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Executive Summary

Although climate change is a global phenomenon, its manifestations 
and consequences are different in different regions, and therefore 
climate information on spatial scales ranging from sub-continental to 
local is used for impact and risk assessments. Chapter  10 assesses 
the foundations of how regional climate information is distilled 
from multiple, sometimes contrasting, lines of evidence. Starting 
from the assessment of global-scale observations in Chapter  2, 
Chapter 10 assesses the challenges and requirements associated with 
observations relevant at the regional scale. Chapter 10 also assesses 
the fitness of modelling tools available for attributing and projecting 
anthropogenic climate change in a regional context starting from the 
methodologies assessed in Chapters 3 and 4. Regional climate change 
is the result of the interplay between regional responses to both 
natural forcings and human influence (considered in Chapters 2, 5, 6 
and 7), responses to large-scale climate phenomena characterizing 
internal variability (considered in Chapters 1–9), and processes and 
feedbacks of a regional nature.

Chapter  10 is the first of four chapters that assess regional-scale 
information in this Report. The region-by-region assessment 
of past and future changes in extremes (Chapter  11), climatic 
impact-drivers (Chapter  12) and mean climate (Atlas) relies on 
the sources and methodologies used for constructing regional 
climate change information assessed in Chapter  10. Building on 
the assessment of observations and modelling tools of Chapter 10, 
Chapter  11  assesses  the observation and modelling of extremes. 
Chapter  10 assesses methodologies to attribute multi-decadal 
regional trends to the interplay between external forcing and internal 
variability, while Chapter  11 assesses the attribution of extreme 
events. The assessment of climate services in Chapter 12 builds on 
the assessment of distillation of regional climate information from 
multiple lines of evidence in Chapter 10.

Distilling regional climate information from multiple lines of 
evidence and taking the user context into account will increase 
the fitness, usefulness and relevance for decision-making 
and enhances the trust users will have in applying it 
(high confidence). This distillation process can draw upon multiple 
observational datasets, ensembles of different model types, process 
understanding, expert judgement and indigenous knowledge. 
Important elements of distillation include attribution studies, the 
characterization of possible outcomes associated with internal 
variability and a comprehensive assessment of observational, model 
and forcing uncertainties and possible contradictions using different 
analysis methods. Taking the values of the relevant actors into 
account when co-producing climate information, and translating this 
information into the broader user context, improves the usefulness 
and uptake of this information (high confidence). {10.5}  

Observations and Models as Sources of Regional Information

The use of multiple sources of observations and tailored 
diagnostics to evaluate climate model performance increases 
trust in future projections of regional climate (high confidence). 
The availability of multiple observational records, including reanalyses, 
that are fit for evaluating the phenomena of interest and account for 
observational uncertainty, are fundamental for both understanding 
past regional climate change and assessing climate model 
performance at regional scales (high confidence). Employing tailored, 
process-oriented and potentially multivariate diagnostics to evaluate 
whether a  climate model realistically simulates relevant aspects of 
present-day regional climate increases trust in future projections 
of these aspects (high confidence). {10.2.2, 10.3.3}

Currently, scarcity and reduced availability of adequate 
observations increase the uncertainty of long-term 
temperature and precipitation estimates (virtually certain). 
Precipitation measurements in mountainous areas, especially of solid 
precipitation, are strongly affected by gauge location and setup (very 
high confidence). Over data-scarce regions or over complex orography, 
gridded temperature and precipitation products are strongly affected 
by interpolation methods. Lack of access to the raw station data used 
to create gridded products compromises the trustworthiness of these 
products since the influence of the gridding process on the product 
cannot be assessed. The use of statistical homogenization methods 
reduces uncertainties related to long-term warming estimates at regional 
scales (virtually certain). {10.2.2, 10.6.2, 10.6.3, 10.6.4, Box 10.3} 

Regional reanalyses provide surrogates of observed climate 
variables that are highly relevant in areas with scarce surface 
observations. Regional reanalyses represent the distributions of 
precipitation, surface air temperature, and surface wind, including the 
frequency of extremes, better than global reanalyses (high confidence). 
However, their usefulness is limited by their short length, the typical 
regional model errors, and the relatively simple data assimilation 
algorithms. {Section 10.2.1} 

Global and regional climate models are important sources 
of climate information at the regional scale. Global models by 
themselves provide a useful line of evidence for the construction of 
regional climate information through the attribution or projection 
of forced changes or the quantification of the role of the internal 
variability (high confidence). Dynamical downscaling using regional 
climate models adds value in representing many regional weather and 
climate phenomena, especially over regions of complex orography or 
with heterogeneous surface characteristics (very high confidence). 
Increasing climate model resolution improves some aspects of 
model performance (high confidence). Some local-scale phenomena 
such as land–sea breezes and mountain wind systems can only be 
realistically represented by simulations at a  resolution of the order 
of 10 km or finer  (high confidence). Simulations at kilometre-scale 
resolution add value in particular to the representation of convection, 
sub-daily precipitation extremes (high confidence) and soil-moisture–
precipitation feedbacks (medium confidence). Sensitivity experiments 
aid the understanding of regional processes and can provide additional 
user-relevant information. {10.3.3, 10.4, 10.5, 10.6} 
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The performance of global and regional climate models 
and their fitness for future projections depend on their 
representation of relevant processes, forcings and drivers 
and on the specific context. Improving global model performance 
for regional scales is fundamental for increasing their usefulness 
as regional information sources. It is also key for improving the 
boundary conditions for dynamical downscaling and the input for 
statistical approaches, in particular when regional climate change 
is strongly influenced by large-scale circulation changes. Increasing 
resolution per se does not solve all performance limitations. 
Including the relevant forcings (e.g.,  aerosols, land-use change 
and stratospheric ozone concentrations) and representing the 
relevant feedbacks (e.g.,  snow–albedo, soil-moisture–temperature, 
soil-moisture–precipitation) in global and regional models is 
a prerequisite for reproducing historical regional trends and ensuring 
fitness for future projections (high confidence). The sign of projected 
regional changes of variables such as precipitation and wind speed 
is in some cases only simulated in a trustworthy manner if relevant 
regional processes are represented (medium confidence). {10.3.3, 
10.4.1, 10.4.2, 10.6.2, Cross-Chapter Box 10.2} 

Statistical downscaling, bias adjustment and weather 
generators are useful approaches for improving the 
representation of regional climate from dynamical climate 
models. Statistical downscaling methods with carefully chosen 
predictors and an appropriate model structure for a given application 
realistically represent many statistical aspects of present-day daily 
temperature and precipitation (high confidence). Bias adjustment 
has proven beneficial as an interface between climate model 
projections and impact modelling in many different contexts 
(high confidence). Weather generators realistically simulate many 
statistical characteristics of present-day daily temperature and 
precipitation, such as extreme temperatures and wet- and dry-day 
transition probabilities (high confidence). {10.3.3} 

The performance of statistical downscaling, bias adjustment 
and weather generators in climate change applications 
depends on the specific model and on the dynamical climate 
model driving it. Knowledge is still limited about suitable predictors 
for statistical downscaling of regional climate change, particularly for 
precipitation. Bias adjustment cannot overcome all consequences 
of unresolved or strongly misrepresented physical processes, 
such as large-scale circulation biases or local feedbacks, and may 
instead introduce other biases and implausible climate change 
signals (medium confidence). Using bias adjustment as a  method 
for statistical downscaling, particularly for coarse-resolution global 
models, may lead to substantial misrepresentations of regional 
climate and climate change (medium confidence). Instead, dynamical 
downscaling may resolve relevant local processes prior to bias 
adjustment, thereby improving the representation of regional 
changes. The performance of statistical approaches and their fitness 
for future projections depends on predictors and change factors 
taken from the driving dynamical models (high confidence). {10.3.3, 
Cross-Chapter Box 10.2}

Different types of climate model ensembles allow for the 
assessment of regional climate projection uncertainties, 
although ensemble spread is not a  full measure of the 
uncertainty (very high confidence). Multi-model ensembles 
enable the assessment of regional climate response uncertainty 
(very  high confidence). Discarding models that fundamentally 
misrepresent processes relevant for a  given purpose improves the 
fitness of multi-model ensembles for generating regional climate 
information (high confidence). At the regional scale, multi-model 
mean and ensemble spread are not sufficient to characterize 
low-likelihood, high-impact changes or situations where different 
models simulate substantially different or even opposing changes 
(high confidence). In such cases, storylines aid the interpretation 
of projection uncertainties. Since AR5, the availability of multiple 
single-model initial-condition large ensembles (SMILEs) allows for 
a more robust separation of model uncertainty and internal variability 
in regional-scale projections and provides a  more comprehensive 
spectrum of possible changes associated with internal variability 
(high confidence). {10.3.4} 

Interplay Between Human Influence and 
Internal Variability at Regional Scales

Human influence has been a  major driver of regional mean 
temperature change since 1950 in many sub-continental 
regions of the world (virtually certain). Regional-scale detection 
and attribution studies as well as observed emergence analysis 
provide robust evidence supporting the dominant contribution of 
human influence to regional temperature changes over multi-decadal 
periods. {10.4.1, 10.4.3}

While human influence has contributed to multi-decadal mean 
precipitation changes in several regions, internal variability 
can delay emergence of the anthropogenic signal in long-term 
precipitation changes in many land regions (high confidence). 
Multiple attribution approaches, including optimal fingerprinting, 
grid-point detection, pattern recognition and dynamical adjustment 
methods, as well as multi-model, single-forcing large ensembles and 
multi-centennial paleoclimate records, support the contribution of 
human influence to several regional multi-decadal mean precipitation 
changes  (high confidence). At regional scale, internal variability 
is stronger and uncertainties in observations, models and human 
influence are all larger than at the global scale, precluding a robust 
assessment of the relative contributions of greenhouse gases, 
stratospheric ozone, different aerosol species and land-use/land-cover 
changes. Multiple lines of evidence, combining multi-model ensemble 
global projections with those coming from SMILEs, show that internal 
variability is largely contributing to the delayed or absent emergence 
of the anthropogenic signal in long-term regional mean precipitation 
changes (high confidence). {10.4.1, 10.4.2, 10.4.3, 10.6.3, 10.6.4}
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Various mechanisms operating at different time scales can 
modify the amplitude of the regional-scale response of 
temperature, and both the amplitude and sign of the response 
of precipitation, to human influence (high confidence).  These 
mechanisms include non-linear temperature, precipitation and soil 
moisture feedbacks, slow and fast responses of sea surface temperature 
patterns and atmospheric circulation changes to increasing greenhouse 
gases. {10.4.3}

Urban Climate

Many types of urban parametrizations simulate radiation and 
energy exchanges in a  realistic way (very high confidence). 
For urban climate studies focusing on the interplay between the 
urban heat island and regional climate change, a simple single-layer 
parametrization is fit for purpose (medium confidence). New networks 
of monitoring stations in urban areas provide key information to 
enhance the understanding of urban microclimates and improve 
urban parametrizations. {Box 10.3}

The difference in observed warming trends between cities and 
their surroundings can partly be attributed to urbanization 
(very high confidence). Annual mean daily minimum temperature 
is more affected by urbanization than annual mean daily maximum 
temperature (very high confidence). The global annual mean surface 
air temperature response to urbanization is, however, negligible (very 
high confidence). {Box 10.3}

Future urbanization will amplify the projected air temperature 
change in cities regardless of the characteristics of the 
background climate, resulting in a warming signal on minimum 
temperatures that could be as large as the global warming 
signal (very high confidence). A  large effect is expected from 
the combination of future urban development and more frequent 
occurrence of extreme climatic events, such as heatwaves (very high 
confidence). {Box 10.3}

Distillation of Regional Climate Information

The process of distilling regional climate information from 
multiple lines of evidence can vary substantially from one 
case to another. Although methodologies for distillation have been 
established, in practice the process is conditioned by the sources 
available, the actors involved and the context, which depend heavily 
on the regions considered, and is framed by the question being 
addressed. To make the most appropriate decisions and responses to 
changing climate, it is necessary to consider all physically plausible 
outcomes from multiple lines of evidence, especially in the case 
when they are contrasting. {10.5, 10.6, Cross-Chapter Box  10.1, 
Cross-Chapter Box 10.3} 

Confidence in the distilled regional climate information is 
enhanced when there is agreement across multiple lines of 
evidence. For example, the apparent contradiction between the 
observed decrease in Indian monsoon rainfall over the second half of 
the 20th century and the projected long-term increase is explained by 
attribution of the trends to different forcings, with aerosols dominating 
recently and greenhouse gases in the future (high confidence). For 
the Mediterranean region, the agreement between different lines of 
evidence, such as observations, projections by regional and global 
models, and understanding of the underlying mechanisms, provides 
high confidence in summer warming that exceeds the global average. 
{10.5.3, 10.6, 10.6.3, 10.6.4, Cross-Chapter Box 10.3}

The outcome of distilling regional climate information can 
be limited by inconsistent or contradictory information. Initial 
observational analyses of the Cape Town drying showed a  strong, 
post-1979 association between increasing greenhouse gases, changes 
in a key mode of variability (the Southern Annular Mode) and drought 
in the Cape Town region. However, not all global models show this 
association, and subsequent analysis extending farther back in time, 
when human influence was weaker, showed no strong association in 
observations between the Southern Annular Mode and Cape Town 
drought. Thus, despite the consistency among global-model future 
projections, there is medium confidence in a projected future drier 
climate for Cape Town. Likewise, the distillation process results in 
low confidence in the influence of Arctic warming on mid-latitude 
climate because of contrasting lines of evidence. {10.5.3, 10.6.2, 
Cross-Chapter Box 10.1, Cross-Chapter Box 10.3}
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10.1 Foundations for Regional 
Climate Change Information

10.1.1 Introduction

This chapter assesses the foundations for the distillation of regional 
climate change information from multiple lines of evidence. The 
AR5, SR1.5 and SRCCL reports underlined the relevance of assessing 

regional climate information that is useful and relevant to the decision 
scale (Box 10.1). To respond to this need, the AR6 WGI Report includes 
four regional chapters of which this is the first. Chapter 10 assesses the 
sources and methodologies used by the Chapters 11, 12 and Atlas to 
construct regional information. Chapter 10 builds on the assessment 
of methodologies considered to construct global climate change 
information in Chapters 2 to 4 and on the processes assessed in 
Chapters 5 to 9. Additionally, this chapter assesses the methodologies 

Figure 10.1 | Diagram of the processes leading to the construction of regional climate information (blue) and user-relevant regional climate information 
(brown). The chapter sections and the other chapters of the Report involved in each step are indicated in rectangles. WGII stands for Working Group II. Literature refers to 
scientific and technical literature, and climate experts refers to climate scientists, practitioners and local communities, as defined in Section 10.5.
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for the co-production of regional climate information, the role of the 
different actors involved in the process and the relevance of the user 
context and values.

Regional climate change refers to a change in climate in a given region 
(Section 10.1.2.1) identifi ed by changes in the mean or higher moments 
of the probability distribution of a climate variable and persisting for 
a  few decades or longer. It can also refer to a  change in temporal 
properties such as persistence and frequency of occurrence of weather 
and climate extreme events. Regional climate change may be caused by 
natural internal processes such as atmospheric internal variability and 
local climate response to low-frequency modes of climate variability 
(Technical Annex IV), as well as by changes in external forcings such as 
modulations of the solar cycle, orbital forcing, volcanic eruptions, and 
persistent anthropogenic changes in the composition of the atmosphere 
or in land use and land cover (Cross-Chapter Box 3.2; IPCC, 2018a), 
in addition to the interactions and feedbacks between them. Process 
interaction in space is pervasive, which means that small spatial scales 
often have an infl uence on the larger scales (Palmer, 2013; Sandu 
et al., 2016). Depending on the context, a region may refer to a large 
area such as a monsoon region, but may also be confi ned to smaller 
areas such as coastlines, mountain ranges or human settlements like 
cities. Users (understood as anyone incorporating climate information 
into their activity) often request climate information for these range of 
scales since their operating and adaptation decision scales range from 
the local to the sub-continental level.

