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Abstract

Let G be a transitive permutation group on a set ft of n points, and let P be a Sylow p-subgroup
of G for some prime p dividing | G |. If P has I long orbits and / fixed points in fi, then it is shown
that fstp- ip(n), where ip(n) = p - rp(n), rp(n) denoting the residue of n modulo p. In addition,
groups for which / attains the upper bound are classified.

Let G be a finite permutation group on a set ft of n points which is
transitive on ft, and let P be a Sylow p-subgroup of G for some prime p dividing
| G | . In Praeger (1973) the following question was asked: Can we bound the
number of points of ft fixed by P? It was shown there that the number of fixed
points / is at most | (n - 1). This is the "best possible" bound in terms of the
degree n, for the alternating group A2p-i on 2p - 1 points has f = p-l =
i ( n - l ) .

In this paper we obtain upper bounds for / in terms of the number of long
P-orbits, (that is, orbits containing at least two points), and the length of the
longest P-orbit. Of course these new bounds must coincide with the previous
bound for the group A2p-x- In addition we classify those groups for which /
attains the upper bounds.

Most notation is standard and the reader is referred to Wielandt's book
(1964). If G acts on a set £ with kernel K, then the constituent of G on 2 is
denoted by G* — G/K; and we shall denote by fixx G, suppjG, the set of fixed
points of G in 2, and the set of points of 2 permuted nontrivially by G, (that is,
the "support of G"), respectively. If the set S is clear from the context we shall
often omit the subscript and write simply fix G, and supp G. For an integer n and
a prime p, iP(n) will denote the integer satisfying n + ip(n) = O(modp) , 1 S
ip(n) § p. Also rp(n) will denote the residue of n mod p, that is, ip(n) + rp(n) = p.
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[2] Fixed points of Sylow subgroups 429

The alternating and symmetric groups of degree n are written as An and Sn as
usual, and PSL(m + l,q), ASL(m,q) will denote respectively the projective and
affine special linear groups of dimension m over a field of q elements.

We shall prove the following results:

THEOREM 1. Let G be a transitive permutation group on a set (I of n points,
and let P be a Sylow p-subgroup of G for some prime p dividing \G \. If P has t
long orbits and f fixed points in il, then

COROLLARY 2. (a) / g | ( n - ip(n))g|(n - 1).
(b) / / the t long P-orbits have length pa',---,pal, then / ^

\(n -£ ( /?" ' -p)~iP(n))^\(n - p" + p - ip(n)) where a = max,SlS, {a,}.

COROLLARY 3. / / / § n/(p + 1) then P has an orbit of length p.

COROLLARY 4. If G is d-transitive, where d g 2 , then either (i) Phas orderp,
or (ii) / S adn where ad is 3/8, 1/3, 1/4, when d is at least 2, 3, 4 respectively, or
(iii) G D An.

(Note that similar results may be proved if d > 4).

THEOREM 5. Let G be a transitive permutation group on a set ft of n points,
and let Pbe a Sylow p-subgroup of G for some prime p dividing \G \. Suppose that
Phas t long orbits and f fixed points in ft, and suppose thatf — tp — iP(n). Then

(i) if G is imprimitive then t > 1, n = t(2p - y), where ty = ip(n)< p, and P
has t orbits of length p. Also G "involves" A2p-y (see Remark 6(b)).

(ii) if G is primitive then t = 1, / = rp(n), and G is (f + I)-transitive. Further
if the long P-orbit has length p then G D An provided that / g 3 , or p S 3.

REMARKS 6. (a) By Corollary 2(a) we see that the bound obtained in Praeger
(1973) can be deduced from Theorem 1.

(b) In Theorem 5, if G is imprimitive, then G has the following structure:
(i) G has a set of blocks of imprimitivity in ft, Si = {Bi = B, • • •, Br) such

that 1 § | B | < p.
(ii) G z ' has a set of blocks of imprimitivity in S l 5 1 2 = {C, = C, • • •, G} ,

(where each C is a subset of Si), such that | S 2 | = s ^ l , \C\ = 2p-y, and
s | B | = t Sfy = ip(n)<p.

(iii) P lies in the kernel K of the action of G on S2. For each C in 22, K acts
on C as a primitive group of degree 2p - y containing a p-element of degree p.
If p is 2 or 3 then Kc D A2p_y by Wielandt (1964) 13.3, while if p g 5 then, (since
y =2ty = l p ) , the p-element fixes at least 3 points and again Kc D A2p-y, by
Wielandt (1964) 13.9.
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COROLLARY 7. Iff = \(n - I) then f = p- 1, f = 1, n = 2p - 1 and G DA,.

