ON THE FIXED POINTS OF SYLOW SUBGROUPS OF TRANSITIVE PERMUTATION GROUPS

Dedicated to George Szekeres on his 65th birthday
MARCEL HERZOG and CHERYL E. PRAEGER
(Received 6 December 1974)
Communicated by Jennifer Seberry Wallis

Abstract

Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing $|G|$. If P has t long orbits and f fixed points in Ω, then it is shown that $f \leqq t p-i_{p}(n)$, where $i_{p}(n)=p-r_{p}(n), r_{p}(n)$ denoting the residue of n modulo p. In addition, groups for which f attains the upper bound are classified.

Let G be a finite permutation group on a set Ω of n points which is transitive on Ω, and let P be a Sylow p-subgroup of G for some prime p dividing $|G|$. In Praeger (1973) the following question was asked: Can we bound the number of points of Ω fixed by P ? It was shown there that the number of fixed points f is at most $\frac{1}{2}(n-1)$. This is the "best possible" bound in terms of the degree n, for the alternating group $A_{2 p-1}$ on $2 p-1$ points has $f=p-1=$ $\frac{1}{2}(n-1)$.

In this paper we obtain upper bounds for f in terms of the number of long P-orbits, (that is, orbits containing at least two points), and the length of the longest P-orbit. Of course these new bounds must coincide with the previous bound for the group $A_{2 p-1}$. In addition we classify those groups for which f attains the upper bounds.

Most notation is standard and the reader is referred to Wielandt's book (1964). If G acts on a set Σ with kernel K, then the constituent of G on Σ is denoted by $G^{\Sigma} \simeq G / K$; and we shall denote by $\mathrm{fix}_{\Sigma} G$, $\operatorname{supp}_{\Sigma} G$, the set of fixed points of G in Σ, and the set of points of Σ permuted nontrivially by G, (that is, the "support of G '", respectively. If the set Σ is clear from the context we shall often omit the subscript and write simply fix G, and supp G. For an integer n and a prime $p, i_{p}(n)$ will denote the integer satisfying $n+i_{p}(n) \equiv 0(\bmod p), 1 \leqq$ $i_{p}(n) \leqq p$. Also $r_{p}(n)$ will denote the residue of $n \bmod p$, that is, $i_{p}(n)+r_{p}(n)=p$.

The alternating and symmetric groups of degree n are written as A_{n} and S_{n} as usual, and $\operatorname{PSL}(m+1, q), \operatorname{ASL}(m, q)$ will denote respectively the projective and affine special linear groups of dimension m over a field of q elements.

We shall prove the following results:
Theorem 1. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing $|G|$. If P has t long orbits and fixed points in Ω, then

$$
f \leqq t p-i_{p}(n)
$$

Corollary 2. (a) $f \leqq \frac{1}{2}\left(n-i_{p}(n)\right) \leqq \frac{1}{2}(n-1)$.
(b) If the t long P-orbits have length $p^{\alpha 1}, \cdots, p^{\alpha t}$, then $f \leqq$ $\frac{1}{2}\left(n-\Sigma\left(p^{\alpha i}-p\right)-i_{p}(n)\right) \leqq \frac{1}{2}\left(n-p^{\alpha}+p-i_{p}(n)\right)$ where $\alpha=\max _{1 \leqq i \leqq t}\left\{\alpha_{i}\right\}$.

Corollary 3. If $f \geqq n /(p+1)$ then P has an orbit of length p.
Corollary 4. If G is d-transitive, where $d \geqq 2$, then either (i) Phas order p, or (ii) $f \leqq \alpha_{d} n$ where α_{d} is $3 / 8,1 / 3,1 / 4$, when d is at least $2,3,4$ respectively, or (iii) $G \supseteq A_{n}$.
(Note that similar results may be proved if $d>4$).
Theorem 5. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing $|G|$. Suppose that P has t long orbits and fixed points in Ω, and suppose that $f=t p-i_{p}(n)$. Then
(i) if G is imprimitive then $t>1, n=t(2 p-y)$, where ty $=i_{p}(n)<p$, and P has t orbits of length p. Also G "involves" $A_{2 p-y}$ (see Remark $6(b)$).
(ii) if G is primitive then $t=1, f=r_{p}(n)$, and G is $(f+1)$-transitive. Further if the long P-orbit has length p then $G \supset A_{n}$ provided that $f \geqq 3$, or $p \leqq 3$.