Given the many types of regional climates, the broad range of spatial 
and temporal scales (Section 10.1.2), and the diversity of user needs, 

a variety of methodologies and approaches have been developed to 
construct regional climate change information. The sources include 
global and regional climate model simulations, statistical downscaling 
and bias adjustment methods. A commonly used source is long-term 
(end-of-century) model projections of regional climate change, as well 
as near-term (next 10 years) climate predictions (Kushnir et al., 2019; 
Rössler et al., 2019a). Regional observations, with their associated 
challenges, are a  key source for the regional climate information 
construction process (Q. Li et  al., 2020). High-quality observations 
that enable monitoring of the regional aspects of climate are used to 
adjust inherent model biases and are the basis for assessing model 
performance. Process understanding and attribution of observed 
changes to large- and regional-scale anthropogenic and natural 
drivers and forcings are also important sources.

All these sources are used, when available, to distil regional climate 
information from multiple lines of evidence (Figure 10.1). The resulting 
climate information can then be integrated, following a co-production 
process involving both the user and the producer, into a user context 
that often is already taken into account when constructing the regional 
climate information. In fact, the distillation process leading to the 
climate information can consider the specifi c context of the question at 
stake, the values of both the user and the producer, and the challenge 
of communicating across different communities (Section 10.5).

The chapter (Figure 10.2) starts with an introduction of the concepts 
used in the distillation of regional climate information (Section 10.1). 
Section  10.2 addresses the aspects associated with the access to 
and use of observations, while different modelling approaches 
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are introduced and assessed in Section  10.3. Section  10.3 also 
addresses the performance of models in simulating relevant climate 
characteristics as needed to estimate the credibility of future 
projections. Section 10.4 assesses the interplay between anthropogenic 
causes and internal variability at regional scales, and its relevance for 
the attribution of regional climate changes and the emergence of 
regional climate change signals. Section 10.5 tackles the issue of how 
regional climate information is distilled from different sources taking 
into account the context and the  values of both the producer and 
the user. Section 10.6 illustrates the distillation approach using three 
comprehensive examples. Finally, Section 10.7 lists some limitations to 
the assessment of regional climate information.

10.1.2 Regional Climate Change and the 
Relevant Spatial and Temporal Scales

The global coupled atmosphere–ocean–land–cryosphere system, 
including its feedbacks, shows variability over a  wide spectrum 
of spatial and temporal scales (Hurrell et  al., 2009). This section 

discusses concepts and definitions of what can be considered 
a region, the relevant temporal scales and region-specific aspects of 
the baselines used.

10.1.2.1 Spatial Scales and Definition of Regions

Large-scale climate and the associated phenomena have been defined 
in Chapter 2 (e.g., Cross-Chapter Box 2.2) as ranging from global and 
hemispheric, to ocean basin and continental scales. The definition of 
the regional scale is case specific in the AR6 WGI Report. Section 1.4.5 
provides definitions of the different regional types adopted by the 
different chapters. In this chapter, regional scales are defined as 
ranging from the size of sub-continental areas (e.g., the Mediterranean 
basin) to local scales (e.g.,  coastlines, mountain ranges and cities) 
without prescribing any formal regional boundaries. These spatial 
length scales range from a few thousand down to a few kilometres 
and the relevant driving modes and processes at regional scales are 
summarized in Figure 10.3. In contrast to Chapters 11, 12 and Atlas, 
which make a  region-by-region assessment of climate change, this 
chapter does not necessarily restrict itself to the use of the AR6 WGI 
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Figure  10.3 | Schematic diagram to display interacting spatial and temporal scales relevant to regional climate change 
information. Figure adapted from Orlanski (1975). The processes included in the different models and model components considered in 
Chapter  10 are indicated as a  function of these scales. The various types of models (including global and regional climate models) for 
constructing regional climate information are assessed in Section 10.3.1 and Box 10.3.
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Reference Regions (Section 1.4.5 and Atlas.1.3). Different regional 
definitions have been used in sections 10.4 and 10.6, selected for their 
adequacy to illustrate methodological aspects (e.g., for the attribution 
of long-term regional trends, regions that display such trends have 
been selected). Typological regions (Section 1.4.5 and Atlas.1.3) are 
used in Box 10.3 and Cross-Chapter Box 10.4.

10.1.2.2 Temporal Scales, Baselines and 
Dimensions of Integration

The concept of a unified and seamless framework for weather and 
climate prediction (A. Brown et  al., 2012; Hoskins, 2013) provides 
the context for understanding and simulating regional climate across 
multiple spatial and temporal scales. This concept is embodied in the 
subseasonal-to-seasonal (Vitart et  al., 2017) and the seasonal-to-
multi-annual (Smith et  al., 2020) prediction activities that generate 
regional climate information across temporal scales. The seamless 
framework benefits from the convergence of methods traditionally 
used in weather forecasting and climate projections, in particular 
the role of the initialization in climate models and the strategies for the 
evaluation of physical processes relevant at different temporal scales.

The relatively short observational record (Section 10.2) is a primary 
challenge to estimate the forced signal and to isolate low-frequency, 
multi-decadal and longer-term internal variability (Frankcombe 
et  al., 2015; Overland et  al., 2016; Bathiany et  al., 2018). Because 
only one realization of the actual climate exists, it is non-trivial to 
extract estimates of internal and forced variability from the available 
data (Frankcombe et al., 2015). As an alternative, approaches that 
use large observational ensembles can be applied (Section  10.4; 
McKinnon and Deser, 2018).

There is a  close relationship between spatial and temporal scales 
(Figure 10.3). For example, an individual convective storm may exhibit 
scales of variability ranging from metres and seconds to kilometres 
and hours, while for El Niño–Southern Oscillation (ENSO) the scales 
of variability are regional to hemispheric in extent and multi-year 
in length. These scales interact and the interactions are represented 
in climate models, although the ability of current models to simulate 
regional phenomena and even large-scale climate drivers still leaves 
room for improvement (Section 10.3) and limits their capability to 
represent the interactions across spatial and temporal scales.

It is important to note that in this chapter and subsequent regional 
chapters, including the Interactive Atlas, the baselines and reference 
periods used for climate change estimates from regional models may 
vary from those used in Chapters 1 to 9. In these chapters three main 
time baselines are defined for the past, for example, pre-industrial 
(before 1750), early industrial (1850–1900) and recent (1995–2014), 
while the future reference periods are 2021–2040 (near term), 
2041–2060 (mid-term) and 2081–2100 (long term) (Section  1.4.1 
and Cross-Chapter Box  1.2). Regional climate simulations used in 
the recent literature have been performed with different baselines. 
The differences are often due to the availability of the boundary 
conditions from global simulations, leading to periods chosen 
for those simulations like 1950–2005, in line with the CMIP5 
historical simulations followed by projections from 2005 onwards 

(Vaittinada Ayar et al., 2016; Zhang et al., 2017; L. Cai et al., 2018). 
For simulations that use CMIP3 boundary conditions other periods 
have been used. As a consequence, these regional simulations mix 
for the recent period historical simulations with projections. The 
mismatch needs to be considered when assessing results obtained 
from both global and regional models in the context of the climate 
information distillation process, or when linking the regional chapters 
to the assessments performed in previous chapters. The choice 
of baseline provides a  source of uncertainty for the assessment 
of  climate impacts (e.g.,  for the response of bird species in Africa; 
Baker et al., 2016). Besides, a range of different baselines may need 
to be considered to satisfy a variety of users, since this choice affects 
the perceived result (Dobor and Hlásny, 2019). The influence of the 
different baseline periods can be explored using the Interactive Atlas 
where different baselines are available, for example, 1986–2005 
(according to AR5), 1995–2014 (this Report), and both 1961–1990 
and 1981–2010 (WMO).

One way of overcoming the baseline uncertainty is to define the 
results for a given model based on specific global mean temperature 
changes from the pre-industrial period (e.g.,  Sylla et  al., 2018 for 
West Africa; Kjellström et al., 2018 for Europe; Taylor et al., 2018 for 
the Caribbean; Montroull et al., 2018 for South America). The specific 
global mean temperature is known as global warming level (GWL; 
Sections 1.6.2 and 10.6.4, and Cross-Chapter Box  11.1). The GWL 
is a useful dimension of integration because important changes in 
regional climate, including many types of extremes, scale quasi-
linearly with the GWLs, often independently of the underlying 
emissions scenarios (e.g., Hoegh-Guldberg et al., 2018; Beusch et al., 
2020; Seneviratne and Hauser, 2020), always taking into account 
caveats described in Cross-Chapter Box 11.1. In addition, GWLs allow 
a  separated analysis of the global and regional climate responses 
associated with a  warming level (Section  10.6.4; Seneviratne and 
Hauser, 2020). The choice of global temperature goal in the context 
of the 2015 Paris Agreement means that there is an increasing desire 
for the regional climate information to be expressed as a  function 
of GWLs.

10.1.3 Sources of Regional Climate 
Variability and Change

Variability in regional climate arises from natural and anthropogenic 
forcings, internal variability including the local expression of large-scale 
remote drivers (also known as teleconnections), and the feedbacks 
between them. Due to the many possible drivers of variability and 
change (Figure  10.3), quantifying the interplay between internal 
modes of decadal variability and any externally forced component 
is crucial in attempts to attribute causes of regional climate changes 
(e.g., Hoell et al., 2017; Nath et al., 2018). A regional climate signal 
could arise purely due to some anthropogenic influence or conversely, 
entirely due to internal variability, but it is most likely the result of 
a combination of both (Section 10.4). This section briefly introduces 
these sources of regional variability and should be read along with 
corresponding sections in Chapters 3, 6 and 7. Section 10.3 assesses 
their representation in climate models, Section 10.4 discusses their 
relevance for the attribution of multi-decadal trends and Section 10.6 
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refers to them as sources in specific examples where regional climate 
information is built. Section  8.2 offers a  companion discussion 
focussing on changes in the water cycle. An example of how changes 
in one region could act as a source for changes in a neighbouring one 
is assessed in the Cross-Chapter Box 10.1 for the linkages between 
polar and mid-latitude regions, an interaction that has led to 
substantial recent research. This section also introduces the sources 
of uncertainty in model-derived regional climate information and 
how the quantification of the uncertainties influences the confidence 
of the regional climate information.

10.1.3.1 Forcings Controlling Regional Climate

There are important differences in the processes affected by 
greenhouse gases (GHGs) over land and ocean. Notably, this leads 
to preferential warming of the land regions, which are themselves 
skewed towards the Northern Hemisphere (NH).

Variations in solar forcing (Section  2.2.1) could influence regional 
climate through its modulation of circulation patterns, although this 
research field is still hampered by large observational and modelling 
uncertainties. The 11-year solar cycle has been suggested to affect the 
leading atmospheric circulation modes of the North Atlantic region 
in model-based studies (Gray et al., 2013; Thiéblemont et al., 2015; 
Sjolte et al., 2018). In particular the solar cycle has been suggested as 
an important source of near-term predictability of the North Atlantic 
Oscillation (NAO; Kushnir et  al., 2019), while other studies have 
not found evidence for links between the solar cycle and NAO in 
observational records (Ortega et al., 2015; Sjolte et al., 2018; Chiodo 
et al., 2019). On centennial time scales, solar fluctuations were found 
to be correlated with the Eastern Atlantic Pattern (Sjolte et al., 2018). 
Possible influences on winter circulation and temperature over 
Eurasia (Chen et al., 2015) and North America (Liu et al., 2014; Li and 
Xiao, 2018) have also been identified.

An updated assessment of past changes in stratospheric ozone can 
be found in Section 2.2.5.2. The AR6 assesses that both GHG and 
stratospheric ozone depletion have contributed to the expansion of 
the zonal mean Hadley cell in the Southern Hemisphere (SH) for the 
period 1981–2000 with medium confidence (Section 3.3.3; Garfinkel 
et al., 2015; Waugh et al., 2015; Grise et al., 2019). There is medium 
confidence that stratospheric ozone depletion contributed to the 
strengthening trend of the summer Southern Annular Mode (SAM) 
for the period 1970–1990, but this influence has been weaker since 
2000 (Section  3.7.2). The poleward shift of the SH westerlies has 
also been explained by stratospheric ozone depletion (Solman and 
Orlanski, 2016). Section 10.4 assesses its role in the multi-decadal 
increase of rainfall in south-eastern South America and Section 10.6.2 
does so for the occurrence of the Cape Town drought.

Both natural and anthropogenic aerosols are often emitted at 
a regional scale, have a short atmospheric lifetime (from a few hours 
to several days; Section  6.1), are dispersed regionally and affect 
climate at a regional scale through radiative cooling/heating and cloud 
microphysical effects (Chapter 8; Rotstayn et al., 2015; Sherwood et al., 
2015). The majority of aerosols scatter solar radiation, but with strong 
regional variations (Shindell and Faluvegi, 2009) that lead to regional 

radiative effects of up to two orders of magnitude larger than the global 
average (B. Li et al., 2016; K. Li et al., 2016; Mallet et al., 2016). Black 
carbon, instead, is known to absorb solar radiation, leading to regional 
atmospheric warming patterns due to its inhomogeneous spatial 
distribution (Gustafsson and Ramanathan, 2016). Patterns of forcing 
generally follow those of aerosol burden. However, temperature and 
precipitation responses are both local and remote (Z. Li et al., 2016; 
Kasoar et al., 2018; L. Liu et al., 2018; Samset et al., 2018; Thornhill 
et al., 2018; Westervelt et al., 2018). For instance, changes in aerosol 
concentrations in the NH have been reported to modulate monsoon 
precipitation in West Africa and the Sahel (Undorf et  al., 2018; 
Section 10.4.2.1) and in Asia (H. Zhang et al., 2018; Section 10.6.3).

Natural aerosols include mineral dust, volcanic aerosol and sea salt. 
The feedback processes between climate and mineral dust as well 
as sea salt are assessed in Section 6.4, while the volcanic aerosol 
is dealt with in Cross-Chapter Box  4.1. Mineral dust created by 
wind erosion of arid and semi-arid surfaces dominates the aerosol 
load over some areas. The major sources of contemporary dust are 
located in the arid topographic basins of northern Africa, Middle 
East, Central and south-west Asia, the Indian subcontinent, and East 
Asia  (Prospero et al., 2002; Ginoux et al., 2012) and emissions are 
controlled by changes in surface winds, precipitation, and vegetation 
(Ridley et al., 2014; W. Wang et al., 2015; DeFlorio et al., 2016; Evan 
et al., 2016; Pu and Ginoux, 2018). Dust both scatters and absorbs 
radiation and serves as a nuclei of warm and cold clouds (Chapter 6). 
The surface direct radiative effect is likely negative over land and 
ocean, especially when the assumed solar absorption by dust is 
large (Miller et al., 2014; Strong et al., 2015). Surface temperature 
and precipitation adjust to the direct radiative effect with both sign 
and magnitude depending on the dust absorptive properties. Dust 
often cools the surface,  but in regions such as the Sahara surface 
air temperature increases as the shortwave absorption by dust is 
increased, leading to increases of surface temperature over the major 
reflective dust sources (Miller et al., 2014; Solmon et al., 2015; Strong 
et al., 2015; Jin et al., 2016; Sharma and Miller, 2017).