1. Proof of Theorem 1 and the corollaries

Let G, P, f t be as in the statement of Theorem 1. We first note some
properties of the function ip.

LEMMA 1.1. (a) If n = ab, where a and b are positive integers, then <p(n)2=
aip(b), and equality holds if and only if aip(b)S p.

(b) / / n = 2a, , for positive integers ah l = y = r, then ip(n)S= 2/ P (a , ) and
equality holds if and only if 2 f p ( a , ) ^ p .

(c) ip(n - / ) = ip(n) + j for any integer j satisfying 0 g j ^ rp(n).

PROOF, (a) Since ip(n)- aip(b) = - n + ab = 0 (modp) and
ip(n)-aip(b)^p-I, it follows that fP(n)S aiP(b), and the condition for
equality is clear.

(b) Since iP(n) — 2ip(a ;) = 0 (mod p), and ip(n) — 2ip(a,) S p - 1 , the result
(b) follows.

(c) Set n = tp- ip(n). Then n - j = tp - (/„(n) + y) where l § i p ( n ) S
»p(«) + / = ip(n)+ rp(n) = p. Hence by the definition of ip, ip(n -/)= iP(n) + j .

Before proving the theorem we shall prove some results about Sylow
subgroups of transitive imprimitive groups.

LEMMA 1.2. Suppose that G is transitive and imprimitive on Q and let
£ = {B, = B, • • -,B,} be a set of blocks of imprimitivity for G in £1, where 121 = r,
| B | = b. Let P be a Sylow p-subgroup of G for a prime p dividing \G \. Let Y be a
long P-orbit of length p" containing a point of a block B of 2, and let PB be the
setwise stabiliser of B in P. Then

(a) r n B is a block of imprimitivity for P, PB is transitive on | F D B |, and
\r\ = \P:PB\\rr\B\.

(b) If the orbit of Pin 2 corresponding to the orbit T in il has length pb then P
has an orbit of length at least p"~b in any block of 2 fixed setwise by P.

(c) P acts "similarly" on each block of 2 which it fixes setwise, that is, if B,
C are two blocks infix-^P, then there is an element g in N(P) such that Bg — C and
g induces a correspondence between P-orbits in B and P-orbits in C.

(d) | fixn P\ = \fix1P\\fixBP\, where B is any block of fix^ P.

PROOF, (a) Let g £ P and suppose that (F n B) n (F fl B)g contains a point
a. Then a £ B 0 Bg and hence Bg = B. Also F8 = F and so (F n B)s = F n B
and F PI B is a block of imprimitivity for P in F. Clearly PB is the setwise
stabiliser of F D B in P, and hence | F | = | F n B | | F : P B | . I f a £ r n B then Pa
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is a subgroup of PB and \Y\ = \P : Pa\ = \P : PB\\PB : Pa\. Hence the length of
the PB -orbit containing a is | PB : Pa | = | F D B | and so PB is transitive on F n B.

(b) Now | P : PB | is the length of the P-orbit in 2 corresponding to F. Hence
| P : PB I = pb and | F n B | = p"~b. Assume that fix P is nonempty, (otherwise the
result is vacuously true). Let C E fix ̂  P; then P is a Sylow p-subgroup of Gc, the
setwise stabiliser of C. Let P' be a Sylow p-subgroup of GB containing PB, and
let g G G be such that B* = C. Then P'g g G c and we can choose h in G c such
that P's* = P. Then the P-orbit in C containing (FOB)8" has length at least

P"h-
(c) If B, C E f i x s P then P is a Sylow p-subgroup of both GB and Gc.

Choose g in G such that Bg = C and then P 8 S Gc. Then choose h in G c such
that Psh = P. Then gh E N(P) and Bgh = C.

(d) Clearly all the points in fixslP lie in U {B | B E fix* P}, and by (c) each
block in fix^P fixes the same number, | fixB P | (where B E fixx P), of points. The
result follows.

PROOF OF THEOREM 1. Our proof is by induction on the degree n. The
result is clearly true if n is 2 or 3, so assume that the result is true for transitive
groups of degree less than n. The result is true if / = 0 so assume that / > 0.