Remarks 6. (a) By Corollary 2(a) we see that the bound obtained in Praeger (1973) can be deduced from Theorem 1.
(b) In Theorem 5, if G is imprimitive, then G has the following structure:
(i) G has a set of blocks of imprimitivity in $\Omega, \Sigma_{1}=\left\{B_{1}=B, \cdots, B_{r}\right\}$ such that $1 \leqq|B|<p$.
(ii) $G^{\Sigma_{1}}$ has a set of blocks of imprimitivity in $\Sigma_{1}, \Sigma_{2}=\left\{C_{1}=C, \cdots, C_{s}\right\}$, (where each C is a subset of Σ_{1}), such that $\left|\Sigma_{2}\right|=s \geqq 1,|C|=2 p-y$, and $s|B|=t \leqq t y=i_{p}(n)<p$.
(iii) P lies in the kernel K of the action of G on Σ_{2}. For each C in Σ_{2}, K acts on C as a primitive group of degree $2 p-y$ containing a p-element of degree p. If p is 2 or 3 then $K^{C} \supseteq A_{2 p-y}$ by Wielandt (1964) 13.3, while if $p \geqq 5$ then, (since $y \leqq \frac{1}{2} t y \leqq \frac{1}{2} p$), the p-element fixes at least 3 points and again $K^{C} \supseteq A_{2 p-y}$, by Wielandt (1964) 13.9.

Corollary 7. If $f=\frac{1}{2}(n-1)$ then $f=p-1, t=1, n=2 p-1$ and $G \supseteq A_{n}$.

1. Proof of Theorem 1 and the corollaries

Let G, P, f, t be as in the statement of Theorem 1 . We first note some properties of the function i_{p}.

Lemma 1.1. (a) If $n=a b$, where a and b are positive integers, then $i_{p}(n) \leqq$ $a i_{p}(b)$, and equality holds if and only if ai $i_{p}(b) \leqq p$.
(b) If $n=\Sigma a_{j}$, for positive integers $a_{i}, 1 \leqq j \leqq r$, then $i_{p}(n) \leqq \Sigma i_{p}\left(a_{i}\right)$ and equality holds if and only if $\Sigma i_{p}\left(a_{i}\right) \leqq p$.
(c) $i_{p}(n-j)=i_{p}(n)+j$ for any integer j satisfying $0 \leqq j \leqq r_{p}(n)$.

Proof. (a) Since $i_{p}(n)-a i_{p}(b) \equiv-n+a b \equiv 0 \quad(\bmod p) \quad$ and $i_{p}(n)-a i_{p}(b) \leqq p-1$, it follows that $i_{p}(n) \leqq a i_{p}(b)$, and the condition for equality is clear.
(b) Since $i_{p}(n)-\Sigma i_{p}\left(a_{i}\right) \equiv 0(\bmod p)$, and $i_{p}(n)-\Sigma i_{p}\left(a_{i}\right) \leqq p-1$, the result (b) follows.
(c) Set $n=t p-i_{p}(n)$. Then $n-j=t p-\left(i_{p}(n)+j\right)$ where $1 \leqq i_{p}(n) \leqq$ $i_{p}(n)+j \leqq i_{p}(n)+r_{p}(n)=p$. Hence by the definition of $i_{p}, i_{p}(n-j)=i_{p}(n)+j$.

Before proving the theorem we shall prove some results about Sylow subgroups of transitive imprimitive groups.

Lemma 1.2. Suppose that G is transitive and imprimitive on Ω and let $\Sigma=\left\{B_{1}=B, \cdots, B_{r}\right\}$ be a set of blocks of imprimitivity for G in Ω, where $|\Sigma|=r$, $|B|=b$. Let P be a Sylow p-subgroup of G for a prime p dividing $|G|$. Let Γ be a long P-orbit of length p^{a} containing a point of a block B of Σ, and let P_{B} be the setwise stabiliser of B in P. Then
(a) $\Gamma \cap B$ is a block of imprimitivity for P, P_{B} is transitive on $|\Gamma \cap B|$, and $|\Gamma|=\left|P: P_{B}\right||\Gamma \cap B|$.
(b) If the orbit of P in Σ corresponding to the orbit Γ in Ω has length p^{b} then P has an orbit of length at least p^{a-b} in any block of Σ fixed setwise by P.
(c) Pacts "similarly" on each block of Σ which it fixes setwise, that is, if B, C are two blocks in fix $x_{\Sigma} P$, then there is an element g in $N(P)$ such that $B^{8}=C$ and g induces a correspondence between P-orbits in B and P-orbits in C.
(d) $\left|f x_{\mathrm{\Omega}} P\right|=\left|f x_{\Sigma} P\right|\left|f x_{B} P\right|$, where B is any block of $f x_{\Sigma} P$.