Volcanic eruptions load the atmosphere with large amounts of sulphur, 
which is transformed through chemical reactions and micro-physics 
processes into sulphate aerosols (Cross-Chapter Box 4.1; Stoffel et al., 
2015; LeGrande et al., 2016). If the plume reaches the stratosphere, 
sulphate aerosols can remain there for months or years (about two to 
three for large eruptions) and can then be transported to other areas by 
the Brewer-Dobson circulation. If the eruption occurs in the tropics, its 
plume is dispersed across the Earth in a few years, while if the eruption 
occurs in the high latitudes, aerosols mainly remain in the same 
hemisphere (Pausata et  al., 2015). The global temperature response 
observed after the last five major eruptions of the last two centuries 
is estimated to be around –0.2°C (Swingedouw et  al., 2017), in 
association with a general decrease of precipitation (Iles and Hegerl, 
2017). Nevertheless, the statistical significance of the regional response 
remains difficult to evaluate over the historical era (Bittner et al., 2016; 
Swingedouw et al., 2017) due to the small sampling of large volcanic 
eruptions over this period and the fact that the signal is superimposed 
upon relatively large internal variability (Gao and Gao, 2018; Dogar 
and Sato, 2019). Evidence from paleoclimate observations is therefore 
crucial to obtain a  sufficient signal-to-noise ratio (Sigl  et  al.,  2015). 
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Reconstructed modes of climate variability based on proxy records 
allow evaluation of the influence on those modes (Zanchettin et al., 
2013; Ortega et al., 2015; Sjolte et al., 2018; Michel et al., 2020).

Anthropogenic aerosols play a key role in climate change (Chapter 6). 
Although the global mean optical depth caused by anthropogenic 
aerosols did not change from 1975 to 2005 (Chapter 6), the regional 
pattern changed dramatically between Europe and eastern Asia 
(Fiedler et  al., 2017, 2019; Stevens et  al., 2017). Large regional 
differences in present-day aerosol forcing exist with consequences 
for regional temperature, hydrological cycle and modes of variability 
(Chapter 8, Section 10.6). Examples of regions with a notable role 
for anthropogenic aerosol forcing are the Indian monsoon region 
(Section  10.6.3) and the Mediterranean basin (Section  10.6.4). 
Anthropogenic aerosols are also very relevant in many urban areas 
(Box 10.3; Gao et al., 2016; Kajino et al., 2017).

The SRCCL assessed that nearly three-quarters of the land surface is 
under some form of land use, particularly in agriculture and forest 
management (Jia et  al., 2019). The effects of land management 
on climate are much less studied than land cover effects although 
net cropland has changed little over the past 50 years, while 
land management has continuously changed (Jia et  al., 2019). 
Section 7.3.4.1 assesses the global influence of both land use and 
irrigation on the effective radiative forcings. Land cover changes 
and land management can influence climate locally, such as the 
urban heat island and non-locally as in the case of increased rainfall 
downwind of a  city (Jia et  al., 2019; Box  10.3) or the monsoon 
circulation affected by irrigation (Section  10.6.3). The influence 
of land cover changes and land management on regional climate 
extremes is assessed in Section 11.1.6.

It is very likely that the global land surface air temperature 
response to urbanization is negligible (Section  2.3.1.1.3). However, 
there is evidence that urbanization may regionally amplify the air 
temperature response to climate change in different climatic zones 
(Mahmood et  al., 2014), either under present (Doan et  al., 2016; 
Kaplan et  al.,  2017;  X.  Li et  al., 2018) or future climate conditions 
(Argüeso et al., 2014; Kim et al., 2016; Kusaka et al., 2016; Grossman-
Clarke et al., 2017; Krayenhoff et al., 2018). For instance, in northern 
Belgium, Berckmans et al. (2019) found that including urbanization 
scenarios for the near future (up to 2035) have a  comparable 
influence on minimum temperature (increasing it by 0.6°C) to that of 
the GHG-induced warming under RCP8.5.

10.1.3.2 Internal Drivers of Regional Climate Variability

Internal climate variability on seasonal to multi-decadal temporal 
scales is substantial at regional scales. This variability arises from 
internal modes of atmospheric and oceanic variability, intrinsically 
coupled climate modes, and may additionally be driven by processes 
other than those originating the modes. It also interacts with the 
response of the climate system to external forcing. The teleconnections 
associated with the modes are useful to understand the relationship 
between large and regional scales (Annex IV: Modes of Variability). 
A description of various large-scale modes of variability can be found 
in Chapters 2, 3 and 8, and in Annex IV, while their future projections 

are assessed in Chapter 4. The specificities of their regional influence 
are briefly discussed here. More details of their typical temporal 
scales and regional influences can be found in Annex IV.

Atmospheric modes of variability may have seasonally-dependent 
regional effects like the North Atlantic Oscillation (NAO) in European 
winter (Tsanis and Tapoglou, 2019) and summer (Bladé et al., 2012; 
Dong et al., 2013). Even though these modes are internal to the climate 
system, their variability can be affected by anthropogenic forcings. 
For instance, the SAM (Hendon et al., 2014) is both internally driven 
(Smith and Polvani, 2017), but also affected by recent stratospheric 
ozone changes (Bandoro et al., 2014). The teleconnections between 
these modes of variability and surface weather often exhibit 
considerable non-stationarity (Hertig et al., 2015).

Due to the large ocean heat capacity and their long temporal scales, 
multi-annual to multi-decadal modes of ocean variability such as 
the Pacific Decadal Variability (PDV; Newman et al., 2016) and the 
Atlantic Multi-decadal Variability (AMV; Buckley and Marshall, 2016) 
are key drivers of regional climate change. In the case of the AMV 
both natural (volcanic) and anthropogenic (aerosol) external forcings 
are thought to be involved in its timing and intensity (Section 3.7.7). 
These modes not only affect nearby regions but also remote parts 
of the globe through atmospheric teleconnections (Meehl et  al., 
2013; Dong and Dai, 2015) and can act to modulate the influence of 
natural and anthropogenic forcings (Davini et al., 2015; Ghosh et al., 
2017; Ménégoz et  al., 2018b). The dynamics of the ocean modes 
is simultaneously affected by other modes of variability spanning 
the full range of spatial and temporal scales due to non-linear 
interactions (Figure 10.3; Kucharski et al., 2010; Dong et al., 2018). 
This mutual interdependence can result in changing characteristics of 
the connection over time (Gallant et al., 2013; Brands, 2017; Dong and 
McPhaden, 2017), and of their regional climate impact (Martín-Gómez 
and Barreiro, 2016, 2017). As with atmospheric modes of variability, 
the regional influence of ocean modes of variability on regional 
climates can be seasonally dependent (Haarsma et al., 2015).

10.1.3.3 Uncertainty and Confidence

Uncertainty and confidence are treated in the same way in regional 
climate change information as in larger-scale (continental and 
global) climate problems (Chapter 1 and Section 10.3.4). The degree 
of confidence in climate simulations and in the resulting climate 
information typically depends on the identification of the role of the 
uncertainties (Section 10.3.4). Since the direct verification of simulations 
of future climate changes is not possible, model performance and 
reliable (i.e., trustworthy) uncertainty estimates need to be assessed 
indirectly through process understanding and a systematic comparison 
with observations of past and current climate (Section 10.3.3; Knutti 
et al., 2010; Eyring et al., 2019). The observational uncertainty, which is 
particularly large at regional scales, also has to be taken into account 
(Section 10.2). These uncertainty estimates are then propagated in the 
distillation process to generate climate information.

Uncertainties in model-based future regional climate information arise 
from different sources and are introduced at various stages in the 
process (Lehner et al., 2020): (i) forcing uncertainties associated with 
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the future scenario or pathway that is assumed; (ii) internal variability; 
and (iii) uncertainties related to imperfections in climate models, also 
referred to as structural or model uncertainty. However, the relative 
role of each of these sources of uncertainty differs between the global 
and the regional scales as well as between variables and also between 
different regions (Lehner et al., 2020). One way to address the internal 
variability and model uncertainties is to consider results from both 
multiple models and multiple realizations of the same model (Eyring 
et al., 2016a; Lehner et al., 2020; Díaz et al., 2021). These models are 
at times also combined with different weights that are a function of 
their performance and independence to increase the confidence of the 
multi-model ensemble (Abramowitz et al., 2019; Brunner et al., 2019).

Other elements that play a  role are the inconsistency between 
the global and regional models in dynamical downscaling or the 
observational and methodological uncertainty in bias-adjustment 
methods (Sørland et al., 2018). These elements, in addition to those 
typical of the uncertainty in global and large-scale phenomena 
(Chapters 1–9), affect the overall confidence of regional climate 
information. This complex scene with different sources of uncertainty 
makes the collection of results available from multi-model, 
multi-member simulations most useful when synthesized through 
a distillation process (Section 10.5.3).

10.1.4 Distillation of Regional Climate Information

Regional climate information is synthesized from different lines of 
evidence from a  number of sources (Sections 10.2–10.4) taking 
into account the context of a  user vulnerable to climate variability 
and change at regional scales (Baztan et  al., 2017) and the values 
of all relevant actors (Corner et  al., 2014; Bessette et  al., 2017) in 
a process called distillation (Section 10.5). Distillation, understood as 
the process  of synthesizing information about climate change from 
different lines of evidence obtained from a  variety of sources and 
taking into account the user context and the values of all relevant 
actors, allows the connection of global climate change to the local 
and regional scales, where adaptation responses and policy decisions 
take place. Climate information is translated into the user context in 
a co-production process that introduces further user-relevant elements 
leading to user-relevant climate information (Figure  10.1; Pettenger, 
2016; Verrax, 2017) for a  specific demand like, for instance, guiding 
climate-resilient development (Kruk et al., 2017; Parker and Lusk, 2019).

The approaches adopted in the distillation of regional climate 
information are diverse and range from the simple delivery of data 
as information to co-production with the user using as many lines 
of evidence as possible (Lourenço et  al., 2016). The availability 
and selection of the sources and the approach followed has 
implications for the usefulness of the information. For instance, it is 
well-established that it is invalid to take a time series from a gridcell 
of a  model simulation as equivalent to an observational estimate 
of a  point within the cell, due to the lack of representativeness 
(Section  10.3), and consequently the information building solely 
on this type of data source is of limited use. Relevant decisions are 
made during the distillation process, such as what method is most 
suitable to a specific user context and the question being addressed. 

The information may be provided in the form of summarized raw 
data, a set of user-oriented indicators, a set of figures and maps with 
either a brief description, in the form of a storyline, or formulated as 
rich and complex climate adaptation plans. The information typically 
includes a description of the sources and assumptions, estimates of 
the associated uncertainty and its sources, and guidance to prevent 
possible misunderstandings in its communication.

The choices made for the distillation have typically been part of 
a linear supply chain, starting from the access to climate data that 
are transformed into maps or derived climate data products, and 
finally formulating statements that are communicated and delivered 
to a broad range of users (Hewitt et al., 2012; Hewitson et al., 2017). 
This methodology has proven to be valuable in many cases, but it 
is equally fraught with dangers of not communicating important 
assumptions, not estimating the impact of relevant uncertainties, 
and possibly causing misunderstandings in the handover to the 
user community. This has led to the emergence of new pathways 
to generate user-oriented climate information, many in the context 
of emerging climate services (Buontempo et al., 2018; Hewitt et al., 
2020), which are assessed in Section 10.5 and in Chapter 12.

10.1.5 Regional Climate Information  
in the AR6 WGI Report

This chapter is part of a  cluster devoted to regional climate 
(Chapters 10, 11, 12 and Atlas). It introduces many of the aspects 
relevant to the generation of regional climate information that are 
dealt with in detail elsewhere. Figure  10.4 summarizes how these 
chapters relate to one another and to the rest of the report.

Chapter 11 assesses observed, attributed and projected changes in 
weather and climate extremes, provides a mechanistic understanding 
on how changes in extremes are related to human-induced climate 
change and provides regional, continental and global-scale 
assessments on changes in extremes, including compound events. 
Chapter  12 identifies elements of the climate system relevant for 
sectoral impacts referred to as climatic impact-drivers (CIDs), assesses 
past and future evolutions of sector-relevant CIDs for each AR6 
region, synthesizes such evolutions for different time periods and by 
GWL, and assesses how CIDs are used in climate services. The Atlas 
assesses observed, attributed and projected changes in mean climate, 
performs a comparison of CMIP5, CMIP6 and CORDEX simulations, 
evaluates downscaling performance and assesses approaches to 
communicate climate information. The Interactive Atlas facilitates 
the exploration of datasets assessed in all chapters through a wide 
range of maps, graphs and tables generated in an interactive manner. 
This allows for the comparison of changes at warming levels and 
scenario/time-period combinations, display of  indices for extremes 
and CIDs, and serves all chapters in the report to facilitate synthesis 
information and support the Technical Summary and the Summary 
for Policymakers.

Other chapters also include a strong regional component and provide 
context for the assessment of regional climate. Chapter 1 introduces 
the different types of climatic regions used in the AR6 WGI Report 
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Figure 10.4 | Schematic diagram that illustrates the treatment of regional climate change in the different parts of the WGI Report and how the chapters 
relate to each other.
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Box 10.1 | Regional Climate in AR5 and the Special Reports SRCCL, SROCC and SR1.5

This box summarizes the information on linking global and regional climate change information in the Fifth Assessment Report (AR5) 
and the three Special Reports of the IPCC Sixth Assessment Cycle. This information frames the treatment of the production of regional 
climate information in previous reports and identifies some of the gaps that the AR6 WGI Report needs to address.

Fifth Assessment Report, AR5
In WGI Chapter 9 (Flato et al., 2014), regional downscaling methods were addressed as tools to provide climate information at the 
scales needed for many climate impact studies. The assessment found high confidence that downscaling adds value both in regions with 
highly variable topography and for various small-scale phenomena. Regional models necessarily inherit biases from the global models 
used to provide boundary conditions. Furthermore, the ability of AR5 to systematically evaluate regional climate models (RCMs), and 
statistical downscaling schemes, were hampered because coordinated intercomparison studies were still emerging. However, several 
studies demonstrated that added value arises from higher resolution in regions where stationary small-scale features like topography 
and complex coastlines are present, and from improved representation of small-scale processes like convective precipitation.

WGI Chapter 14 (Christensen et al., 2013) stressed that credibility in regional climate change projections increases when key drivers 
of the change are known to be well-simulated and well-projected by climate models.

Working Group II (WGII) Chapter 21 (Hewitson et al., 2014b) addressed the regional climate change context from the perspective of 
impacts, vulnerability and adaptation. This chapter emphasized that a good understanding of decision-making contexts is essential 
to define the type and scale of information required from physical climate. Further, the chapter identified that the regional climate 
information was limited by the paucity of comprehensive observations and their analysis along with the different levels of confidence 
in projections (high confidence). Notably, at the time of AR5, many studies still relied on global datasets, models, and assessment 
methods to inform regional decisions, which were not considered as effective as tailored regional approaches. The regional scale 
was not defined but instead it was emphasized that climate change responses play out on a range of scales, and the relevance and 
limitations of information differ strongly from global to local scales, and from one region to another.

Chapter 21 noted that the production of downscaled datasets (by both dynamical and statistical methods) remains weakly coordinated, 
and that results indicate that high-resolution downscaled reconstructions of the current climate can have significant errors. Key in this 
was that the increase in downscaled datasets has not narrowed the uncertainty range, and that integrating these data with historical 
change and process-based understanding remains an important challenge.

The chapter identified the common perception that higher resolution (i.e., more spatial detail) equates to more usable and robust 
information, which is not necessarily true. Instead, it is through the integration of multiple sources of information that robust understanding 
of change is developed.

WGII Chapter 21 highlighted that the different contexts of an impact study are defining features for how climate risk is perceived. 
Perspectives were characterized as top-down (physical vulnerability) and bottom-up perspectives (social vulnerability). The top-down 
perspective uses climate change impacts as the starting point of how people and/or ecosystems are vulnerable to climate change, and 
commonly applies global-scale scenario information or refines this to the region of interest through downscaling procedures. Conversely, 
in the ‘bottom-up’ approach the development context is the starting point, focusing on local scales, and layers climate change on 
top of this. An impact focus tends to look to the future to see how to adjust to expected changes, whereas a vulnerability-focused 
approach is centred on addressing the drivers of current vulnerability.

and the main types of climatic models. Chapter  2 describes the 
recent and current state of the climate from observations, most of 
which are key for the production of regional information. Chapter 3 
assesses  human influence on the climate system and Chapter  4 
assesses climate change projections, with a  global focus. These 
three chapters include phenomena that are important for shaping 
regional climate such as general circulation, jets, storm tracks, 
blocking and modes of variability. At the same time, the visualization 
of information in global maps in these chapters provides valuable 

information for the sub-continental scale. Chapter  5 assesses the 
knowledge about the carbon and biogoechemical cycles, whose 
fluxes and responses show variability that is strongly regional in 
nature. Chapter  6 assesses the regional evolution of short-lived 
climate forcers as well as their influence on regional climate and air 
quality. Chapter 8 assesses observed and projected changes in the 
variability of the regional water cycle, including monsoons, while 
changes of the regional oceans, changes in cryosphere and regional 
sea level change are assessed in Chapter 9.