Suppose first that G is imprimitive on il and let 2 = {B,, • • •, B,} be a set of
blocks of imprimitivity for G, where \Bt\ = b, | £ | = r. Set fx = | fixj; P |, /B =
| fixe P |, for B in f\xx P, and let rx, fB be the number of long P-orbits in S and B
respectively. Suppose first that for B in fix* P, P acts nontrivially on B. Then by
induction /B S fBP — (P(/>). Also the number of long P-orbits in blocks fixed by P
is fxtB ^ t, and we have by 1.1, that f±ip(b)^ iP(f?.b) = iP(n) (since n = rb = fab
(mod p)). Thus f = fcfB ^ h(tBp - ip(b))^ tp - ip{n). If on the other hand P
fixes pointwise each block in fix^P, then / = bfs_, and by 1.2 (b) it follows that
t = bti. Hence / = bfz § b(/vp - ip{r)) — tp — bip(r)^ tp - iP(n), (by induction
and 1.1).

Hence we may assume that G is primitive. Let a E fix P and let F,, • • •, F,
be the long Ga -orbits, r g l. Then by Wielandt (1964) 18.4, P acts nontrivially on
each F,. Let P have t, long orbits and f, fixed points in F,, and let | F, | = nh

1 ̂  / g r. Then by induction,

/ = 1 + 2/, ^ i + £(,,p - ,„(„,)) = l + tp - S(p(n,) g rp + 1 - ip(n - 1) = fp - 1,(11)

(by 1.1). This completes the proof.

PROOF OF COROLLARY 2. It is sufficient to prove part (b). Since n =
Sp- '+Z, it follows that j(n - p" +p - ip(n))^{(n - S(p° ' ! - p ) - iP(n)) =
Uf+tp-iP(n))Sf.
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PROOF OF COROLLARY 3. Suppose that / g n/(p + 1), and that all long P-
orbits have length at least p2. Then tp2Sn - f § pf § p(tp - iP(n))< tp2, a
contradiction.

PROOF OF COROLLARY 4. Assume that / > adn, that G is not alternating or
symmetric, and that P has order at least p2. If p = 2, then n g f/ad g 4/ ^ 4, so
G D An. Hence p § 3, and therefore ad § l/(p + 1). So by Corollary 3, P has an
orbit A of length p. Let Q be the pointwise stabiliser of A in P; then \P : Q\ = p
so Q is nontrivial. Also let |fix Q | = / + qp; that is, Q fixes q orbits of P of
length p. Let M = N(P)nN(Q) , and let / = |N(P ) :M | be the number of
conjugates of Q by elements of N(P). Now distinct conjugates of Q fix disjoint
sets of long P-orbits, so there are at least ql orbits of P of length p. By Praeger
(1974), P has an orbit of length at least p2. Hence if P has / long orbits then
3/ g qlp < tp S n - f § f(ad"' - 1) g 3/, that is, / < /. Now by Wielandt (1964)
3.7, N(P) is 2-transitive on fix P, and so (by Ito (1960) Hilfsatz 1) M is transitive
on fix P. We shall show that N(Q) is transitive on fix Q : let a G supp P D fix Q,
and let P' be a Sylow p-subgroup of Ga containing Q. Then P', P are both Sylow
p-subgroups of N(Q) and so P'g = P for some g in N(Q). Hence ag lies in fix P,
and so the N(Q)-orbit containing fix P also contains a. Since a was chosen
arbitrarily, N(Q) is transitive on fix Q.

Thus by Theorem 1, f fs qp - ip(J) < qp; and so | supp Q\ = n - qp - f ^
n -2f- ip(/)< n ( l - 2 a d ) - 1 . By results of Bochert on minimal degree
(Wielandt (1964) 15.1, or de Seguier (1912), 52-54) it follows that G D Am

contradiction. This completes the proof.

2. Proof of Theorem 5

Let G, P, t, f be as before. The next two lemmas deal with the cases where t
and / are as small as possible, that is, / = 1, and / = rp(n).

LEMMA 2.1. Suppose that G is transitive and P is a Sylow p-subgroup of G for
a prime p dividing \G\. If P has only one long orbit then the number of points f
fixed by P is rp(n) and G is (f + 1)-transitive.