Proof. (a) Let $g \in P$ and suppose that $(\Gamma \cap B) \cap(\Gamma \cap B)^{x}$ contains a point α. Then $\alpha \in B \cap B^{8}$ and hence $B^{8}=B$. Also $\Gamma^{8}=\Gamma$ and so $(\Gamma \cap B)^{8}=\Gamma \cap B$ and $\Gamma \cap B$ is a block of imprimitivity for P in Γ. Clearly P_{B} is the setwise stabiliser of $\Gamma \cap B$ in P, and hence $|\Gamma|=|\Gamma \cap B|\left|P: P_{B}\right|$. If $\alpha \in \Gamma \cap B$ then P_{α}
is a subgroup of P_{B} and $|\Gamma|=\left|P: P_{\alpha}\right|=\left|P: P_{B}\right|\left|P_{B}: P_{\alpha}\right|$. Hence the length of the P_{B}-orbit containing α is $\left|P_{B}: P_{\alpha}\right|=|\Gamma \cap B|$ and so P_{B} is transitive on $\Gamma \cap B$.
(b) Now $\left|P: P_{B}\right|$ is the length of the P-orbit in Σ corresponding to Γ. Hence $\left|P: P_{B}\right|=p^{b}$ and $|\Gamma \cap B|=p^{a-b}$. Assume that fix P is nonempty, (otherwise the result is vacuously true). Let $C \in$ fix $_{\Sigma} P$; then P is a Sylow p-subgroup of G_{C}, the setwise stabiliser of C. Let P^{\prime} be a Sylow p-subgroup of G_{B} containing P_{B}, and let $g \in G$ be such that $B^{g}=C$. Then $P^{\prime g} \leqq G_{C}$ and we can choose h in G_{C} such that $P^{\prime g h}=P$. Then the P-orbit in C containing $(\Gamma \cap B)^{\text {gh }}$ has length at least p^{a-b}.
(c) If $B, C \in \operatorname{fix}_{\mathrm{y}} P$ then P is a Sylow p-subgroup of both G_{B} and G_{C}. Choose g in G such that $B^{g}=C$ and then $P^{g} \leqq G_{C}$. Then choose h in G_{C} such that $P^{g h}=P$. Then $g h \in N(P)$ and $B^{g h}=C$.
(d) Clearly all the points in fix ${ }_{\Omega} P$ lie in $\cup\left\{B \mid B \in\right.$ fix $\left._{\mathrm{\Sigma}} \mathrm{P}\right\}$, and by (c) each block in fix P fixes the same number, \mid fix $_{B} P \mid$ (where $B \in$ fix $_{\Sigma} P$), of points. The result follows.

Proof of Theorem 1. Our proof is by induction on the degree n. The result is clearly true if n is 2 or 3 , so assume that the result is true for transitive groups of degree less than n. The result is true if $f=0$ so assume that $f>0$.

Suppose first that G is imprimitive on Ω and let $\Sigma=\left\{B_{1}, \cdots, B_{r}\right\}$ be a set of blocks of imprimitivity for G, where $\left|B_{i}\right|=b,|\Sigma|=r$. Set $f_{\Sigma}=\mid$ fix $x_{\Sigma} P \mid, f_{B}=$ \mid fix $_{B} P \mid$, for B in fix P, and let t_{Σ}, t_{B} be the number of long P-orbits in Σ and B respectively. Suppose first that for B in fix ${ }_{\Sigma} P, P$ acts nontrivially on B. Then by induction $f_{B} \leqq t_{B} P-i_{p}(b)$. Also the number of long P-orbits in blocks fixed by P is $f_{\Sigma} t_{B} \leqq t$, and we have by 1.1 , that $f_{\Sigma} i_{p}(b) \geqq i_{p}\left(f_{\Sigma} b\right)=i_{p}(n)$ (since $n=r b \equiv f_{\Sigma} b$ $(\bmod p))$. Thus $f=f_{\Sigma} f_{B} \leqq f_{\Sigma}\left(t_{B} p-i_{p}(b)\right) \leqq t p-i_{p}(n)$. If on the other hand P fixes pointwise each block in fix $\mathbf{x}_{\mathbf{\Sigma}} \mathrm{P}$, then $f=b f_{\Sigma}$, and by $1.2(\mathrm{~b})$ it follows that $t=b t_{\Sigma}$. Hence $f=b f_{\Sigma} \leqq b\left(t_{\Sigma} p-i_{p}(r)\right)=t p-b i_{p}(r) \leqq t p-i_{p}(n)$, (by induction and 1.1).

Hence we may assume that G is primitive. Let $\alpha \in$ fix P and let $\Gamma_{1}, \cdots, \Gamma_{r}$, be the long G_{α}-orbits, $r \geqq 1$. Then by Wielandt (1964) 18.4, P acts nontrivially on each Γ_{j}. Let P have t_{j} long orbits and f_{j} fixed points in Γ_{j}, and let $\left|\Gamma_{j}\right|=n_{j}$, $1 \leqq j \leqq r$. Then by induction,
$f=1+\Sigma f_{j} \leqq 1+\Sigma\left(t_{j} p-i_{p}\left(n_{j}\right)\right)=1+t p-\Sigma i_{p}\left(n_{j}\right) \leqq t p+1-i_{p}(n-1)=t p-i_{p}(n)$
(by 1.1). This completes the proof.
Proof of Corollary 2. It is sufficient to prove part (b). Since $n=$ $\Sigma p^{\alpha i}+f, \quad$ it follows that $\frac{1}{2}\left(n-p^{\alpha}+p-i_{p}(n)\right) \geqq \frac{1}{2}\left(n-\Sigma\left(p^{\alpha i}-p\right)-i_{p}(n)\right)=$ $\frac{1}{2}\left(f+t p-i_{p}(n)\right) \geqq f$.