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1378

Chapter 10 Linking Global to Regional Climate Change

10

Box 10.1 (continued)

Special Report on Climate Change and Land (SRCCL; IPCC, 2019a)
The SRCCL (Jia et al., 2019) assessed that there is robust evidence and high agreement that land cover and land use or management 
exert significant influence on atmospheric states (e.g., temperature, rainfall, wind intensity) and phenomena (e.g., monsoons), at various 
spatial and temporal scales, through their biophysical influences on climate. There is robust evidence that dry soil moisture anomalies 
favour summer heatwaves. Part of the projected increase in heatwaves and droughts can be attributed to soil moisture feedbacks 
in regions where evapotranspiration is limited by moisture availability (medium confidence). Vegetation changes can also amplify 
or dampen extreme events through changes in albedo and evapotranspiration, which will influence future trends in extreme events 
(medium confidence).

The influence of different changes in land use (e.g., afforestation, urbanization), on the local climate depends on the background 
climate (robust evidence, high agreement). There is high confidence that regional climate change can be dampened or enhanced by 
changes in local land cover and land use, with sign and magnitude depending on region and season.

Water management and irrigation were generally not accounted for by CMIP5 global models available at the time of SRCCL. 
Additional water can modify regional energy and moisture balance particularly in areas with highly productive agricultural crops 
with high rate of evapotranspiration. Urbanization increases the risks associated with extreme events (high confidence). Urbanization 
suppresses evaporative cooling and amplifies heatwave intensity (high confidence) with a strong influence on minimum temperatures 
(high confidence).

Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC; IPCC, 2019b)
The SROCC (IPCC, 2019b) stated that observations and models for assessing changes in the ocean and the cryosphere have 
been developed considerably during the past century but observations in some key regions remain under-sampled and were very 
short relative to the time scales of natural variability and anthropogenic changes. Retreat of mountain glaciers and thawing of 
mountain permafrost continues and will continue due to significant warming in those regions, where it is likely to exceed global 
temperature increase.

The SROCC assessed that it is virtually certain that Antarctica and Greenland have lost mass over the past decade and observed glacier 
mass loss over the last decades is attributable to anthropogenic climate change (high confidence). It is virtually certain that projected 
warming will result in continued loss in Arctic sea ice in summer, but there is low confidence in climate model projections of Antarctic 
sea ice change because of model biases and disagreement with observed trends. Knowledge and observations of the polar regions 
were sparse compared to many other regions, due to remoteness and challenges of operating in them.

The sensitivity of small islands and coastal areas to increased sea levels differs between emissions scenarios and regionally, 
and a consideration of local processes is critical for projections of sea level influences at local scales.

Special Report on Global Warming of 1.5°C (SR1.5; IPCC, 2018b)
The SR1.5 (Hoegh-Guldberg et al., 2018) assessed that most land regions were experiencing greater warming than the global average, 
with annual average warming already exceeding 1.5°C in many regions. Over one quarter of the global population live in regions that 
have already experienced more than 1.5°C of warming in at least one season. Land regions will warm more than ocean regions over 
the coming decades (transient climate conditions).

Transient climate projections reveal observable differences between 1.5°C and 2°C global warming in terms of mean temperature and 
extremes, both at a global scale and for most land regions. Such studies also reveal detectable differences between 1.5°C and 2°C 
precipitation extremes in many land regions. For mean precipitation and various drought measures there is substantially lower risk for 
human systems and ecosystems in the Mediterranean region at 1.5°C compared to 2°C.

The different pathways to a 1.5°C warmer world may involve a transition through 1.5°C, with both short- and long-term stabilization 
(without overshoot), or a temporary rise and fall over decades and centuries (overshoot). The influence of these pathways is small for 
some climate variables at the regional scale (e.g., regional temperature and precipitation extremes) but can be very large for others 
(e.g., sea level).
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Cross-Chapter Box 10.1 | Infl uence of the Arctic on Mid-latitude Climate

Coordinator: Rein Haarsma (The Netherlands)

Contributors: Francisco J. Doblas-Reyes (Spa in), Hervé Douville (France), Nathan P. Gillett (Canada), Gerhard Krinner (France/Germany, 
France), Dirk Notz (Germany), Krishnan Raghavan (India), Alex C. Ruane (United States of America), Sonia I. Seneviratne (Switzerland), 
Laurent Terray (France), Cunde Xiao (China)

The Arctic has very likely warmed more than twice the global rate over the past 50 years with the greatest increase during the cold 
season (Atlas.11.2). Several mechanisms are responsible for the enhanced lower troposphere warming of the Arctic, including ice 
albedo, lapse rate, Planck and cloud feedbacks (Section 7.4.4.1). The rapid Arctic warming strongly affects the ocean, atmosphere, 
and cryosphere in that region (Section 2.3.2.1 and Atlas.11.2). Averaged over the decade 2010–2019, monthly average sea ice area 
in August, September and October has been about 25% smaller than during 1979–1988 (high confi dence) (Section 9.3.1.1). It is very 
likely that anthropogenic forcings mainly due to greenhouse gas increases have contributed substantially to Arctic sea ice loss since 
1979, explaining at least half of the observed long-term decrease in summer sea ice extent (Section 3.4.1.1).

Warming of the Arctic 

 Coldwaves    Floods

Potential impacts of a warming Arctic on Northern mid-latitude climate

Weakening of storm tracks
SummerWinter

Impacts on mid-latitudes

Weakening of polar vortex Shifting position of jet stream
66°

23°

66°

23°

66°

23°

66°

23°

Amplified and more stationary 
planetary waves 

Impacts on mid-latitudes

Impact of
Global Climate Change

Impact of
Natural Variability

Arctic amplification

Arctic Sea Ice Loss
66°

Polar vortex

Jet stream

Low confidence

FloodsDroughtsHeatwaves

Cross-Chapter Box  10.1, Figure  1 | Mechanisms of potential infl uences of recent and future Arctic warming on mid-latitude climate and 
variability. Mechanisms are different for winter and summer with different associated infl uences on mid-latitudes. The mechanisms involve changes in the polar 
vortex, storm tracks, planetary waves and jet stream.
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Cross-Chapter Box 10.1 (continued)

In this box, the possible influences of the Arctic warming on the lower latitudes are assessed. This linkage was also the topic of Box 3.2 
of the Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC; IPCC, 2019b). It is a topic that has been strongly 
debated (Ogawa et al., 2018; K. Wang et al., 2018). Separate hypotheses have emerged for winter and summer that describe possible 
mechanisms of how the Arctic can influence the weather and climate at lower latitudes. They involve changes in the polar vortex, 
storm tracks, jet stream, planetary waves, stratosphere-troposphere coupling, and eddy-mean flow interactions, thereby affecting the 
mid-latitude atmospheric circulation, and the frequency, intensity, duration, seasonality and spatial extent of extremes and climatic 
impact-drivers like cold spells, heatwaves, and floods (Cross-Chapter Box 10.1, Figure 1). However, we note that a decrease in the 
intensity of cold extremes has been observed in the Northern Hemisphere mid-latitudes in winter since 1950 (Section 11.3.2; van 
Oldenborgh et al., 2019). Since SROCC, new literature has appeared, and the mechanisms and their criticisms are assessed here as an 
update and extension to the SROCC box.

Mechanisms for a potential influence in winter
It has been proposed that Arctic amplification, by reducing the equator–pole temperature contrast, could result in a weaker and 
more meandering jet with Rossby waves of larger amplitude (Francis et al., 2017; Zhang and Luo, 2020). This may cause weather 
systems to travel eastward more slowly and thus, all other things being equal, Arctic amplification could lead to more persistent 
weather patterns over the mid-latitudes (Francis and Vavrus, 2012). The persistent large meandering flow may increase the likelihood 
of connected patterns of temperature and precipitation climatic impact-drivers because they frequently occur when atmospheric 
circulation patterns are persistent, which tends to occur with a strong meridional wind component. Another possible consequence of 
Arctic warming is on the NAO/AO that shows a negative trend over the 1990s and early 2000s (Robson et al., 2016; Iles and Hegerl, 
2017), and has been linked to the reduction of sea ice in the Barents and Kara seas, and the increase in Eurasian snow cover (Cohen 
et al., 2012; Nakamura et al., 2015; Yang et al., 2016). During negative NAO/AO the storm tracks shift equatorward and winters are 
predominantly more severe across northern Eurasia and the eastern United States, but relatively mild in the Arctic. This temperature 
pattern is sometimes referred to as the ‘warm Arctic–cold continents (WACC)’ pattern (Chen et al., 2018). However, L. Sun et al. (2016) 
noticed that the WACC is a manifestation of natural variability. Enhanced sea ice loss in the Barents-Kara Sea has also been related 
to a weakening of the stratospheric polar vortex (Kretschmer et al., 2020) and its increased variability (Kretschmer et al., 2016) that 
would induce a negative NAO/AO (Kim et al., 2014), the WACC pattern (Kim et al., 2014), and an increase in cold air outbreaks (CAO) 
in mid-latitudes (Kretschmer et al., 2018). Arctic warming might also increase Eurasian snow cover in autumn caused by the moister 
air that is advected into Eurasia from the Arctic with reduced sea ice cover (Cohen et al., 2014; Jaiser et al., 2016), although Peings 
(2019) suggests a possible influence of Ural blockings on both the autumn snow cover and the early winter polar stratosphere. The 
circulation changes over the Ural-Siberian region are also suggested to provide a link between Barents-Kara sea ice and the NAO 
(Santolaria-Otín et al., 2021).

Mechanisms for a potential influence in summer
As in winter, Arctic summer warming may result in a weakening of the westerly jet and mid-latitude storm tracks, as suggested for 
the recent period of Arctic warming (Coumou et al., 2015; Petrie et al., 2015; Chang et al., 2016). Additional proposed consequences 
are a southward shift of the jet (Butler et al., 2010) and a double jet structure associated with an increase of the land–ocean thermal 
gradient at the coastal boundary (Coumou et al., 2018). It is hypothesized that weaker jets, diminished meridional temperature 
contrast, and reduced baroclinicity might induce a larger amplitude in stationary wave response to stationary forcings (Zappa et al., 
2011; Petoukhov et al., 2013; Hoskins and Woollings, 2015; Coumou et al., 2018; Mann et al., 2018; R. Zhang et al., 2020), and 
also that a double jet structure would favour wave resonance (Kornhuber et al., 2017; Mann et al., 2017). Some studies suggest 
that this is corroborated by an observed increase of quasi-stationary waves (Di Capua and Coumou, 2016; Vavrus et  al., 2017; 
Coumou et al., 2018).

Assessment
The above proposed hypotheses are based on concepts of geophysical fluid dynamics and surface coupling and can, in principle, 
help explain the existence of a  link between the Arctic changes and the mid-latitudes with the potential to affect many impact 
sectors (Barnes and Screen, 2015). However, the validity of some dynamical underlying mechanisms, such as a reduced meridional 
temperature contrast inducing enhanced wave amplitude, has been questioned (Hassanzadeh et al., 2014; Hoskins and Woollings, 
2015). On the contrary, the reduced meridional temperature contrast has been related to reduced meridional temperature advection 
and thereby reduced winter temperature variability (Collow et al., 2019).

Studies that support the Arctic influence are mostly based on observational relationships between the Arctic temperature or sea ice 
extent and mid-latitude anomalies or extremes (Cohen et al., 2012; Francis and Vavrus, 2012, 2015; Budikova et al., 2017). They are 
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Cross-Chapter Box 10.1 (continued)

often criticized for the lack of statistical significance and the inability to disentangle cause and effect (Barnes, 2013; Barnes and 
Polvani, 2013; Screen and Simmonds, 2013; Barnes et al., 2014; Hassanzadeh et al., 2014; Barnes and Screen, 2015; Sorokina et al., 
2016; Douville et al., 2017; Gastineau et al., 2017; Blackport and Screen, 2020a; Oudar et al., 2020; Riboldi et al., 2020). The role of the 
Barents-Kara sea ice loss is challenged by Blackport et al. (2019) who find a minimal influence of reduced sea ice on severe mid-latitude 
winters, and by Warner et al. (2020) who suggest that the apparent winter NAO response to the Barents-Kara sea ice variability is 
mainly an artefact of the Aleutian Low internal variability and of the co-variability between sea ice and the Aleutian Low originating 
from tropical-extratropical teleconnections. Also Gong et  al. (2020) do not find a  link between Rossby wave propagation into the 
mid-latitudes and Arctic sea ice loss. Mori et al. (2019) argue that models underestimate the influence of the Barents-Kara Sea ice 
loss on the atmosphere, which is disputed by Screen and Blackport (2019). Other studies have stressed the importance of atmospheric 
variability as a driver of Arctic variability (Lee, 2014; Woods and Caballero, 2016; Praetorius et al., 2018; Olonscheck et al., 2019). 
Analysing observed key variables of mid-latitude climate for 1980–2020, Blackport and Screen (2020b) and Riboldi et al. (2020) argue 
that the Arctic influence on mid-latitudes is small compared to other aspects of climate variability, and that observed periods of strong 
correlation are an artefact of internal variability or intermittency (Kolstad and Screen, 2019; Siew et al., 2020; Warner et al., 2020).

An additional argument in the criticism is the inability of climate models to simulate a significant response to Arctic sea ice loss, larger 
than the natural variability (Screen et al., 2014; Walsh, 2014; H.W. Chen et al., 2016; Peings et al., 2017; Dai and Song, 2020), or that 
a very large multi-model ensemble is needed (Liang et al., 2020), although some studies find a significant response in summer, because 
then the internal variability is weaker (Petrie et al., 2015).

Finally, a  warmer Arctic climate can, without any additional changes in atmospheric dynamics, reduce cold extremes in winter 
due to advection of increasingly warmer air from the Arctic into the mid-latitudes (Screen, 2014; Ayarzagüena and Screen, 2016; 
Ayarzagüena et al., 2018).

Summarizing, different hypotheses have been developed about the influence of recent Arctic warming on the mid-latitudes in both 
winter and summer. Although some of the proposed mechanisms seem to be supported by various studies, the underlying mechanisms 
and relative strength compared to internal climate variability have been questioned. A recent review (Cohen et al., 2020) states that 
divergent conclusions between model and observational studies, and also between different model studies, continue to obfuscate 
a clear understanding of how Arctic warming is influencing mid-latitude weather. In this context, Shepherd (2016b) stresses the need 
for collaboration between scientists with different viewpoints for further understanding that could be achieved by carefully designed, 
multi-investigator, coordinated, multi-model simulations, data analyses and diagnostics (Overland et al., 2016). In agreement with 
Box 3.2 of SROCC, there is low to medium confidence in the exact role and quantitative effect of historical Arctic warming and sea ice 
loss on mid-latitude atmospheric variability.

