5 are valid, so assume that t =2, and f > r,(n). Our
proof is by induction on the degree n. If n is 2 or 3, the theorem is true so we
assume that the result is true for transitive groups of degree less than n. First we
deal with the imprimitive case.

LemMa 2.3. If G satisfies the conditions of Theorem 5, and if G is imprimitive
then the conclusions of the theorem hold.

Proor. Let 3 = {B, = B, - - -, B,} be a set of nontrivial blocks of imprimitiv-
ity for G, where |X|=r and | B|= b. Suppose first that for B in fixs P, P acts
nontrivially on B. Let 5, ts, fs, fs be as in the proof of Theorem 1. Then by
Theorem 1 and 1.2,

tp = ip(n)=f = fsfs = fs(tsp — i, (b))

Now fstz is the number of long P-orbits in the set of blocks in fixs P; hence
fsts =t and equality holds if and only if P acts trivially on 3. Hence

tp—ip(n)stp—filp(b)=tp— i, (fsb)=tp —ip(n)

by 1.1 and since n = fsb (mod p). Thus it follows that fgz = tsp — i, (b),
fzi,(b) = i,(n), and that P acts trivially on 2. Hence fs = r and ri,(b) = i,(n). By
induction b =1(2p—y) where tgy =i, (b). Thus n=rb=rtz2p—-y)=
t(2p — y) where ty = r(tgy) = ri,(b)=i,(n). Also the structure of G follows
from the induction hypothesis.
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Hence we may assume that for B in fixs P, P acts trivially on B. Thus f = b
and t; = t/b. Since P acts nontrivially on %, it follows from Theorem 1 that
f=fefs=b(tsp—i,(r))=tp — bi,(r)=tp —i,(n). Hence fs;=1tsp—i,(r) and
bi,(r) = i,(n). The rest then follows by induction as in the previous case.

Thus we assume that G is primitive, and that t =2 and f > r,(n). By the
results of the next two lemmas it will follow that G is (r,(n) + 1)-transitive, which
contradicts 2.2 (b), thus completing the proof of Theorem 5.

LeMMA 2.4. Suppose that G satisfies the conditions of Theorem 5. If G is
d-primitive, for some 1=d =r,(n) then G is (d + 1)-transitive.

Proor. If d >1 let H be the stabiliser in G of d —1 points of fix P,
an, oy aq-,andlet A= Q —{ay, -, as}. f d =11let H= G and A = (). Then
H is primitive on A. Assume that H is not 2-transitive and let I',,- - -,T’, be the
long H,-orbits where a € fixa P (since f > r,(n) 2 d, fix, P is non-empty), and
r =z 2. By Wielandt (1964) 18.4, P acts nontrivially on each I'. Let {[; | = n; and
let P have t long orbits and f; fixed points in I'; for 1 =i = r. Then by Theorem
Ltp—i(n)=f=d+3f=d+2(tp-—i,(n))=tp+d-—-2i,(n)<tp—i(n) by
1.1. Hence for all i, f = tp —i,(n;), and Zi,(n;)=i,(n)+d.

By induction n, = (2p — y:) where &y, = i,(n;). Thus {supp P|=2(tp) =
GCty)p = (i,(n) — d)p = p>. Thus H contains a p-element of degree gp, g =t =
p, and it follows from a result of Manning (1911), that

n—d+1=|supp H|= max{qp +q>—q,2¢>—p’}.
Since 2q°—p*=q°<qp + q*— g, we have
n—-d+1=14342p—-y)Sqgp+q’—q=tp+1°—1t.

Now 2t(2p — y;)Z2tp — p and so (p — t)(t — 1) = — 1, a contradiction. Thus G
is (d + 1)-transitive.

LemMMA 2.5. Suppose that G satisfies the conditions of Theorem 5 and that
f>r(n). If G is d-transitive for some 2=d <r,(n), then G is d-primitive.

Proor. Since f >r,(n), then by 2.2(b) p > d = 2, and in particular p = 3.
Let H be the stabiliser in G of d —1 points of fix P, ay, -, as_, and let
A=Q—{ai, -, as_i}. Suppose that H is imprimitive on A. Now |[fix, P|=
f-d+1=wp—i(n)—d+1=1tp—i(n—d+1) by 1.1, and so by induction,
n—d+1=tQ2p—y) where ty=i,(n—d+1) and |supp P|=tp. Since H is
imprimitive, t = 2. Now if t =3(p — 1) it follows from Wielandt (1964) 13.10 that
f=t{p-y)+d—1=4t—4, thatis, d+3+t(p—y—4)=0.Hence p—-3=y=
ip,(n—d+1)/t =(p—1)/t,thatis, p =3+2/(t —1)=<5.Sincealso 2=t =i(p-1)
it follows that ¢ =2 and p = 5, a contradiction to Wielandt (1964) 13.10. Hence
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t=z3(p+1)and as ty =p, also y =1 and so H “involves” A,,_, (see Remark
6(b)).