Proof of Corollary 3. Suppose that $f \geqq n /(p+1)$, and that all long P orbits have length at least p^{2}. Then $t p^{2} \leqq n-f \leqq p f \leqq p\left(t p-i_{p}(n)\right)<t p^{2}$, a contradiction.

Proof of Corollary 4. Assume that $f>\alpha_{d} n$, that G is not alternating or symmetric, and that P has order at least p^{2}. If $p=2$, then $n \leqq f / \alpha_{d} \leqq 4 f \leqq 4$, so $G \supseteq A_{n}$. Hence $p \geqq 3$, and therefore $\alpha_{d} \geqq 1 /(p+1)$. So by Corollary 3, P has an orbit Δ of length p. Let Q be the pointwise stabiliser of Δ in P; then $|P: Q|=p$ so Q is nontrivial. Also let \mid fix $Q \mid=f+q p$; that is, Q fixes q orbits of P of length p. Let $M=N(P) \cap N(Q)$, and let $l=|N(P): M|$ be the number of conjugates of Q by elements of $N(P)$. Now distinct conjugates of Q fix disjoint sets of long P-orbits, so there are at least $q l$ orbits of P of length p. By Praeger (1974), P has an orbit of length at least p^{2}. Hence if P has t long orbits then $3 l \leqq q l p<t p \leqq n-f \leqq f\left(\alpha_{d}{ }^{-1}-1\right) \leqq 3 f$, that is, $l<f$. Now by Wielandt (1964) 3.7, $N(P)$ is 2-transitive on fix P, and so (by Ito (1960) Hilfsatz 1) M is transitive on fix P. We shall show that $N(Q)$ is transitive on fix $Q:$ let $\alpha \in \operatorname{supp} P \cap$ fix Q, and let P^{\prime} be a Sylow p-subgroup of G_{α} containing Q. Then P^{\prime}, P are both Sylow p-subgroups of $N(Q)$ and so $P^{\prime 8}=P$ for some g in $N(Q)$. Hence αg lies in fix P, and so the $N(Q)$-orbit containing fix P also contains α. Since α was chosen arbitrarily, $N(Q)$ is transitive on fix Q.

Thus by Theorem $1, f \leqq q p-i_{p}(f)<q p$; and so \mid supp $Q \mid=n-q p-f \leqq$ $n-2 f-i_{p}(f)<n\left(1-2 \alpha_{d}\right)-1$. By results of Bochert on minimal degree (Wielandt (1964) 15.1, or de Séguier (1912), 52-54) it follows that $G \supseteq A_{n}$, contradiction. This completes the proof.

2. Proof of Theorem 5

Let G, P, t, f be as before. The next two lemmas deal with the cases where t and f are as small as possible, that is, $t=1$, and $f=r_{p}(n)$.

Lemma 2.1. Suppose that G is transitive and P is a Sylow p-subgroup of G for a prime p dividing $|G|$. If P has only one long orbit then the number of points f fixed by P is $r_{p}(n)$ and G is $(f+1)$-transitive.

Proof. The result is trivially true if P has no fixed points so assume that $f>0$. Let Γ be the long P-orbit in Ω. We shall show that G is primitive. Let B be a block of imprimitivity for G containing a point α of Γ. If B also contains a point of fix P, then B is fixed setwise by P, and since P is transitive on Γ it follows that B contains Γ. However this means that P fixes each block in the set $\Sigma=\left\{B^{8}, \mid g . \in G\right\}$ setwise and so by $1.2(\mathrm{~d})$ fixes the same number of points in each block in Σ. Since the unique long P-orbit Γ lies in B it follows that $B=\Omega$. If on the other hand B is a subset of Γ then B is a block of imprimitivity for the
transitive group $P^{\ulcorner }$and so $|B|=p^{x}$ for some $x \geqq 0$. Since $f \neq 0$, then n is not divisible by p, and since $|B|$ divides n it follows that $x=0$ and $B=\{\alpha\}$. Hence the only blocks of imprimitivity for G are trivial and so G is primitive. Hence G is a Jordan group. From Kantor (to appear), either G is $(f+1)$-transitive (and hence $f=r_{p}(n)$), or G is an affine or projective linear group or a Mathieu group and it is easy to check that the Sylow p-subgroups of such groups have more than one long orbit, (if $f>0$). This completes the proof.