Regarding future climate, it is important to note that mid-latitude variability is also affected by many drivers other than the Arctic 
changes and that those drivers as well as the linkages to mid-latitude variability might change in a warmer world. The AMV, PDV, 
ENSO (see Annex IV), upper tropospheric tropical heating, polar stratospheric vortex, and land surface processes associated with soil 
moisture (Miralles et al., 2014; Hauser et al., 2016) and snow cover (Nakamura et al., 2019; Sato and Nakamura, 2019) are a few 
examples. A considerable body of literature has shown that changes to the NAO/AO on seasonal and climate change time scales 
can be driven by variations in the wavelength and amplitude of Rossby waves, mainly of tropical origin (Fletcher and Kushner, 2011; 
Cattiaux and Cassou, 2013; Ding et al., 2014; Goss et al., 2016). The influence of future Arctic warming on mid-latitude circulation 
is difficult to disentangle from the effect of such a plethora of drivers (Blackport and Kushner, 2017; F. Li et al., 2018). One of the 
consequences of climate change is a poleward shift of the jet induced by the tropical warming (Barnes and Polvani, 2013), which is 
less obvious in winter especially over the North Atlantic (Peings et al., 2018; Oudar et al., 2020), and the increase of the meridional 
temperature gradient in the upper troposphere, which increases storm track activity (Barnes and Screen, 2015; Parding et al., 2019). 
Although climate models indicate that future Arctic warming and the associated equator–pole temperature gradient decrease could 
affect mid-latitude climate and variability (Haarsma et al., 2013a; McCusker et al., 2017; Zappa et al., 2018), and even the tropics and 
subtropics (Deser et al., 2015; Cvijanovic et al., 2017; K. Wang et al., 2018; England et al., 2020; Kennel and Yulaeva, 2020), they do 
not reveal a strong influence on extreme weather (Woollings et al., 2014).

In conclusion, there is low confidence in the relative contribution of Arctic warming to mid-latitude atmospheric changes compared to 
other drivers. Future climate change could affect mid-latitude variability in a number of ways that are still to be clarified, and which 
may also include the influence of Arctic warming. The linkages between the Arctic warming and the mid-latitude circulation are an 
example of contrasting lines of evidence that cannot yet be reconciled (Section 10.5).
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10.2 Using Observations for Constructing 
Regional Climate Information

Considerable challenges (and opportunities) remain in using 
observations for climate monitoring, for evaluating and improving 
climate models (Section  10.3.1), for constructing reanalyses and 
post-processing model outputs, and therefore, ultimately, for increasing 
our confidence in the attribution of past climate changes and in future 
climate projections at the regional scale. While an assessment of 
large-scale observations can be found in Chapter  2 (Cross-Chapter 
Box 2.2 and Section 2.3), this section discusses the specific aspects 
of the observations at regional scale and over the typological 
regions considered in the regional chapters (Section  10.1.5). This 
section focuses on land regions and does not consider the specific 
requirements of ocean observations (see Chapter 9 and SROCC (IPCC, 
2019b) for more information on this aspect).

10.2.1 Observation Types and Their 
Use at Regional Scale

10.2.1.1 In Situ and Remote-sensing Data

Surface or in situ observations can come from a variety of networks: 
climate reference networks, mesoscale weather and supersite 
observation networks, citizen science networks, among others, all 
with their strengths and weaknesses (McPherson, 2013; Thorne et al., 
2018). Supersite observatories are surface and atmospheric boundary 
layer observing networks that measure a large number of atmospheric 
and soil variables at least hourly over a  decade or more, ideally 
located in rural areas (Ackerman and Stokes, 2003; Haeffelin et al., 
2005; Xie et al., 2010; Chiriaco et al., 2018). Adequate calibration of 
instruments, quality control and homogenization are essential in these 
sites. They produce valuable data needed to diagnose processes and 
changes in regional and local climate. Many climate datasets have 
been developed from in situ station observations, at different spatial 
scales and temporal frequencies (Annex I: Observational Products). 
These include sub-daily (Dumitrescu et al., 2016; Blenkinsop et al., 
2017), daily (Chen et  al., 2008; Camera et  al., 2014; Journée 
et al., 2015; Funk et al., 2015; Aalto et al., 2016; Beck et al., 2017a, b; 
Schneider et al., 2017) or monthly time scales (Cuervo-Robayo et al., 
2014; Aryee et al., 2018). Sub-daily data is useful for estimating storm 
surge (Mori et al., 2014) or river discharge (Shrestha et al., 2015), 
daily data for carbon-stock dynamics (Haga et al., 2020) or tourism 
(Watanabe et  al., 2018), and monthly data for beach morphology 
(Bennett et al., 2019).

Satellite products provide a  valuable complement to in situ 
measurements, particularly over regions where in situ measurements 
are unavailable. They have been discussed in earlier chapters 
(e.g.,  Chapters 2 and 8) for large-scale assessment. Currently 
54 essential climate variables (ECVs; Bojinski et al., 2014) are defined 
by the Global Climate Observing System (GCOS) program, and passed 
on, for example, to NASA programmes through the Decadal Survey, to 
the Copernicus Climate Change Service of the European Union, to the 
ESA Climate Change Initiative ESA-CCI, as well as to the international 
collaborations with geostationary Earth orbit  (GEO) satellites. Their 

observations are valuable (high confidence) for regional applications 
since they provide multi-channel images at very high spatiotemporal 
resolutions, typically 16 channels, 1–2 km, every 10 to 15 minutes. 
The advanced geostationary satellites are: Himawari-8 and 9 (Kurihara 
et  al., 2016), GOES-East and GOES-17 (Goodman et  al., 2018), 
Meteosat-10 and 11 (Schmetz et al., 2002) and FY-4 (Cao et al., 2014). 
Geostationary satellite networks or constellations form an essential 
component of the Global Observation System (https://www.wmo.int/
pages/prog/www/OSY/GOS.html), providing measurements not only 
for various cloud properties and moisture but also for air quality, land 
and ocean surface conditions, and lightning.

Low Earth orbit (LEO) satellites, with orbits typically at 400–700 km, 
provide advanced measurements of the Earth’s surface. 
Sun-synchronous polar orbiters can also cover the polar regions, which 
cannot be observed with GEO satellites. Examples of LEO observations 
for land surface monitoring are NASA’s Landsat (Wulder et al., 2016), 
ESA’s Soil Moisture Ocean Salinity Earth Explorer (SMOS) mission (Kerr 
et al., 2012), the Sentinel missions of the Copernicus programme, and 
JAXA’s ALOS-2 (Ohki et al., 2019), providing high spatial resolution 
land surface images. Many kinds of data are accumulated for land use 
and land cover studies, targeting aspects like urban footprint (Florczyk 
et al., 2019), land-cover data (Global Land 30; CCI-LC: ESA, 2021; Chen 
and Chen, 2018), land surface temperature data (Landsat, Parastatidis 
et al., 2017), and surface albedo (Chrysoulakis et al., 2019).

Availability of active sensors on LEO satellites enables measurement 
of microphysical properties of aerosol, cloud and precipitation, which 
can advance regional climate studies and process evaluation studies 
to improve regional climate models (high confidence). An example is 
the polar-orbiting ‘afternoon-train’ satellite constellation (known as 
the A-train), incorporating Aqua, CALIPSO, Cloudsat, PARASOL, Glory 
and Aura satellites. Vertical profiling observations from Cloudsat 
(with a W-band cloud radar) and CALIPSO (with a  cloud lidar) led 
to considerable advances in measurements of cloud microphysics 
(Stephens et al., 2018). Precipitation and its extremes are essential 
concerns of regional climate studies. The GPM (65°N–65°S, 
2014–present) and the preceding TRMM (36.5°N–36.5°S, 
1997–2015) with Ku-/Ka-band precipitation radars have provided 
three-dimensional measurements of precipitation with about 5 km 
resolution and sub-daily sampling (Skofronick-Jackson et al., 2017). 
Their non-sun-synchronous observation works to cross-calibrate the 
constellation satellites to produce global high-resolution mapped 
products of precipitation, such as Integrated Multi-satellitE Retrievals 
for GPM (IMERG; Huffman et  al., 2007) and the Global Satellite 
Mapping of Precipitation (GSMaP; Kubota et al., 2007), with hourly 
sampling at about 11 km resolution. The CPC MORPHing technique 
(CMORPH) has provided 30 min interval global precipitation with 
about 8 km coverage since 2002 (Joyce et al., 2004). Precipitation 
estimations from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN) is a  sub-daily to daily rainfall product that 
covers 50°S to 50°N globally with 25 km resolution from 2000 to 
the present (Nguyen et al., 2019), and is used for semi-global-scale 
precipitation coverage (Benestad, 2018). TRMM/GPM observations 
have enabled estimates to be obtained for global four-dimensional 
convective heating (Shige et al., 2009; Tao et al., 2016; Takayabu and 
Tao, 2020).
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The use of these data has enhanced our understanding of precipitation 
processes at regional scale (high confidence), such as diurnal cycles 
in a large river valley (H. Chen et al., 2012), and in coastal (Hassim 
et al., 2016; Yokoi et al., 2017) and mountainous regions (Hirose et al., 
2017). Three-dimensional observations revealed the contrasts in 
regional characteristics of rainfall extremes in monsoon regions and 
continental dry regions (Sohn et  al., 2013; Hamada and Takayabu, 
2018). Satellite measurements are also used to evaluate climate 
model performance, as well as to develop new parametrizations. As 
a demonstration of the utility of these products in studying model bias, 
a subtropical cumulus congestus regime has been identified that may 
be implicated in the unrealistic double Inter-tropical Convergence 
Zone (ITCZ) found in some climate models (Takayabu et  al., 2010; 
Hirota et al., 2011, 2014). Another example is a parametrization of 
a land surface model that was developed specifically for a certain soil 
type. By assimilating satellite brightness temperature observations 
with their LDAS-UT scheme, Yang et al. (2007) successfully optimized 
a land surface model for the Tibetan Plateau.

For application at a  regional scale, it is important to consider 
variations in the spatiotemporal resolution of the satellite products. 
A simple concatenation of data in time can show artificial jumps that 
are artefacts of changes in calibration and processing algorithms, or 
related to satellite orbital stability or changing performance of the 
instruments (Wielicki et al., 2013; Barrett et al., 2014). Recalibration and 
cross-calibration are then prerequisites for obtaining homogeneous 
time series of measurements across different or successive satellites 
that can then be used to produce long series that are valid as climate 
data records (Kanemaru et al., 2017; Merchant et al., 2017). Scale 
representativeness is also an issue in utilizing soil observations 
(Taylor et  al., 2012, 2013). Although a  variety of technologies to 
measure soil moisture at the point scale exist (Dobriyal et al., 2012), 
its spatial representativeness is less than 1 m2 (Ochsner et al., 2013; 
L. Liu et al., 2016). Therefore, to be able to use in situ soil moisture for 
validating coarser-scale data from satellites or models, networks of 
point-scale measurements are used (Crow et al., 2015; Polcher et al., 
2016). Smaller networks are typically of the size of a single climate 
model gridcell or a  satellite pixel and are suitable for monitoring 
watersheds, while small numbers of those representing larger areas 
(>100 km2) are emerging (Ochsner et al., 2013).

10.2.1.2 Derived Products

Derived observational products are created from raw datasets 
collected from surface stations, remote-sensing instruments, or 
research vessels, which are converted into meaningful physical 
quantities by applying a suitable measurement theory, using either 
statistical interpolation techniques (Section  10.2.2.4) or numerical 
atmospheric and land surface models (Bosilovich et al., 2015).

Most global observational datasets are available at coarse temporal 
and spatial resolution, and do not include all available station data 
from a particular region, due to data availability problems. Therefore, 
efforts have been made to develop regional or country-scale datasets 
(Annex I). Radar and satellite remote sensing are resources that can 
provide a valuable complement to direct measurements at regional 
scale. Examples for precipitation have been described already, some 

of which have been released to the community (Dinku et al., 2014; 
Oyler et  al., 2015; Manz et  al., 2016; Dietzsch et  al., 2017; Yang 
et al., 2017; Bližňák et al., 2018; Krähenmann et al., 2018; Panziera 
et al., 2018; Shen et al., 2018). However, some of these datasets are 
limited by their short record, varying between one (Shen et al., 2018) 
and 64 years (Oyler et al., 2015).

Reanalysis products are numerical climate simulations that use 
data assimilation to incorporate as many irregular observations as 
possible. These products encompass many physical and dynamical 
processes. They generate a  coherent estimate of the state of the 
climate system on uniform grids either at global (Chaudhuri et al., 
2013; Balsamo et al., 2015), regional (Chaney et al., 2014; Maidment 
et al., 2014; Dahlgren et al., 2016; Langodan et al., 2017; Attada et al., 
2018; Mahmood et  al., 2018) or country scales (Rostkier-Edelstein 
et al., 2014; Krähenmann et al., 2018; Mahmood et al., 2018).

Reanalyses incorporate an increasing volume of observations from 
a growing number of sources over time, which sometimes presents 
a  difficulty for trend analysis. However, regional reanalyses are 
valuable for regional climate assessments, since they can employ 
high-resolution model simulations due to their limited spatial domain. 
Their accuracy is also better than global reanalyses since they are 
often developed over regions with a high density of observational 
data (sometimes not freely available for all regions) to be assimilated 
into the model (e.g., Yamada et al., 2012). Regional reanalyses can 
assimilate locally dense and high-frequency observations, such as 
from local observation networks (Mahmood et  al., 2018; Su et  al., 
2019) and radar precipitation (Wahl et al., 2017) in addition to the 
observations assimilated by global reanalyses. In some regional 
reanalyses, satellite-derived high-resolution sea ice (Bromwich 
et al., 2016, 2018) and sea surface temperature (Su et al., 2019) are 
also applied as lower boundary conditions. The periods of regional 
reanalyses are limited by the availability of the observations for 
assimilation and by the global reanalyses needed as lateral boundary 
conditions. Most regional reanalyses cover the past 10 to 30 years. 
There are also regional reanalysis activities that use conventional 
observations only, which produce consistent datasets over 60 years 
to capture precipitation trends, extremes and changes (Fukui et al., 
2018). Existing regional reanalyses cover North America (Mesinger 
et  al., 2006), Europe (Dahlgren et  al., 2016; Jermey and Renshaw, 
2016; Kaspar et al., 2020), the Arctic (Bromwich et al., 2016, 2018), 
South Asia (Mahmood et al., 2018), and Australia (Su et al., 2019). 
A project for regional reanalysis covering Japan has also started (Fukui 
et al., 2018), where grid spacing is between 5 and 32 km, although 
cumulus parametrizations are still needed to compute sub-grid 
scale cumulus convection. Recently, reanalyses using convection-
permitting regional models have been published (e.g., Wahl et  al., 
2017, for central Europe).

The data assimilation schemes used in regional reanalyses are often 
relatively simple methods, specifically nudging (Kaspar et al., 2020) 
and 3DVAR (Mesinger et al., 2006; Bromwich et al., 2016; Dahlgren 
et al., 2016), rather than the more complex schemes implemented 
in state-of-the-art global reanalysis systems. This is partly due 
to limitations of computational resources. Recently, a  number of 
regional reanalyses using more sophisticated methods, such as 
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4DVAR and Ensemble Kalman filter, have been published (Jermey and 
Renshaw, 2016; Fukui et al., 2018; Mahmood et al., 2018; Su et al., 
2019). The regional reanalyses also incorporate uncertainties 
due to deficiencies of the models, data assimilation schemes and 
observations. To estimate uncertainties, some regional reanalyses 
apply data assimilation using ensemble forecasts (Bach et al., 2016). 
Another approach compares multiple regional reanalyses produced 
with different systems covering the same domain, which represents 
the uncertainties better than single reanalysis systems with ensemble 
data assimilation schemes (Kaiser-Weiss et al., 2019).

The regional reanalyses represent the frequencies of extremes and 
the distributions of precipitation, surface air temperature, and surface 
wind better than global reanalyses (high confidence). This is due to the 
use of high-resolution regional climate models (RCMs), as indicated 
by different regional climate modelling studies (Mesinger et al., 2006; 
Bollmeyer et al., 2015; Bromwich et al., 2016, 2018; Dahlgren et al., 
2016; Jermey and Renshaw, 2016; Fukui et al., 2018; Su et al., 2019). 
Regional reanalyses, however, retain uncertainties due to deficiencies 
in the physical parametrization used in RCMs and by the use of 
relatively simple data assimilation algorithms (Bromwich et al., 2016; 
Jermey and Renshaw, 2016; Su et  al., 2019). Regional reanalyses 
can provide estimates that are more consistent with observations 
than dynamical downscaling approaches, due to the assimilation 
of additional local observations (high confidence) (Bollmeyer et al., 
2015; Fukui et al., 2018).