PROOF. The result is trivially true if P has no fixed points so assume that
/ > 0. Let T be the long P-orbit in ft. We shall show that G is primitive. Let B be
a block of imprimitivity for G containing a point a of F. If B also contains a
point of fix P, then B is fixed setwise by P, and since P is transitive on F it follows
that B contains F. However this means that P fixes each block in the set
2 = {Bg, |g.G G} setwise and so by 1.2 (d) fixes the same number of points in
each block in S. Since the unique long P-orbit F lies in B it follows that B = ft.
If on the other hand B is a subset of F then B is a block of imprimitivity for the
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transitive group Pr and so | B | = p" for some JtgO. Since f/ 0, then n is not
divisible by p, and since | B | divides n it follows that x = 0 and B = {a}. Hence
the only blocks of imprimitivity for G are trivial and so G is primitive. Hence G
is a Jordan group. From Kantor (to appear), either G is (/+ Intransitive (and
hence / = rp(n)), or G is an affine or projective linear group or a Mathieu group
and it is easy to check that the Sylow p-subgroups of such groups have more than
one long orbit, (if / > 0). This completes the proof.

LEMMA 2.2. Let G be as in Theorem 5.
(a) If f = rp(n) then t = 1 and G is (f + l)-transitive.
(b) // G is d-transitive for some integer d g l , then either f = rp(n), or

dSrp(n).

PROOF, (a) If tp = f + ip(n) = rp(n)+ ip(n) = p, then t = 1 and (a) follows
from 2.1.

(b) If d > rp(n), and if H is the stabiliser in G of rp(n)+ 1 g d points of fl,
then p divides \G :H\ and it follows that / = rp(n).

Thus if either ( = 1 or / = rp(n), then by Remark 6(c), and 2.1 and 2.2, the
conclusions of Theorem 5 are valid, so assume that f = 2, and f> rp(n). Our
proof is by induction on the degree n. If n is 2 or 3, the theorem is true so we
assume that the result is true for transitive groups of degree less than n. First we
deal with the imprimitive case.

LEMMA 2.3. If G satisfies the conditions of Theorem 5, and ifG is imprimitive
then the conclusions of the theorem hold.

PROOF. Let £ = {B, = B, • • •, Br] be a set of nontrivial blocks of imprimitiv-
ity for G, where 121 = r and \B\ = b. Suppose first that for B in fix*P, P acts
nontrivially on B. Let tB, t$, fB, /x be as in the proof of Theorem 1. Then by
Theorem 1 and 1.2,

tp-iP(n) = f = hfs ^h{tBp ~ h(b)).

Now fxtB is the number of long P-orbits in the set of blocks in fix^f; hence
/sffl ^ t and equality holds if and only if P acts trivially on S. Hence

tp - iP(n)ts tp - fciP(b)^ tp - ip(f*b) =tp- ip(n)

by 1.1 and since n = f^b (mod p). Thus it follows that fB = tBp - iP(b),
fxiP(b) = iP(n), and that P acts trivially on 2. Hence /£ = r and rip(b) = iP(n). By
induction b = tB(2p - y) where tBy = iP(b). Thus n = rb = rtB(2p - y) =
t(2p-y) where ty = r(tBy)= rip(b)= ip(n). Also the structure of G follows
from the induction hypothesis.
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Hence we may assume that for B in fixs P, P acts trivially on B. Thus fB = b
and h = t/b. Since P acts nontrivially on X, it follows from Theorem 1 that
f = /B/S § b(hp - ('„(r)) = tp- bip(r)^tp- ip(n). Hence / x = t^p - ip (r) and
bip(r)= ip(n). The rest then follows by induction as in the previous case.

Thus we assume that G is primitive, and that / S 2 and f> rp(n). By the
results of the next two lemmas it will follow that G is (rp(n)+ l)-transitive, which
contradicts 2.2(b), thus completing the proof of Theorem 5.

LEMMA 2.4. Suppose that G satisfies the conditions of Theorem 5. If G is
d-primitive, for some 1 S d § rp(n) then G is (d + 1)-transitive.