Lemma 2.2. Let G be as in Theorem 5.
(a) If $f=r_{p}(n)$ then $t=1$ and G is $(f+1)$-transitive.
(b) If G is d-transitive for some integer $d \geqq 1$, then either $f=r_{p}(n)$, or $d \leqq r_{p}(n)$.

Proof. (a) If $t p=f+i_{p}(n)=r_{p}(n)+i_{p}(n)=p$, then $t=1$ and (a) follows from 2.1.
(b) If $d>r_{p}(n)$, and if H is the stabiliser in G of $r_{p}(n)+1 \leqq d$ points of Ω, then p divides $|G: H|$ and it follows that $f=r_{p}(n)$.

Thus if either $t=1$ or $f=r_{p}(n)$, then by Remark 6(c), and 2.1 and 2.2, the conclusions of Theorem 5 are valid, so assume that $t \geqq 2$, and $f>r_{p}(n)$. Our proof is by induction on the degree n. If n is 2 or 3 , the theorem is true so we assume that the result is true for transitive groups of degree less than n. First we deal with the imprimitive case.

Lemma 2.3. If G satisfies the conditions of Theorem 5 , and if G is imprimitive then the conclusions of the theorem hold.

Proof. Let $\Sigma=\left\{\boldsymbol{B}_{1}=\boldsymbol{B}, \cdots, \boldsymbol{B}_{r}\right\}$ be a set of nontrivial blocks of imprimitivity for G, where $|\Sigma|=r$ and $|B|=b$. Suppose first that for B in $\mathrm{fix}_{\Sigma} P, P$ acts nontrivially on B. Let $t_{B}, t_{\Sigma}, f_{B}, f_{\Sigma}$ be as in the proof of Theorem 1. Then by Theorem 1 and 1.2,

$$
t p-i_{p}(n)=f=f_{\Sigma} f_{B} \leqq f_{\Sigma}\left(t_{B} p-i_{p}(b)\right)
$$

Now $f_{\Sigma} t_{B}$ is the number of long P-orbits in the set of blocks in fix P; hence $f_{\Sigma} t_{B} \leqq t$ and equality holds if and only if P acts trivially on Σ. Hence

$$
t p-i_{p}(n) \leqq t p-f_{\Sigma} i_{p}(b) \leqq t p-i_{p}\left(f_{\Sigma} b\right)=t p-i_{p}(n)
$$

by 1.1 and since $n \equiv f_{\Sigma} b(\bmod p)$. Thus it follows that $f_{B}=t_{B} p-i_{p}(b)$, $f_{\Sigma} i_{p}(b)=i_{p}(n)$, and that P acts trivially on Σ. Hence $f_{\Sigma}=r$ and $r i_{p}(b)=i_{p}(n)$. By induction $b=t_{B}(2 p-y)$ where $t_{B} y=i_{p}(b)$. Thus $n=r b=r t_{B}(2 p-y)=$ $t(2 p-y)$ where $t y=r\left(t_{B} y\right)=r i_{p}(b)=i_{p}(n)$. Also the structure of G follows from the induction hypothesis.

Hence we may assume that for B in fix ${ }_{\Sigma} P, P$ acts trivially on B. Thus $f_{B}=b$ and $t_{\Sigma}=t / b$. Since P acts nontrivially on Σ, it follows from Theorem 1 that $f=f_{B} f_{\Sigma} \leqq b\left(t_{\Sigma} p-i_{p}(r)\right)=t p-b i_{p}(r) \leqq t p-i_{p}(n)$. Hence $f_{\Sigma}=t_{\Sigma} p-i_{p}(r)$ and $b i_{p}(r)=i_{p}(n)$. The rest then follows by induction as in the previous case.

Thus we assume that G is primitive, and that $t \geqq 2$ and $f>r_{p}(n)$. By the results of the next two lemmas it will follow that G is $\left(r_{p}(n)+1\right)$-transitive, which contradicts $2.2(\mathrm{~b})$, thus completing the proof of Theorem 5.

Lemma 2.4. Suppose that G satisfies the conditions of Theorem 5. If G is d-primitive, for some $1 \leqq d \leqq r_{p}(n)$ then G is $(d+1)$-transitive.

Proof. If $d>1$ let H be the stabiliser in G of $d-1$ points of fix P, $\alpha_{1}, \cdots, \alpha_{d-1}$, and let $\Delta=\Omega-\left\{\alpha_{1}, \cdots, \alpha_{d-1}\right\}$. If $d=1$ let $H=G$ and $\Delta=\Omega$. Then H is primitive on Δ. Assume that H is not 2 -transitive and let $\Gamma_{1}, \cdots, \Gamma$, be the long H_{α}-orbits where $\alpha \in$ fix ${ }_{\Delta} P$ (since $f>r_{p}(n) \geqq d$, fix ${ }_{\Delta} P$ is non-empty), and $r \geqq 2$. By Wielandt (1964) 18.4, P acts nontrivially on each Γ_{i}. Let $\left|\Gamma_{i}\right|=n_{i}$ and let P have t_{i} long orbits and f_{i} fixed points in Γ_{i} for $1 \leqq i \leqq r$. Then by Theorem $1, t p-i_{p}(n)=f=d+\Sigma f_{i} \leqq d+\Sigma\left(t_{i} p-i_{p}\left(n_{i}\right)\right)=t p+d-\Sigma i_{p}\left(n_{i}\right) \leqq t p-i_{p}(n)$ by 1.1. Hence for all $i, f_{i}=t_{i} p-i_{p}\left(n_{i}\right)$, and $\sum i_{p}\left(n_{i}\right)=i_{p}(n)+d$.