10.2.2 Challenges for Regional Climate 
Change Assessment

10.2.2.1 Quality Control

The usefulness of any observational dataset is conditioned by 
the availability and outcome of a  quality control (QC) process. 
The objective of the QC is to verify that data are representative 
of the measured variable and to what degree the value could be 
contaminated by unrelated or conflicting factors (WMO, 2017a). 
Data quality assessment is key for ensuring that the data are credible 
and to establish trusted relationships between the data provider and 
the users (Nightingale et al., 2019). QC is performed for all relevant 
global climate datasets (e.g., Menne et al., 2018). For instance, QC 
informs users that old reanalysis datasets can be inconsistent in the 
long term because they assimilated inhomogeneous observations 
over the reanalyses period (Kobayashi et al., 2015). As a consequence, 
the evaluation against independent observations suggests that 
reanalyses should not be automatically regarded as climate-
quality products for monitoring long-term trends at the regional 
level (Manzanas et al., 2014; Torralba et al., 2017). QC needs to be 
systematically carried out by the institutions responsible for handling 
the data (e.g., Cao et al., 2016b).

The QC procedure depends strongly on the specific nature of the 
dataset. It focuses on aspects such as the correct identification of 
sensor, time and location, detection of unfeasible or inconsistent 
data, error estimation, assessment of the adequacy of the 
uncertainty information and the adequacy of the documentation 

(e.g., Heaney et al., 2016). QC principles also apply to model data 
(Tapiador et al., 2017). An important piece of information provided 
is the representativeness error (Section  10.2.1.1; Gervais et  al., 
2014). When problems in the data representativeness are identified, 
observational datasets are provided with a quality mask (Contractor 
et al., 2020), or the problematic data are either removed or corrected 
(Ashcroft et al., 2018). These are factors often taken into account in 
constructing regional climate information (Kotlarski et al., 2019).

Quality-controlled data are now produced widely at the regional level, 
as in the case of sub-daily precipitation records in the United Kingdom 
(Blenkinsop et al., 2017) and the USA (Nelson et al., 2016). However, 
many more datasets and variables lack the same level of scrutiny 
(Alexander, 2016). Quality-controlled, high-resolution observational 
datasets are especially needed at regional and local scales to assess 
models as their resolution increases (Di Luca et al., 2016; Zittis and 
Hadjinicolaou, 2017), although the awareness and appropriate use 
of the QC information is challenging (Tapiador et  al., 2017) when 
generating regional climate information (high confidence).

10.2.2.2 Homogenization

Homogenization aims to make data spatially and temporally 
‘homogeneous’. Changes in a  homogeneous time series are solely 
due to large-scale climatic changes (whether forced or due to internal 
variability). Station data are influenced by factors that act at regional 
scales, from the mesoscale and local scale down to the microscale 
(WMO, 2019). Station time series contain inhomogeneities such as 
artificial jumps or trends, which hamper assessments of regional long-
term trends. Typical reasons for this are the urbanization of a station’s 
surroundings, which can lead to warming (Hamdi, 2010; Hansen et al., 
2010; Adachi et al., 2012; Jones, 2016; Y. Sun et al., 2016), or relocations 
outside of the urban area, which could lead to cooling (Tuomenvirta, 
2001; Yan et  al., 2010; Xu et  al., 2013; Dienst et  al., 2017, 2019). 
Another potential source of inhomogeneity is a change in measurement 
methods that affect most instruments of an observational network 
over a limited time span, such as the transition to Stevenson screens 
(Parker, 1994; Böhm et al., 2010; Brunet et al., 2011; Auchmann and 
Brönnimann, 2012) or to automatic weather stations (WMO, 2017b).

The above examples have been selected as they are present in 
many stations and without going through homogenization they 
could potentially have influenced global land warming estimates 
(Section 1.5.1). Single-break inhomogeneities tend to have a magnitude 
comparable to global climate change (Tuomenvirta, 2001; Venema 
et al., 2012) and are thus important for analyses of small regions. Also 
station records in national networks often have similar changes, making 
them important for national climate change estimates, but many of 
these influences are averaged out at the global scale (Jones, 2016).

The main approach to reduce the influence of inhomogeneities in 
station observations is statistical homogenization by comparing the 
data from a candidate station with those of neighbouring reference 
stations in conjunction with the use of metadata (Trewin, 2010). 
This is a  challenging task because both reference and candidate 
records normally have multiple inhomogeneities. Three challenges 
should be considered. First, most of our understanding of statistical 
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homogenization stems from the homogenization of temperature 
observations from dense networks. Recent studies suggest that 
our ability to remove biases quickly diminishes for sparse networks 
(Gubler et al., 2017; Lindau and Venema, 2018a). This affects early 
instrumental data and observations that are not strongly correlated 
between stations, such as wind and humidity (Chimani et al., 2018).

Second, in addition to systematic errors, homogenized data also 
suffer from random errors, introduced by the homogenization process. 
These errors are largest at the station level but are also present in 
network-averaged signals (Lindau and Venema, 2018b). These errors 
are determined by the break time series, as well as the noise series 
and the performance of the homogenization method, are spatially 
correlated, and have an impact on activities such as interpolation and 
statistical post-processing of climate simulations (Section 10.2.3.1). 
Third, the above discussion pertains to the homogenization of 
monthly and annual means. Homogenization of daily variability 
around the mean is more difficult. For daily data, specific correction 
methods are used (Della-Marta and Wanner, 2006; Mestre et  al., 
2011; Trewin, 2013; C. Zhou et al., 2021) that are able to improve the 
homogeneity of test cases, although recent independent validation 
efforts were not able to show much improvement (Chimani et  al., 
2018). The difference with homogenization methods of monthly 
and annual means may stem from assumptions on the nature of 
inhomogeneities for daily data, which are not yet well understood 
(Chimani et al., 2018).

It is virtually certain that statistical homogenization methods reduce the 
uncertainties of long-term estimates. Considering a decomposition of 
the long-term warming error into a bias and a noise uncertainty around 
the bias, the (trend) bias especially will be reduced, but also most of 
the noise uncertainty. This conclusion is based on our understanding 
of the causes of inhomogeneities and their statistical nature combined 
with the design principles of statistical homogenization methods, as 
well as on analytical (Lindau and Venema, 2018b), numerical (Venema 
et  al., 2012; Williams et  al., 2012) and empirical validation studies 
(Hausfather et al., 2016; Gubler et al., 2017; Killick et al., 2020).

The above section is about the homogenization of land stations. 
Satellite data has its own issues and methods for homogenization 
(Brinckmann et al., 2013; Huang et al., 2015; Brogniez et al., 2016). 
The homogenization of radiosonde data and land station data use 
similar methods (Haimberger et al., 2012; Jovanovic et al., 2017).

10.2.2.3 Data Scarcity

Data scarcity arises largely due to the lack of maintenance of 
observing stations, inaccessibility of the data held in national 
networks, and uneven spatial distribution of stations that lead to 
a low density in many regions. This is particularly problematic when 
trying to assess regional climate change, for which a  high density 
of observational data is desirable. Although in several regions 
numerous stations provide (monthly) data covering more than 
100 years for both temperature and precipitation (GCOS, 2015), large 
areas of the world remain sparsely covered. The post-1990 decline in 
the total number of stations contributing to the Global Precipitation 
Climatology Centre (GPCC) monthly product may be related to delays 

in data acquisition and not paucity of data (GCOS, 2015). This is 
because GPCC is the result of a  single time scale, single Essential 
Climate Variable (ECV) and single data collection centre. There is 
no similar drop-off of the rainfall reports in the Global Historical 
Climatology Network Daily database (GHCNd, Menne et al., 2012) 
or the Integrated Surface Database (ISD) at the sub-daily time scale.

Kidd et  al. (2017) made some assumptions about GPCC-available 
gauges and indicated that only 1.6% of Earth’s surface lies within 
10  km of a  rain gauge, and many areas of the world are beyond 
100  km from the nearest rain gauge. Data scarcity is especially 
critical over Africa (Nikulin et  al., 2012; Dike et  al., 2018) but the 
apparent data scarcity could be due to reasons other than actual 
paucity of data, as stated earlier. For instance, over South Africa, 
the number of weather stations collecting daily temperature used 
in the fourth version of the Climatic Research Unit Temperature 
dataset (CRUTEM4, Osborn and Jones, 2014) has significantly 
declined since 1980 (Archer et  al., 2018). Although CRUTEM4 has 
now been replaced by CRUTEM5 (Osborn et  al., 2021) it has yet 
to take advantage of the significant international efforts to curate 
and make available improved global holdings (Rennie et al., 2014) 
which increased the global available station count for monthly mean 
temperatures. This includes additional stations from many African 
countries. The apparent decline in stations since the 1980s could also 
be due to countries not contributing their data to the SYNOP/CLIMAT 
networks for reasons other than having non-operational stations.

Even in Europe, precipitation station density in the widely used E-OBS 
gridded dataset varies largely in space and time across regions (Prein 
and Gobiet, 2017). This variability is partly due to the reluctance of 
some data owners to share their data with an international effort. 
Regardless of the reason, low station density is a major source of 
uncertainty (Isotta et al., 2015). Kirchengast et al. (2014) and O and 
Foelsche (2019) found that at least 2 to 5 (12) stations are required for 
capturing the area-averaged precipitation amount of heavy summer 
precipitation events on a daily (hourly) basis with a normalized root-
mean-square error of less than 20%. Like the E-OBS dataset, gridded 
daily temperature and precipitation datasets are being developed 
for other regions of the world. Examples include south-east Asia 
(SA-OBS, Van den Besselaar et al., 2017), and Latin America and West 
Africa (ICA&D, Van den Besselaar et al., 2015). Despite the uneven 
distribution of stations in space and time, the value in these initiatives 
is illustrated by the large number of studies in which the data product 
is used. This is the case, for instance, in the work of Condom et al. 
(2020) over the Andes, a  region with prominent data scarcity, and 
the African Monsoon Multidisciplinary Analyses project over West 
Africa (AMMA; e.g.,  Lebel and Ali, 2009). There have been efforts 
to reduce data scarcity through initiatives such as the International 
Surface Temperature Initiative (ISTI, Thorne et al., 2011), GHCND, and 
the Expanding Met Office Hadley Centre ISD with quality-controlled, 
sub-daily station data from 1931 (HadISD, Dunn et al., 2016).

Data scarcity arising from changing coverage in observation station 
networks results in substantial problems for climate monitoring 
(e.g.,  trend analysis of extreme events requires high temporal and 
spatial resolutions) or model evaluation (Section 10.3.3.1). It is virtually 
certain that the scarcity and decline of observational availability in 
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some regions (but not necessarily globally), increase the uncertainty of 
the long-term global temperature and precipitation estimates. As an 
example, Lin and Huybers (2019) found that changes in the number 
of rain gauges after 1975 resulted in spurious trends in extremes of 
Indian rainfall in a 0.25° gridded dataset spanning the 20th century. 
In fact, the number of stations used to construct the gridded dataset 
dropped by half after 1990, leading to inhomogeneity and spurious 
trends (Section 10.6.3). Over the southern part of the Mediterranean, 
which is an area sparsely covered by meteorological stations, data 
scarcity can lead to large uncertainties in the different gridded datasets 
and strongly affect model evaluation (Section  10.6.4). Satellite 
observations can compensate the ground-based precipitation radar 
data sparsity to prevent an oversight of significant climate change 
signals (Yokoyama et al., 2019).

There are techniques for estimating and reconstructing missing 
data. The methods depend on the variable of interest, the temporal 
resolution (e.g., daily or monthly), and the type of climate (wet or dry), 
among others. There has been very little evaluation of the performance 
of classical and data mining methods (e.g., Sattari et al., 2017). The 
classical methods include the arithmetic mean, inverse distance 
weighting method, multiple regression analysis, multiple imputation, 
and single best estimator, while the data-mining methods include 
multilayer perceptron artificial neural network, support vector machine, 
adaptive neuro-fuzzy inference system, gene expression programming 
method, and K-nearest neighbour. Crowd-sourced data (individuals 
contribute their own data points to create a dataset for others to use) 
could play a role in minimizing data scarcity (Section 10.2.4).

10.2.2.4 Gridding

Derived gridded datasets require merging data from different sources of 
observations and/or reanalysis data on a regular grid (Section 10.2.1.2; 
e.g., Xie and Arkin, 1997). However, in situ observations are distributed 
irregularly, especially over sparsely populated areas. This leads to 
an interpolation challenge. Gridded products of climate variables, 
including temperature and precipitation, are strongly affected (high 
confidence) by the interpolation method over complex orography and 
data scarce regions (Hofstra et al., 2008; Herrera et al., 2016).

There are two main approaches to produce gridded datasets: (i) based 
on in situ observations only, and (ii) combining in situ observations 
with remote-sensing data and/or reanalysis data. The first approach 
has been widely employed in regions with high station density using 
interpolation techniques, such as inverse-distance weighting, optimal 
interpolation, and kriging (Chen et al., 2008; Haylock et al., 2008; Frei, 
2014; Isotta et al., 2014; Masson and Frei, 2014; Hiebl and Frei, 2016; 
Nguyen-Xuan et  al., 2016). The second approach has been mainly 
applied in data-sparse regions with low station density, using simple 
bias adjustment, quantile mapping, and kriging techniques with in 
situ observations, remote-sensing and reanalysis data (Cheema and 
Bastiaanssen, 2012; Erdin et al., 2012; Dinku et al., 2014; Abera et al., 
2016; Krähenmann et al., 2018).

Gridding of station data is affected by uncertainties stemming 
from measurement errors, inhomogeneities, the distribution of the 
underlying stations and the interpolation error, with station density 

being the dominant factor (Herrera et al., 2019). Uncertainty due to 
interpolation is typically small for temperature but substantial for 
precipitation and its derivatives, such as drought indices (Chubb et al., 
2015; Hellwig et al., 2018). The largest uncertainties typically occur 
in sparsely sampled mountain areas (Section 10.2.2.5). Interpolation 
generally give rise to smoothing effects, such as low variability of 
the derived dataset with respect to the in situ observations (Chen 
et al., 2019). As a result, the effective resolution of gridded data is 
typically much lower than its nominal resolution. For instance, a 5 km 
gridded precipitation dataset for the European Alps has an effective 
resolution of about 10 to 25 km (Isotta et al., 2014). In an example 
for precipitation in Spain, the effective resolution converged to the 
nominal resolution only when at least 6 to 7 stations were inside 
the gridcell (Herrera et al., 2019). To account for the smoothing errors, 
new stochastic ensemble observation datasets have been introduced 
(Von Clarmann, 2014).

10.2.2.5 Observations in Mountain Areas

Spatiotemporal variability of meteorological parameters observed over 
mountainous areas is often large, indicating strong control exerted by 
local topography on meteorological parameters (Gultepe et al., 2014). 
Difficult access, harsh climatic conditions as well as instrumental 
issues make meteorological measurements extremely challenging 
at higher elevations (Azam et  al., 2018; Beniston et  al., 2018). 
Measurements of wind speed, temperature, relative humidity and 
radiative fluxes are critical for climate model evaluation, but difficult 
to handle due to their point-scale representativeness and small-scale 
spatiotemporal variability over mountainous terrain, and often need 
adjustment (Gultepe, 2015). High-altitude (>3000 metres) permanent 
meteorological stations are limited and current knowledge is mainly 
based on valley-bottom or low-elevation meteorological stations (Qin 
et  al., 2009; Lawrimore et  al., 2011; Gultepe, 2015; Condom et  al., 
2020), which, generally do not represent the higher elevation climate 
(Immerzeel et al., 2015; Shea et al., 2015).