PROOF. If d > 1 let H be the stabiliser in G of d - 1 points of fix P,
a,, • • •, ad_,, and let A = fi - {a,, • • •, ad_,}. If d = 1 let H = G and A = fi. Then
H is primitive on A. Assume that H is not 2-transitive and let F,, • • • , r , be the
long Ha -orbits where a £ fix4P (since / > rp(n)=S d, fixaP is non-empty), and
r § 2. By Wielandt (1964) 18.4, P acts nontrivially on each F,. Let | F, | = n, and
let P have U long orbits and /, fixed points in F, for 1 S /' S r. Then by Theorem
1, tp -ip(n) = f=d + Xfi^d + 1{tiP - ip(n,)) = tp + d- 2 iP (n , ) s fp - ( p (n) by

1.1. Hence for all /, f = t,p - iP{n{), and 2/p(ni) = iP(n)+ d.

By induction n( = f,(2p - y,) where ^y, = iP(rii). Thus |supp P | = £(f,p)S
(Xtiyi)p = (ip(n)— d)p = p 2 . Thus H contains a p-element of degree qp, q S= f ^
p, and it follows from a result of Manning (1911), that

n - d + 1 = | supp H | g max {qp + q2 - q, 2q2 - p2}.

Since 2q2 - p2 g q2 < qp + q2 - q, we have

n- d + l = \+Zti(2p-yi)Sqp+q2-q^tp + t2-t.

N o w S f , ( 2 p - y ; ) g 2rp - p a n d s o (p - t)(t - l)^ - 1, a c o n t r a d i c t i o n . T h u s G

is ( d + I n t r a n s i t i v e .

LEMMA 2.5. Suppose that G satisfies the conditions of Theorem 5 and that

f> rp(n). If G is d-transitive for some 2 § d g rp(")> then G is d-primitive.

PROOF. Since / > rp(n), then by 2.2 (b) p > d g 2, and in particular p § 3.
Let H be the stabiliser in G of d — 1 points of fix P, <*i, • • •, ad-i, and let
A = fl — {a,, • • •, ad-,}. Suppose that H is imprimitive on A. Now | f ixaP | =
/ — d + 1 = tp — ip(n)— d + 1 = tp — ip(n — d + 1) by 1.1, and so by induction,
n — d + 1 = t(2p — y) where ty — ip(n — d + 1) and |supp P\ = tp. Since H is
imprimitive, t g 2. Now if f g | ( p - 1) it follows from Wielandt (1964) 13.10 that
/ = t(p~y)+ d~l^4t~4, that is, d + 3+ t(p - y - 4 ) g O . Hence p - 3 S y =
/„(« - d + l)/r g (p - l)/r, that is, p g 3 + 2/(r - 1 )§ 5. Since also 2 S r g | ( p - 1)
it follows that f = 2 and p = 5, a contradiction to Wielandt (1964) 13.10. Hence
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t^\(p + \) and as ty §p , also y = 1 and so H "involves" A2p-\ (see Remark

By Remark 6(b), H has a set of blocks in A, 2, = {B, = B, • • •, B,} such that
1 g | B | < p. Also HX| has a set of blocks 22 = {C,, • • -, Cs], (where each C is a
subset of 2,), where | G | = 2p - 1, s |B | = f = /p(n - d + l )<p . Then P lies in
the kernel K of the action of H on 22, and for each C in 22, K c 3 A2p-i. Since
all long P-orbits have length p it follows from Praeger (1974) that P has order p,
and hence K*< is isomorphic to A2p-i or S2p-\-

If f § 7 then since / S ip(n — <i + 1) § p — 1, we have a contradiction (by
Wielandt (1964) 13.10, Manning (1909), and Weiss (1928)). Thus we assume that
t g 8 and p g 11. Next suppose that b = | B \ < ?(p + 1). Then by "Bertrand's
Postulate" (Hall (1960), 68) there is a prime q satisfying |(p +1)< q S
j(p + l ) - 2 = 5(p-3), if i(p + l )g7 , that is if p a 13. Then K contains an
element g of order g which permutes exactly q blocks of 2, in each block C of
22- Then since b < q, g permutes exactly (sb)q = tq points and fixes
d-\ + t{2p - l - ( j ) g d - l + t(3q + 5) > 3qt + 5 points. This is a contradiction
to Bochert's result on minimal degree (de Seguier (1964), 52-54). Hence if p & 13
then b & I (p + 1), and also if p = 11 then b § s (p + 1), (unless ft g 2, but then
there is an element of order 3 in K permuting 3t points and leaving d - 1 + 18f
points fixed, again a contradiction). Since sb = t § p - 1 it follows that s S 3 .

Now let q be any prime satisfying

(1) q > s, 2q < 2p - 1 .