By induction $n_{i}=t_{i}\left(2 p-y_{i}\right)$ where $t_{i} y_{i}=i_{p}\left(n_{i}\right)$. Thus $|\operatorname{supp} P|=\Sigma\left(t_{i} p\right) \leqq$ $\left(\Sigma t_{i} y_{i}\right) p=\left(i_{p}(n)-d\right) p \leqq p^{2}$. Thus H contains a p-element of degree $q p, q \leqq t \leqq$ p, and it follows from a result of Manning (1911), that

$$
n-d+1=|\operatorname{supp} H| \leqq \max \left\{q p+q^{2}-q, 2 q^{2}-p^{2}\right\}
$$

Since $2 q^{2}-p^{2} \leqq q^{2}<q p+q^{2}-q$, we have

$$
n-d+1=1+\Sigma t_{i}\left(2 p-y_{i}\right) \leqq q p+q^{2}-q \leqq t p+t^{2}-t .
$$

Now $\Sigma t_{i}\left(2 p-y_{i}\right) \geqq 2 t p-p$ and so $(p-t)(t-1) \leqq-1$, a contradiction. Thus G is $(d+1)$-transitive.

Lemma 2.5. Suppose that G satisfies the conditions of Theorem 5 and that $f>r_{p}(n)$. If G is d-transitive for some $2 \leqq d \leqq r_{p}(n)$, then G is d-primitive.

Proof. Since $f>r_{p}(n)$, then by 2.2 (b) $p>d \geqq 2$, and in particular $p \geqq 3$. Let H be the stabiliser in G of $d-1$ points of fix $P, \alpha_{1}, \cdots, \alpha_{d-1}$, and let $\Delta=\Omega-\left\{\alpha_{1}, \cdots, \alpha_{d-1}\right\}$. Suppose that H is imprimitive on Δ. Now $\left|\operatorname{fix}_{\Delta} P\right|=$ $f-d+1=t p-i_{p}(n)-d+1=t p-i_{p}(n-d+1)$ by 1.1 , and so by induction, $n-d+1=t(2 p-y)$ where $t y=i_{p}(n-d+1)$ and $|\operatorname{supp} P|=t p$. Since H is imprimitive, $t \geqq 2$. Now if $t \leqq \frac{1}{2}(p-1)$ it follows from Wielandt (1964) 13.10 that $f=t(p-y)+d-1 \leqq 4 t-4$, that is, $d+3+t(p-y-4) \leqq 0$. Hence $p-3 \leqq y=$ $i_{p}(n-d+1) / t \leqq(p-1) / t$, that is, $p \leqq 3+2 /(t-1) \leqq 5$. Since also $2 \leqq t \leqq \frac{1}{2}(p-1)$ it follows that $t=2$ and $p=5$, a contradiction to Wielandt (1964) 13.10. Hence
$t \geqq \frac{1}{2}(p+1)$ and as $t y \leqq p$, also $y=1$ and so H "involves" $A_{2 p-1}$ (see Remark 6 (b)).

By Remark 6(b), H has a set of blocks in $\Delta, \Sigma_{1}=\left\{B_{1}=B, \cdots, B_{r}\right\}$ such that $1 \leqq|B|<p$. Also $H^{\Sigma_{1}}$ has a set of blocks $\Sigma_{2}=\left\{C_{1}, \cdots, C_{s}\right\}$, (where each C is a subset of Σ_{1}), where $\left|C_{i}\right|=2 p-1, s|B|=t=i_{p}(n-d+1)<p$. Then P lies in the kernel K of the action of H on Σ_{2}, and for each C in $\Sigma_{2}, K^{c} \supseteq A_{2 p-1}$. Since all long P-orbits have length p it follows from Praeger (1974) that P has order p, and hence $K^{\Sigma_{1}}$ is isomorphic to $A_{2 p-1}$ or $S_{2 p-1}$.