Measuring precipitation amounts, especially of solid precipitation, in 
mountainous areas is particularly challenging due to the presence 
of orographic barriers, strong vertical and horizontal precipitation 
rate variability, and the difficulty in finding representative sites for 
precipitation measurements (Barry, 2012). However, the precipitation 
amounts can be indirectly estimated by the observed point mass 
balances at glacier accumulation areas representing net snow 
accumulation (Haimberger et  al., 2012; Immerzeel et  al., 2015; 
Sakai et al., 2015; Azam et al., 2018). There is very high confidence 
that precipitation measurements, especially solid precipitation, in 
mountainous areas are strongly affected by the gauge location and 
setup. Precipitation measurements are also affected by the type of 
measurement method, presence/absence of shielding, presence/
absence of a heating system and operating meteorological conditions 
(Nitu et al., 2018). Solid precipitation measurements may have errors 
ranging from 20% to 50%, largely due to under-catch in windy, icing 
and riming conditions (Rasmussen et al., 2012), and therefore require 
corrections by applying transfer functions developed mainly from 
collected wind speed and temperature data (Kochendorfer et  al., 
2017). The latest Solid Precipitation Intercomparison Experiment 
(SPICE) report recommends measurements of wind speed, wind 
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direction and temperature as the minimum standard ancillary data 
for solid precipitation monitoring (Nitu et al., 2018).

Recent advances in remote-sensing methods provide an alternative, 
but they also have limitations over mountainous areas. Different 
versions of the Tropical Rainfall Measuring Mission (TRMM) 
products were found to perform differently over mountainous 
areas (Zulkafli et  al., 2014). Orographic heavy rainfall associated 
with Typhoon Morakot in 2009 was severely underestimated in all 
microwave products including TRMM 3B42 (Shige et al., 2013). The 
underestimation has been mitigated in the Global Satellite Mapping 
of Precipitation (GSMaP) product by considering the orographic 
effects (Shige et al., 2013). Studies have suggested a high accuracy of 
passive optical satellite (e.g., MODIS, Landsat) snow products under 
clear skies when compared with the field observations. However, 
cloud masking and sub-pixel cloud heterogeneity in these snow-cover 
products considerably restrict their applications (Kahn et al., 2011; 
Brun et al., 2015; Tang et al., 2017; Stillinger et al., 2019). Gridded 
datasets (e.g.,  CRU, GPCC Full Data Product, GPCC Monitoring 
Product, ERA-Interim, ERA5, ERA5-land, MERRA-2, MERRA-2 bias 
adjusted, PERSIANN-CDR) are of paramount importance, yet they 
often lack enough in situ observations to improve the temporal 
and spatial distribution of meteorological parameters over complex 
mountain terrain (Zandler et al., 2019).

10.2.2.6 Structural Uncertainty

Beyond climate monitoring, the quality and availability of multiple 
observational reference datasets play a  central role in model 
evaluation. In fact, when using observations for model evaluation, 
there are multiple examples where inter-observational uncertainty is 
as large as the inter-model variability. This has been shown for various 
aspects of the Indian monsoon (Section 10.6.3; Collins et al., 2013a) 
and for precipitation uncertainties over Africa (Section 10.6.4; Nikulin 
et al., 2012; Sylla et al., 2013; Dosio et al., 2015; Bador et al., 2020) 
and Europe (Prein and Gobiet, 2017). Kotlarski et al. (2019) compared 
three high-resolution observational temperature and precipitation 
datasets (E-OBS, a compilation of national/regional high-resolution 
gridded datasets, and the EURO4M-MESAN 0.22° reanalysis based on 
a high-resolution limited-area model) with five EURO-CORDEX RCMs 
driven by ERA-Interim. Generally, the differences between RCMs are 
larger than those between observation datasets, but for individual 
regions and performance metrics, observational uncertainty can 
dominate. They also showed that the choice of reference dataset 
can have an influence on the RCM performance score. Over the high 
mountain Asia region and East Asia, differences among gridded 
precipitation datasets can generate significant uncertainties in 
deriving precipitation characteristics (J. Kim et al., 2015; Kim and Park, 
2016; Guo et al., 2017). Over western North America, observational 
uncertainty induces differences in multi-decadal precipitation 
trends (Lehner et al., 2018). Taking a very different perspective, the 
agreement between model simulations may be used to estimate 
the uncertainty and quality of observations (Massonnet et al., 2016). 
There is high confidence that an ensemble of multiple observational 
references at a regional scale is fundamental for model performance 
assessment. The uncertainties vary according to region, season, and 
statistical properties (Cross-Chapter Box 10.2).

10.2.3 Other Uses of Observations at Regional Scale

10.2.3.1 Observations for Calibrating Statistical Methods

Statistical downscaling, bias adjustment and weather generators are 
post-processing methods used to derive climate information from 
climate simulations. They all require observational data for calibration 
as well as evaluation (Section  10.3.3.1). Typically, the so-called 
perfect prognosis methods use quasi-observations for the predictors 
(i.e.,  reanalyses) and actual observations for the predictands (the 
surface variables of interest). By contrast, bias adjustment methods 
use observations only for the predictands. Weather generators typically 
require only observed predictands, although some are conditioned 
on observed predictors as well. Very often these methods are based 
on daily data, because of user needs, but also because of the limited 
availability of sub-daily observations and the limited ability of climate 
models to realistically simulate sub-daily weather (Iizumi et  al., 
2012). Some methods are calibrated on the monthly scale, but some 
of the generated time series are then further disaggregated to the 
daily scale (e.g., Thober et al., 2014). A few methods, mainly weather 
generators, represent sub-daily weather (Mezghani and Hingray, 
2009; Kaczmarska et al., 2014). Many methods simulate temperature 
and precipitation only, although some also represent wind, radiation 
and other variables. The limited availability of high quality and long 
observational records typically restricts these applications to a  few 
cases (Verfaillie et al., 2017; Pryor and Hahmann, 2019). Overall, there 
is high confidence that limited availability of station observations, 
including variables beyond temperature and precipitation as well as 
sub-daily data, limit the use of statistical modelling of regional climate.

All the limitations and challenges of observational data discussed 
in Section 10.2.2 also apply to its use for post-processing of climate 
model data. High quality and long observational data series are 
particularly relevant to quantify uncertainties. Different reanalyses 
present significant discrepancies when used as key predictor variables 
at the daily scale and may even affect the downscaled climate change 
signal (Brands et  al., 2012; Dayon et  al., 2015; Manzanas et  al., 
2015; Horton and Brönnimann, 2019). There is high confidence that 
reanalysis uncertainties limit the quality of statistical downscaling in 
some regions, although no assessment has been made for the most 
recent reanalysis products.

An important issue for bias adjustment is the correct representation 
of the required spatial scale. Ideally, bias adjustment is calibrated 
against area-averaged data of the same spatial scale as the climate 
model output. Hence, high-quality observed gridded datasets with an 
effective resolution close to the nominal model resolution are required. 
Driven by the need to also generate regional-scale information in 
station-sparse regions, researchers have considered derived datasets 
that blend in situ and remote-sensing data to produce high-resolution 
observations to be used as predictands (Sections 10.2.1.2 and 10.2.2.4; 
Haiden et al., 2011; Wilby and Yu, 2013).

10.2.3.2 Observation for Paleoclimate Data Assimilation

Following some early concept studies, the first practical applications of 
paleoclimate data assimilation over past centuries used only selected 
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data to reconstruct past climate changes for analysis of a  specifi c 
process or case (Widmann et  al., 2010). Recently, assimilation of 
multiple series from various data sources, including tree rings, ice 
cores, lake cores, corals, and bivalves, has allowed production of 
reconstructions that can be widely shared and applied to multiple 
purposes, as with modern reanalyses (Hakim et  al., 2016; Franke 
et al., 2017; St eiger et al., 2018; Tardif et al., 2019). Most of these 
paleo-reanalyses are global but there are products using regional 
models or targeted at specifi c regions such as Europe, East Africa and 
the Indian Ocean (Fallah et al., 2018; Klein and Goosse, 2018).

Paleo-reanalyses are enabling a new range of applications and have 
already provided useful information on seasonal-to-multi-decadal 
climate variability over past millennia. They are useful tools to study 
the co-variance between variables at interannual-to-centennial time 
scales and at regional to global spatial scales. In particular, they have 
highlighted the processes that can be responsible for changes in 
continental hydrology at multi-decadal time scales (Franke et al., 2017; 
Klein and Goosse, 2018; St eiger et al., 2018). Paleo-reanalyses have 
confi rmed a large contribution of internal variability in past changes 
at regional scale during the pre-industrial period, superimposed on 
a weak common signal due to forcing changes (Goosse et al., 2012) 
and the absence of a globally  coherent warm period in the common 
era before the recent warming (Neukom et al., 2019). Reconstructions 
of the atmospheric state obtained in the reanalysis also provide robust 
evidence of a  local enhancement of warming or cooling conditions 
due to changes in atmospheric circulation, such as for the warm 
conditions in some European regions around 950–1250 CE, the cooling 
observed in 1809/1810, or the cold and rainy 1816 summer in Europe 
(Cross-Chapter Box 4.1; Goosse et al., 2012; Hakim et al., 2016; Franke 
et al., 2017; Schurer et al., 2019).

10.2.4 Outlook for Improving Observational 
Data for Regional Climates

An encouraging development for understanding climate variations 
over the past 250 years or so at the global and regional scale lies 
in the fi eld of data rescue, in which hitherto hidden archives of 
meteorological data are brought to the forefront (Sections 1.5.1.1 
and 2.5). Surface observations from data rescue projects may then 
be assimilated to derive long-term high-resolution gridded surface 
regional reanalysis (Devers et al., 2020). Global extended reanalyses 
such as 20CR (Compo et al., 2011), ERA-20C (Poli et al., 2016a, b) 
or CERA-20C (Laloyaux et  al., 2018) may be further downscaled 
to quantify the variability of past climate at the regional scale 
(Caillouet et al., 2016, 2019).

One of the main scientifi c challenges related to high-resolution 
regional climate modelling is dealing with the representation of 
fi ne-scale processes (e.g., Yano et al., 2018) in observational datasets. 
Additionally, reliable observation networks following WMO standards 
have a  very sparse geographical representation. Hence, regional 
climate models have started to use high-resolution data combined 
with crowdsourced observations (Zheng et al., 2018). Recent efforts 
have led to the production of homogeneously processed long-term 
datasets for regional climate model evaluation (Goudenhoofdt and 

Delobbe, 2016; Humphrey et  al., 2017; Yang and Ng, 2019). While 
they are far less reliable and accurate than professional observations, 
crowdsourced data are abundantly available and can give spatial 
representations at very high resolution. This technological trend 
could prove very useful (high confi dence), and the regional climate 
community is making efforts to understand the extent to which these 
data sources can be exploited, at least as a complement to traditional 
datasets (Overeem et al., 2013; Meier et al., 2017; Uijlenhoet et al., 
2018; de Vos et al., 2019; Langendijk et al., 2019b).

10.3 Using Models for Constructing 
Regional Climate Information

Much of the information available on future regional climate arises 
from studies based on climate model simulations (Chapters 3, 4 
and 8). In this section, different types of models (Section  10.3.1) 
and model experiments (Section  10.3.2) for generating regional 
climate information are discussed, followed by an assessment of 
the performance, added value, and fi tness-for-purpose of different 
model types (Section 10.3.3). The focus is on the representation of 
large- to local-scale phenomena and processes relevant for regional 
climate. Finally, uncertainties of regional climate projections and 
methodologies to manage these are assessed (Section 10.3.4).

10.3.1 Model Types

Regional climate change information may be derived from a hierarchy 
of different model types covering a  wide range of spatial scales 
and processes (Figure  10.5). The application of any model relies 
on assumptions, depending on the specifi c model as well as the 
application. Table 10.1 gives an overview of the generic assumptions 
of the different model types discussed here for generating regional 
climate information. The violation of these assumptions will affect 
the model performance, which is discussed in Section 10.3.3.

Global models (ESMs, AOGCMs, AGCMs)
Standard resolution High resolutionHigh resolution

Dynamical downscaling
High resolution

RCMs
High resolution

RCMs
High resolution

Convection
permitting RCMspermitting RCMs

Statistical approaches
Bias adjustmentBias adjustment Perfect prognosis Weather generators

Target variable at target resolution

Figure 10.5 | Typical model types and chains used in modelling regional 
climate. The dashed lines indicate model chains that might prove useful but have 
not or only rarely been used. Hybrid approaches combining the model types shown 
have been developed.
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10.3.1.1 Global Models, Including High-resolution 
and Variable Resolution Models

Model-based regional climate projections are all based upon 
some type of global model, including state-of-the-art Earth system 
models (ESMs), coupled atmosphere–ocean general circulation models 
(GCMs) or atmosphere-only general circulation models (AGCMs) 
(see Section 1.5.3.1). They are collectively referred to as global models.

State-of-the-art global models are generally used to derive climate 
information at continental to global scales both for past and future 
climates (e.g., Chapters 3 and 4). The nominal horizontal resolution 
in CMIP5 global models is typically 100–200 km. The effective 
resolution, for which the shape of the kinetic energy spectrum is 
simulated correctly, is about three to five times larger (Klaver et al., 
2020), and a similar relationship also applies to RCMs (Skamarock, 
2004). This strongly limits their ability to resolve local details. Since 

Table 10.1 | Assumptions underlying different model types in simulating regional climate and climate change. Violating these assumptions will affect model 
performance (see links to different subsections for details). All assumptions regarding future climate are in addition to those regarding present climate and predicated on 
the driving global model simulating a plausible global climate sensitivity (Section 1.3.5, Chapters 4 and 7). The assumptions listed for future climate applications of perfect prognosis 
statistical downscaling and bias adjustment are often called the ‘stationarity assumption’. Numbers in curly brackets refer to chapters and sections assessing these assumptions.

Model Type
Scale at Which 
the Assumption 

Applies

Assumptions to Realistically Simulate 
Present Regional Climate

Additional Assumptions to Be Fit for 
Simulating Future Regional Climate

Global model i.e., atmosphere-
only general circulation model, 
global climate model, Earth 
system model (AGCM, GCM 
or ESM; not bias adjusted) 
(Section 10.3.1.1)

Large (>1000 km)
Global model includes all relevant large-scale forcings 
and realistically simulates relevant large-scale circulation 
(Sections 3.3.3, 8.5.1 and 10.3.3.3).

Global model realistically simulates processes 
controlling large-scale changes. Parametrizations are 
valid in future climate (Chapter 3, and Sections 4.2, 4.5, 
8.5.1 and 10.3.3.9).

Regional (<1000 km)

Global model includes all relevant regional forcings and 
realistically simulates all relevant regional-scale processes 
and feedbacks and their dependence on large-scale 
climate (Sections 8.5.1, 10.3.3.4–10.3.3.6 and 10.3.3.8).

Global model realistically simulates processes controlling 
regional changes. Parametrizations are valid in future 
climate (Sections 8.5.1 and 10.3.3.9).

Dynamical downscaling of global 
model with regional climate 
model (RCM; not bias adjusted) 
(Section 10.3.1.2)

Large

Driving global model includes all relevant large-scale 
forcings and realistically simulates relevant large-scale 
circulation, RCM does not deteriorate global simulations. 
Feedbacks from regional into large-scale processes are 
negligible (Sections 3.3.3, 8.5.1 and 10.3.3.3).

Driving global model realistically simulates processes 
controlling large-scale changes, RCM does not deteriorate 
global model changes. Parametrizations are valid in 
future climate (Chapter 3 and Sections 4.2, 4.5. 8.5.1 
and 10.3.3.9).

Regional

RCM includes all relevant regional forcings and realistically 
simulates all relevant regional-scale processes and 
feedbacks and their dependence on large-scale climate 
(Sections 10.3.3.4–10.3.3.6 and 10.3.3.8).

RCM realistically simulates processes controlling regional 
changes. Parametrizations are valid in future climate 
(Section 10.3.3.9).