By Remark 6(b), H has a set of blocks in A, 2, ={B, = B, - - -, B,} such that
1=|B|<p. Also H™ has a set of blocks %.={C,, -+, C.}, (where each C is a
subset of 3,), where |G |=2p—1,s|B|=t=i,(n~d+1)<p. Then P lies in
the kernel K of the action of H on 2, and for each C in 3,, K€ 3 A,,_,. Since
all long P-orbits have length p it follows from Praeger (1974) that P has order p,
and hence K™ is isomorphic to A,,-; or Sz,

If t =7 then since t=i,(n—d+1)=p—1, we have a contradiction (by
Wielandt (1964) 13.10, Manning (1909), and Weiss (1928)). Thus we assume that
t =8 and p = 11. Next suppose that b =|B|< i(p +1). Then by “Bertrand’s
Postulate” (Hall (1960), 68) there is a prime gq satisfying i (p+1)<qg =
(p+1)—-2=3(p—-3), if 3(p+1)=7, that is if p =13. Then K contains an
element g of order ¢ which permutes exactly g blocks of X, in each block C of
3,. Then since b <gq, g permutes exactly (sh)g =tq points and fixes
d—-1+t2p—-1-q)=d—-1+1(3q +5)>3qt+5 points. This is a contradiction
to Bochert’s result on minimal degree (de Séguier (1964), 52-54). Hence if p 2 13
then b ={(p +1), and also if p = 11 then b =i(p + 1), (unless b =2, but then

" there is an element of order 3 in K permuting 3¢ points and leaving d — 1+ 18¢
points fixed, again a contradiction). Since sb =t =< p — 1 it follows that s = 3.
Now let g be any prime satisfying

1) q >, 2q <2p—1.

Suppose, for all g-elements g in H, that if g fixes a block B of X, setwise,
then g fixes B pointwise. Let g be an element of order g in K which permutes
exactly g blocks of 2, in each block of X,. Then |supp g | = #q. Since 2q <2p — 1,
there is a conjugate g’ of g in K which permutes a set of blocks of X, which is
disjoint from supps, g, and hence suppa g’ N suppag is empty. On the other hand
if g’ is a conjugate of g such that suppa g’ M suppa g is nonempty, then clearly
{(g', g) fixes at least d — 1 points of 2, so we may assume that g’ lies in H. Since
q > s, then g’ lies in K. If y lies in supp g’ N supp g then the block B of X,
containing vy is permuted nontrivially by both g and g’, by our assumption about
g-elements in H. If C is the block of %, containing B, then (g’, g) permutes less
than 2q blocks of £, in C. Hence |(g’, g)° | is not divisible by g7 and since
K¢ = K* it follows that |(g’, g)*'| is not divisible by g°. Finally our assumption
about g-element implies that the kernel of K on 3, is a g'-group, and so | {(g’, g)|
is not divisible by ¢q*. Hence (g") is conjugate to (g) in (g’, g). Thus by a result of
O’Nan, (Praeger (to appear) 1.5), G is AGL(m,2) for some m (since G2 A.),
and so G is 3-transitive. Hence d = 3 < p. Now the stabiliser of a point « in fix P,

https://doi.org/10.1017/51446788700019261 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019261

436 Marcel Herzog and Cheryl A. Praeger 9]

G. = GL (m,2) = PSL (m,2) is 2-transitive on n ~ 1= 2™ — 1 points. Since p >3
it is easy to show that fix P —{a} is a subspace of the projective space and hence
f=tp~-i(n)=1+2°-1)=2* for some 1=a<m. Then i(n)=n~-2f=
2" —2""=p and so 2°=fz(~-Dpz=(¢-1)Q2"-2°""), that is
(t—1)2m = —2)= 1.1t follows that a = m — 1 and so i,(n) = 0, a contradiction.

Thus if q is a prime satisfying (1) then there is a g-element in H which fixes
a block B of 3, setwise and permutes B nontrivially. Hence in particular,
q=|Bj|.

Now by Bertrand’s Postulate there is a prime g satisfying i1p <g =p -2
and as s = 3 clearly g satisfies (1). Hence ip <q = |B|=b, andsince t = bs < p
it follows that s = 1 and b = . Again by Bertrand’s Postulate, since b = 8, there
is a prime q satisfying 3(b —1)<q = b —3. Then (1) holds and so there is a
g-element g permuting points of a block B in %,. If 2q > b then g permutes
exactly g points, so by 2.1 the action on B is multiply transitive, and by Wielandt
(1964) 13.10 it is alternating or symmetric. If 2g = b then we must have b = 2¢;
and then there is a prime q' such that1b <q'=b —2.Since b isevenqg'=b -3
and since (1) holds, there is a q'-element permuting points of a block B in 3,.
Again it follows that the action on B is alternating or symmetric.

Now since s =1 we have H = K and if L is the setwise stabiliser of B in 3,
then L® D A, and L™ % D A,, ,. Let M be the kernel of the action of H on ¥;;
then L/M D A,,_, and so M has A, as a factor, that is, for each B in 3,
M? D A,. Since M is 2-transitive on each of its orbits if follows from a result of
O’Nan (to appear) (Theorem D) that G.,,,....,_, is a normal extension of PSL (m, q)
for some m =3 and prime power g, and that a U B is some subspace of the
projective geometry. Thus 1+Qp-1)b=(q@" - 1)/(g—1) and 1+b=
la UB|=(q'—1)/(q — 1) for some 1 < t < m. It follows that ¢ = b < p, and then
it is easy to show that fix P —{a,, -, a,.,} is a subspace. Hence

f-d+1=1+(p-Db=(q"-1D/(q-1)

for some s > t, and therefore pb = q™ ™'+ - - - + ¢°. However this means that b is
divisible by q° whereas 1+ b =(q' —~1)/(q ~ 1)< q' < q°, a contradiction. This
completes the proof of the lemma.

By our remarks preceding Lemma 2.4, the proof of Theorem § is complete.

Proor oF COROLLARY 7. We assume that f =1(n — 1). Then the number of
points permuted by P is n — f = f + 1 = tp, by Theorem 1. It follows that all long
P-orbits have length p and that f = tp — 1. If G is imprimitive then by Theorem
5, n=1t(2p—y) where ty=i,(n)=1, a contradiction to ¢>1. Hence by
Theorem 5,¢t =1, f =p — 1, and n = 2p — 1. Since either f 2 3 or p = 3 it follows
that G D A..
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