If $t \leqq 7$ then since $t \leqq i_{p}(n-d+1) \leqq p-1$, we have a contradiction (by Wielandt (1964) 13.10, Manning (1909), and Weiss (1928)). Thus we assume that $t \geqq 8$ and $p \geqq 11$. Next suppose that $b=|B|<\frac{1}{4}(p+1)$. Then by "Bertrand's Postulate" (Hall (1960), 68) there is a prime q satisfying $\frac{1}{4}(p+1)<q \leqq$ $\frac{1}{2}(p+1)-2=\frac{1}{2}(p-3)$, if $\frac{1}{2}(p+1) \geqq 7$, that is if $p \geqq 13$. Then K contains an element g of order q which permutes exactly q blocks of Σ_{1} in each block C of Σ_{2}. Then since $b<q, g$ permutes exactly $(s b) q=t q$ points and fixes $d-1+t(2 p-1-q) \geqq d-1+t(3 q+5)>3 q t+5$ points. This is a contradiction to Bochert's result on minimal degree (de Séguier (1964), 52-54). Hence if $p \geqq 13$ then $b \geqq \frac{1}{4}(p+1)$, and also if $p=11$ then $b \geqq \frac{1}{4}(p+1)$, (unless $b \leqq 2$, but then there is an element of order 3 in K permuting $3 t$ points and leaving $d-1+18 t$ points fixed, again a contradiction). Since $s b=t \leqq p-1$ it follows that $s \leqq 3$.

Now let q be any prime satisfying

$$
\begin{equation*}
q>s, \quad 2 q<2 p-1 \tag{1}
\end{equation*}
$$

Suppose, for all q-elements g in H, that if g fixes a block B of Σ_{1} setwise, then g fixes B pointwise. Let g be an element of order q in K which permutes exactly q blocks of Σ_{1} in each block of Σ_{2}. Then \mid supp $g \mid=t q$. Since $2 q<2 p-1$, there is a conjugate g^{\prime} of g in K which permutes a set of blocks of Σ_{1} which is disjoint from $\operatorname{supp}_{\Sigma_{,}} g$, and hence $\operatorname{supp}_{\Omega} g^{\prime} \cap \operatorname{supp}_{\Omega} g$ is empty. On the other hand if g^{\prime} is a conjugate of g such that $\operatorname{supp}_{\Omega} g^{\prime} \cap \operatorname{supp}_{\Omega} g$ is nonempty, then clearly $\left\langle g^{\prime}, g\right\rangle$ fixes at least $d-1$ points of Ω, so we may assume that g^{\prime} lies in H. Since $q>s$, then g^{\prime} lies in K. If γ lies in supp $g^{\prime} \cap \operatorname{supp} g$ then the block B of Σ_{1} containing γ is permuted nontrivially by both g and g^{\prime}, by our assumption about q-elements in H. If C is the block of Σ_{2} containing B, then $\left\langle g^{\prime}, g\right\rangle$ permutes less than $2 q$ blocks of Σ_{1} in C. Hence $\left|\left\langle g^{\prime}, g\right\rangle^{c}\right|$ is not divisible by q^{2}, and since $K^{C} \simeq K^{\Sigma_{1}}$ it follows that $\left|\left\langle g^{\prime}, g\right\rangle^{\Sigma_{1}}\right|$ is not divisible by q^{2}. Finally our assumption about q-element implies that the kernel of K on Σ_{1} is a q^{\prime}-group, and so $\left|\left\langle g^{\prime}, g\right\rangle\right|$ is not divisible by q^{2}. Hence $\left\langle g^{\prime}\right\rangle$ is conjugate to $\langle g\rangle$ in $\left\langle g^{\prime}, g\right\rangle$. Thus by a result of O'Nan, (Praeger (to appear) 1.5), G is $\mathrm{AGL}(m, 2)$ for some m (since $G \nsupseteq A_{n}$), and so G is 3 -transitive. Hence $d=3<p$. Now the stabiliser of a point α in fix P,
$G_{\alpha}=\operatorname{GL}(m, 2)=\operatorname{PSL}(m, 2)$ is 2 -transitive on $n-1=2^{m}-1$ points. Since $p>3$ it is easy to show that fix $P-\{\alpha\}$ is a subspace of the projective space and hence $f=t p-i_{p}(n)=1+\left(2^{a}-1\right)=2^{a}$ for some $1 \leqq a<m$. Then $i_{p}(n)=n-2 f=$ $2^{m}-2^{a+1} \leqq p \quad$ and so $2^{a}=f \geqq(t-1) p \geqq(t-1)\left(2^{m}-2^{a+1}\right)$, that is $(t-1)\left(2^{m-a}-2\right) \leqq 1$. It follows that $a=m-1$ and so $i_{p}(n)=0$, a contradiction.

Thus if q is a prime satisfying (1) then there is a q-element in H which fixes a block B of Σ_{1} setwise and permutes B nontrivially. Hence in particular, $q \leqq|B|$.