Suppose, for all ^-elements g in H, that if g fixes a block B of £, setwise,
then g fixes B pointwise. Let g be an element of order q in K which permutes
exactly q blocks of 2, in each block of 22. Then | supp g | = tq. Since 2q < 2p - 1,
there is a conjugate g' of g in K which permutes a set of blocks of 2, which is
disjoint from supp^, g, and hence suppng' n suppng is empty. On the other hand
if g' is a conjugate of g such that suppng' H suppng is nonempty, then clearly
(g', g) fixes at least d — \ points of 0, so we may assume that g' lies in H. Since
q > s, then g' lies in K. If y lies in supp g'D supp g then the block £? of 2,
containing -y is permuted nontrivially by both g and g', by our assumption about
q-elements in H. If C is the block of 22 containing B, then (g\ g) permutes less
than 2^ blocks of 2i in C. Hence |(g', g ) c | is not divisible by q2, and since
Kc — K^1 it follows that | <g', g)S| | is not divisible by q2. Finally our assumption
about ^-element implies that the kernel of K on 2i is a q'-group, and so | (g', g) |
is not divisible by q2. Hence (g'> is conjugate to (g) in (g', g). Thus by a result of
O'Nan, (Praeger (to appear) 1.5), G is AGL(w, 2) for some m (since G ^ ^n),
and so G is 3-transitive. Hence d = 3 < p. Now the stabiliser of a point a in fix P,
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Ga = GL (m, 2) = PSL (m, 2) is 2-transitive on n - 1 = 2™ - 1 points. Since p > 3
it is easy to show that fix P — {a} is a subspace of the projective space and hence
/ = tp-ip{n)= l + (2a - 1 ) = 2" for some 1 S a < m. Then i p ( n ) = n - 2 / =
2 m - 2 " + 1 g p and so 2° = / § (f - l)p g (f - l ) ( 2 m -2" + I ) , that is
(r - l)(2m~° - 2 ) g 1. It follows that a = rei - 1 and so ip(n) = 0, a contradiction.

Thus if q is a prime satisfying (1) then there is a q -element in H which fixes
a block B of Si setwise and permutes B nontrivially. Hence in particular,
qS\B\.

Now by Bertrand's Postulate there is a prime q satisfying 2p <<J Sip — 2
and a s s S 3 clearly q satisfies (1). Hence \p < qfk \B\ = b, and since t = bs < p
it follows that s = 1 and ft = f. Again by Bertrand's Postulate, since b g 8, there
is a prime q satisfying \{b - 1)< q g ft - 3 . Then (1) holds and so there is a
^-element g permuting points of a block B in Si. If 2q > 6 then g permutes
exactly q points, so by 2.1 the action on B is multiply transitive, and by Wielandt
(1964) 13.10 it is alternating or symmetric. If 2q S b then we must have b =2q;
and then there is a prime q' such that \b < q' fkb -2. Since b is even q' S b - 3
and since (1) holds, there is a q '-element permuting points of a block B in Si.
Again it follows that the action on B is alternating or symmetric.

Now since s = 1 we have H = K and if L is the setwise stabiliser of B in Si,
then LB D Ah and LS'~B D A2p-2. Let M be the kernel of the action of H on Si;
then L/MZ)A2 p-2 and so M has Ab as a factor, that is, for each B in Si,
MB ~D Ab. Since M is 2-transitive on each of its orbits if follows from a result of
O'Nan (to appear) (Theorem D) that Gai-ad_, is a normal extension of PSL (m,q)
for some m § 3 and prime power q, and that a U B is some subspace of the
projective geometry. Thus 1 + (2p - \)b = (qm - l)/(q - 1) and 1 + ft =
| a U B | = (q' - l)/(q - 1) for some 1 < t < m. It follows that q S ft < p, and then
it is easy to show that fix P - {au • • •, ad-,} is a subspace. Hence

for some s > t, and therefore pb = qm~l + • • • + qs. However this means that ft is
divisible by qs whereas 1 + ft = (q' - \)l(q ~ 1) < q' < q\ a contradiction. This
completes the proof of the lemma.

By our remarks preceding Lemma 2.4, the proof of Theorem 5 is complete.

PROOF OF COROLLARY 7. We assume that / = \{n - 1). Then the number of
points permuted by P is n - f = / + 1 g tp, by Theorem 1. It follows that all long
P-orbits have length p and that / = tp — 1. If G is imprimitive then by Theorem
5, n = t(2p - y) where fy = i p ( n ) = l , a contradiction to f > l . Hence by
Theorem 5, t = 1, / = p - 1, and n = 2p - 1. Since either / g 3 or p g 3 it follows
that G D An.
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