Now by Bertrand's Postulate there is a prime q satisfying $\frac{1}{2} p<q \leqq p-2$ and as $s \leqq 3$ clearly q satisfies (1). Hence $\frac{1}{2} p<q \leqq|B|=b$, and since $t=b s<p$ it follows that $s=1$ and $b=t$. Again by Bertrand's Postulate, since $b \geqq 8$, there is a prime q satisfying $\frac{1}{2}(b-1)<q \leqq b-3$. Then (1) holds and so there is a q-element g permuting points of a block B in Σ_{1}. If $2 q>b$ then g permutes exactly q points, so by 2.1 the action on B is multiply transitive, and by Wielandt (1964) 13.10 it is alternating or symmetric. If $2 q \leqq b$ then we must have $b=2 q$; and then there is a prime q^{\prime} such that $\frac{1}{2} b<q^{\prime} \leqq b-2$. Since b is even $q^{\prime} \leqq b-3$ and since (1) holds, there is a q^{\prime}-element permuting points of a block B in Σ_{1}. Again it follows that the action on B is alternating or symmetric.

Now since $s=1$ we have $H=K$ and if L is the setwise stabiliser of B in Σ_{1}, , then $L^{B} \supseteq A_{b}$ and $L^{\Sigma_{1}-B} \supseteq A_{2 p-2}$. Let M be the kernel of the action of H on Σ_{1}; then $L / M \supseteq A_{2 p-2}$ and so M has A_{b} as a factor, that is, for each B in Σ_{1}, $M^{B} \supseteq \boldsymbol{A}_{b}$. Since \boldsymbol{M} is 2-transitive on each of its orbits if follows from a result of O'Nan (to appear) (Theorem D) that $G_{\alpha_{1} \cdots \alpha_{d-1}}$ is a normal extension of PSL (m, q) for some $m \geqq 3$ and prime power q, and that $\alpha \cup B$ is some subspace of the projective geometry. Thus $1+(2 p-1) b=\left(q^{m}-1\right) /(q-1)$ and $1+b=$ $|\alpha \cup B|=\left(q^{\prime}-1\right) /(q-1)$ for some $1<t<m$. It follows that $q \leqq b<p$, and then it is easy to show that fix $P-\left\{\alpha_{1}, \cdots, \alpha_{d-1}\right\}$ is a subspace. Hence

$$
f-d+1=1+(p-1) b=\left(q^{3}-1\right) /(q-1)
$$

for some $s>t$, and therefore $p b=q^{m-1}+\cdots+q^{s}$. However this means that b is divisible by q^{s} whereas $1+b=\left(q^{t}-1\right) /(q-1)<q^{\prime}<q^{s}$, a contradiction. This completes the proof of the lemma.

By our remarks preceding Lemma 2.4, the proof of Theorem 5 is complete.
Proof of Corollary 7. We assume that $f=\frac{1}{2}(n-1)$. Then the number of points permuted by P is $n-f=f+1 \leqq t p$, by Theorem 1. It follows that all long P-orbits have length p and that $f=t p-1$. If G is imprimitive then by Theorem $5, n=t(2 p-y)$ where $t y=i_{p}(n)=1$, a contradiction to $t>1$. Hence by Theorem $5, t=1, f=p-1$, and $n=2 p-1$. Since either $f \geqq 3$ or $p \leqq 3$ it follows that $G \supseteq A_{n}$.

References

M. Hall, Jr. (1960), The Theory of Groups, (New York: Pergamon 1960).
N. Ito (1960), ‘Über die Gruppen PSL $_{\mathbf{n}}(q)$ die eine Untergruppe von Primzahlindex enthalten', Acta Sci. Math. 21, 206-217.
W. M. Kantor 'Primitive groups having transitive subgroups of smaller, prime power degree', (to appear).
W. A. Manning (1909), 'On the order of primitive groups', Trans. Amer. Math. Soc. 10. 247-258.
W. A. Manning (1911), 'On the limit of the degree of primitive groups', Trans. Amer. Math. Soc. 12, 375-386.
M. E. O'Nan, 'Normal structure of the one-point stabiliser of a doubly transitive permutation group, II', (to appear).
C. E. Praeger (1973), 'Sylow subgroups of transitive permutation groups', Math. Z. 134, 179-180.
C. E. Praeger (1974), 'On the Sylow subgroups of a doubly transitive permutation group', Math. Z. 137, 155-171.
C. E. Praeger, 'Primitive permutation groups containing a p-element of small degree, p a prime', (to appear), J. Algebra.
J. A. de Séguier (1912), Théorie des Groupes finis, (Paris: Gauthier-Villars).
M. J. Weiss (1928), 'Primitive groups which contain substitutions of prime order p and of degree $6 p$ or 7p', Trans. Amer. Math. Soc. 30, 333-359.
H. Wielandt (1964), Finite Permutation Groups (New Yorl-London: Academic Press 1964).

Department of Mathematics, Institute of Advanced Studies,
Australian National University, Canberra, Australia 2600.