Perfect prognosis statistical 
downscaling of GCM 
(Section 10.3.1.3)

Large

Global model realistically simulates all relevant large-scale 
predictors. The predictors are bias free and represent 
the regional variability at all desired time scales 
(Sections 3.3.3, 8.5.1 and 10.3.3.3). 

Global model realistically simulates processes controlling 
changes in the predictors. The predictors represent the 
response to external forcing (Chapter 3 and Sections 4.2, 
4.5. 8.5.1 and 10.3.3.9).

Regional

The statistical model structure is adequate to represent 
the predictor influence on regional-scale variability. 
There is no relevant feedback involving the predictands 
(Section 10.3.3.7).

The statistical model structure is adequate under the 
required extrapolation (Section 10.3.3.9).

Bias adjustment of dynamical 
model (GCM or RCM) 
(Section 10.3.1.3)

Large As per driving model. As per driving model.

Regional

As per driving model, apart from adjustable biases. 
The gap between driving model resolution and target 
resolution is minor (Sections 10.3.3.4–10.3.3.6 and 
10.3.3.8, and Cross-Chapter Box 10.2).

As per driving model, apart from adjustable biases. 
The chosen bias adjustment is applicable in a future 
climate (Section 10.3.3.9 and Cross-Chapter Box 10.2).

Delta change approach 
applied to dynamical model 
(Section 10.3.1.3)

Large Not applicable

As per driving model. There are no changes altering 
the non-changed statistics (e.g., no circulation changes 
that alter temporal structure) (Chapter 3 and Sections 4.2, 
4.5, 8.5.1 and 10.3.3.9).

Regional Not applicable
As per driving model. There are no changes altering the 
non-changed statistics. The gap between driving model 
resolution and target resolution is minor (Section 10.3.3.9).

Change factor weather generator 
applied to dynamical model 
(Section 10.3.1.3)

Large Not applicable As per driving model.

Regional
The weather generator structure is adequate 
(Section 10.3.3.7).

As per driving model. The weather generator structure 
is adequate in a future climate. Change factors are 
adequately incorporated for all changing weather aspects. 
The gap between driving model resolution and target 
resolution is minor (Section 10.3.3.9).
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AR5 the progress in reducing biases and providing more credible 
regional projections by global models has been moderate in spite 
of the more realistic representation of a number of processes and 
the increase in resolution of some models. For AR6, several of the 
new CMIP6 (Eyring et  al., 2016a) model intercomparison projects 
(MIPs) address some of these limitations. The list of MIPs is provided 
in Chapter 1 (Table 1.3). High-Resolution MIP (HighResMIP; Haarsma 
et al., 2016) and Global Monsoons MIP (GMMIP; Zhou et al., 2016) 
specifically address the regional climate challenge using global 
models. HighResMIP focuses on producing global climate projections 
at a horizontal resolution of around 50 km grid spacing or finer while 
GMMIP aims at better understanding and predicting the monsoons.

An alternative to increasing resolution everywhere is offered by 
variable resolution global models, that is, with regionally finer 
resolution. They have been developed since the 1970s (Li, 1999), 
resulting in a first coordinated effort (SGMIP) by Fox-Rabinovitz et al. 
(2006, 2008). They are expected to offer the finest resolution possible 
in the region of interest, while still resolving the climate processes at 
the global scale (although at lower resolution). An overview of recent 
developments is in McGregor (2015). This is a rapidly developing field 
(Krinner et al., 2014; Ferguson et al., 2016; Huang et al., 2016) that 
will possibly contribute to improved future regional projections.

10.3.1.2 Regional Climate Models

Regional climate models (RCMs) are dynamical models similar 
to global models that are applied over a  limited area, but with 
a  horizontal resolution higher than that of standard global 
models. They are the basis for dynamical downscaling to produce 
sub-continental climate information (e.g., Chapters 11, 12 and Atlas) 
but are also often used for process understanding. At lateral and, if 
applicable, lower boundaries, RCMs take their values from a driving 
dataset, which could be a global model or a reanalysis. RCMs are 
typically one-way nested: they do not feed back into the driving 
model, although two-way nested global model-RCM simulations 
have been performed that examine regional influence on large-scale 
climate, potentially improving it (Lorenz and Jacob, 2005; Harris 
and Lin, 2013; Junquas et al., 2016). Spectral nudging (Kida et al., 
1991; Waldron et al., 1996; von Storch et al., 2000; Kanamaru and 
Kanamitsu, 2007) can increase consistency with the driving model, 
whereby selected variables, such as the wind field, are forced to 
closely follow a prescribed large-scale field over a specified range 
of spatial scales. RCMs can inherit biases from the driving global 
model in addition to producing biases themselves (Hall, 2014; 
Hong and Kanamitsu, 2014; Dosio et  al., 2015; Takayabu et  al., 
2016). The consistency between the circulation features simulated 
by the RCM and those inherited through the boundary conditions 
depends on (i) the relative importance of the large-scale forcing 
compared to local-scale phenomena, and (ii) the size of the RCM 
domain (e.g.,  Diaconescu and Laprise, 2013). Large domains also 
allow the RCM to generate much of its own internally generated 
unforced variability (Nikiema et  al., 2017, and references therein; 
Sanchez-Gomez and Somot, 2018).

The Coordinated Regional Climate Downscaling Experiment 
(CORDEX) initiative (Giorgi et al., 2009; Giorgi and Gutowski, 2015; 

Gutowski  Jr.  et  al., 2016) provides ensembles of high-resolution 
historical (starting as early as 1950) and future climate projections for 
various regions. RCMs in CORDEX typically have a horizontal resolution 
between 10 and 50 km. But much finer spatial resolution is required 
to fully resolve deep convection, an important cause of precipitation 
in much of the world. Therefore, an emerging strand in dynamical 
downscaling employs simulations at convection permitting scales, 
at horizontal resolutions of a few kilometres, where deep-convection 
parametrizations can be switched off, approximately simulating deep 
convection (Prein et  al., 2015; Stratton et  al., 2018; Coppola et  al., 
2020). A recent study indicates that switching off the deep-convection 
parametrization may be beneficial also in simulations performed at 
coarser resolutions (Vergara-Temprado et  al., 2020). Alternatively, 
some RCMs make use of scale-aware parametrizations that are able 
to adapt to increasing resolution without switching off the convection 
scheme (Hamdi et  al., 2012; De Troch et  al., 2013; Plant and Yano, 
2015; Giot et al., 2016; Termonia et al., 2018; Yano et al., 2018).

RCMs have often consisted of atmospheric and land components 
that do not include all possible Earth system processes and therefore 
neglect important processes such as air-sea coupling (in standard 
RCMs sea surface temperatures, SSTs, are prescribed from global 
model simulations or reanalyses) or the chemistry of aerosol–cloud 
interaction (aerosols prescribed with a  climatology), which may 
influence regional climate projections. Therefore, some RCMs have 
been extended by coupling to additional components like interactive 
oceans, sometimes with sea ice (Kjellström et al., 2005; Somot et al., 
2008; Van Pham et al., 2014; Sein et al., 2015; Ruti et al., 2016; Zou 
and Zhou, 2016a; Zou et  al., 2017; Samanta et  al., 2018), rivers 
(Sevault et al., 2014; Lee et al., 2015; Di Sante et al., 2019), glaciers 
(Kotlarski et al., 2010), and aerosols (Zakey et al., 2006; Zubler et al., 
2011; Nabat et al., 2015). The coupling of these components allows 
for the investigation of additional climate processes such as regional 
sea level change (Adloff et al., 2018), ocean–land interactions (Lima 
et al., 2019; Soares et al., 2019a), or the impact of high-frequency 
ocean–atmosphere coupling on the climatology of Mediterranean 
cyclones (Flaounas et al., 2018).

10.3.1.3 Statistical Approaches to Generate 
Regional Climate Projections

An alternative or addition to dynamical downscaling is the use of 
statistical approaches to generate regional projections. In AR5 these 
methods were collectively referred to as statistical downscaling, 
but their performance assessment has received little attention. 
A major conclusion was that a wide range of different methods exist 
and a  general assessment of their performance is difficult (Flato 
et  al., 2014). Since AR5, several initiatives have been launched to 
improve the understanding of statistical approaches such as VALUE 
(Validating and Integrating Downscaling Methods for Climate 
Change Research, now merged into the EURO-CORDEX activities; 
Maraun et  al., 2015), STaRMIP (Statistical Regionalization Models 
Intercomparisons and Hydrological Impacts Project; Vaittinada Ayar 
et  al., 2016) and BADJAM (Bias ADJustment of climate scenarios 
for Agricultural Model applications; Galmarini et  al., 2019). The 
performance of different implementations of these approaches will 
be assessed in Section 10.3.3.7.
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10.3.1.3.1 Perfect prognosis

Perfect-prognosis models are statistical models calibrated between 
observation-based large-scale predictors (e.g.,  from reanalysis) and 
observed local-scale predictands (Maraun and Widmann, 2018b). 
Regional climate projections are then generated by replacing the 
quasi-observed predictors by those from climate model (typically 
global model) projections. Predictor patterns that are common to 
observations and climate model data can be defined by common 
empirical orthogonal functions (Benestad, 2011). The perfect prognosis 
approach can either be used to generate daily (or even sub-daily) 
time series, or local weather statistics (e.g., Benestad et al., 2018).

Regression-like models (Maraun and Widmann, 2018b) rely on a transfer 
function linking an observed local statistic (such as the temperature at 
a given day) to some set of large-scale predictors. Recent developments 
include stochastic regression models to explicitly  simulate local 
variability (San-Martín et al., 2017; those explicitly modelling temporal 
dependence are assessed in Section 10.3.1.3.4). The use of machine 
learning techniques has been reinvigorated, including genetic 
programming to construct a  data-driven model structure (Zerenner 
et al., 2016) and deep and convolutional neural networks (Reichstein 
et al., 2019; Baño-Medina et al., 2020).

Analogue methods (Martin et  al., 1996; Maraun and Widmann, 
2018b) compare a simulated large-scale atmospheric field with an 
archive of observations and select, using some distance metric, the 
closest observed field in the archive. The downscaled atmospheric 
field is then chosen as the local atmospheric field observed on the 
instant the analogue occurred. New analogue methods have been 
developed to simulate unobserved values including a  rescaling of 
the analogue (Pierce et  al., 2014) or by combining analogues and 
regression models (Chardon et al., 2018).

10.3.1.3.2 Bias adjustment

Bias adjustment is a  statistical post-processing technique used to 
pragmatically reduce the mismatch between the statistics of climate 
model output and observations. The approach estimates the bias or 
relative error between a chosen simulated statistical property (such 
as the long-term mean or specific quantiles of the climatological 
distribution) and that observed over a  calibration period; the 
simulated statistic is then adjusted taking into account the simulated 
deviation. Bias adjustment methods are regularly applied on a spatial 
scale similar to that of the simulation being adjusted, but they are 
often used as a simple statistical downscaling method by calibrating 
them between coarse resolution (e.g., global) model output and finer 
observations (Maraun and Widmann, 2018b).

Typical implementations of bias adjustment are (i) additive 
adjustments, where the model data is adjusted by adding a constant, 
(ii) rescaling, where the model data is adjusted by a  factor, and 
(iii) more flexible quantile mapping approaches that adjust different 
ranges of a  distribution individually. Hempel et  al. (2013), Pierce 
et  al. (2015), Switanek et  al. (2017), and Lange (2019) developed 
variants of quantile mapping that preserve trends in the mean or 
even further distributional statistics. Multivariate bias adjustment 

extends univariate methods, which adjust statistics of individual 
variables separately, to joint adjustment of multiple variables 
simultaneously. Implementations remove biases in (i) specific 
measures of multivariate dependence, like correlation structure, via 
linear transformations (Bárdossy and Pegram, 2012; Cannon, 2016), 
or, more flexibly, (ii) the full multivariate distribution via non-linear 
transformations (Vrac and Friederichs, 2015; Dekens et  al., 2017; 
Cannon, 2018; Vrac, 2018; Robin et al., 2019). Other research strands 
focus on the explicit separation of bias adjustment and downscaling 
(Section  10.3.1.3.5), or the integration of process understanding 
(Maraun et  al., 2017), such as by conditioning the adjustment on 
the occurrence of relevant phenomena (Addor et al., 2016; Verfaillie 
et al., 2017; Manzanas and Gutiérrez, 2019). Some authors suggest 
to mitigate the influence of large-scale temperature or circulation 
biases by performing a bias adjustment of the driving fields prior to 
dynamical downscaling (Colette et al., 2012; Hernández-Díaz et al., 
2013, 2019). Issues that may arise when using bias adjustment are 
discussed in Cross-Chapter Box 10.2.

10.3.1.3.3 Delta-change approaches

In the delta change approach, selected observations are modified 
according to corresponding changes derived from dynamical model 
simulations. Traditionally, only long-term means have been adjusted, 
but recently approaches to modify temporal dependence (Webber 
et  al., 2018) have been developed, as well as quantile mapping 
approaches that individually adjust quantiles of the observed 
distribution (Willems and Vrac, 2011). By construction, the approach 
cannot modify the spatial and temporal dependence structure of the 
input observations (Maraun, 2016).

10.3.1.3.4 Weather generators

Weather generators are statistical models that simulate weather time 
series of arbitrary length. They are calibrated to represent observed 
weather statistics, in particular daily or even sub-daily variability. One 
variant of these models are advanced stochastic perfect-prognosis 
methods, conditioned on large-scale atmospheric predictors on a daily 
basis, for instance multisite generalized linear models (Chandler, 
2020). Another widely used variant is change-factor weather 
generators: the weather generator parameters are calibrated against 
present and future climate model simulations, and the climate change 
signals are then applied to the parameters calibrated to observations. 
Recent research has mainly focussed on multi-site Richardson type 
(Markov-chain) weather generators (Keller et  al., 2015; Dubrovsky 
et  al., 2019), some explicitly modelling extremes and their spatial 
dependence (Evin et al., 2018).

10.3.1.3.5 Hybrid approaches and emulators

A wide variety of approaches has been proposed to combine the 
advantages of different statistical approaches. For instance, to 
overcome the scale mismatch between climate model output and 
observations, bias adjustment has been combined with stochastic 
downscaling (Volosciuk et  al., 2017; Lange, 2019) or rescaled 
analogues (Pierce et al., 2014). Other approaches known as emulators 
have been developed to emulate an RCM using a statistical model 
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and also applied to a range of driving global models (Déqué et al., 
2012; Haas and Pinto, 2012; Walton et  al., 2015, 2017; Beusch 
et al., 2020; Erlandsen et al., 2020).

10.3.2 Types of Model Experiments

The most commonly used model experiments to generate regional 
climate information are transient simulations. Alternative experiment 
types serve specific purposes. The role of these experiment types for 
generating regional climate information is assessed in this subsection.

10.3.2.1 Transient Simulations and Time-slice Experiments

Transient simulations intend to represent the evolving climate 
state of the Earth system (Chapter  4). They are typically based on 
coupled global model simulations, such as those in the Diagnostic, 
Evaluation and Characterization of Klima (DECK) and ScenarioMIP 
part of CMIP6 covering the period 1850–2100 (Eyring et al., 2016a), 
and HighResMIP (1950–2050; Haarsma et al., 2016). Global transient 
climate simulations may be further downscaled by either dynamical or 
statistical downscaling. Currently available CORDEX RCM simulations 
(1950–2100) are based on CMIP5 (Gutowski Jr. et al., 2016).

In contrast, time-slice experiments are designed to represent only 
a  specific period of time (typically 30 years). They are often run 
using global and regional models in atmosphere-only mode, forced 
by SSTs derived either from observations, as AMIP experiments, or 
from historical simulations and future projections of coupled global 
models. Compared to transient simulations, they offer advantages in 
being computationally cheaper (due to the lack of coupled ocean and 
short duration), which allows for the number of ensemble members 
(T. Zhang et  al., 2016), and/or the resolution (Haarsma et  al., 
2013b; Davini et  al., 2017) to be increased. Convection-permitting 
simulations, both covering the globe or particular regions, are 
currently conducted for short time slices only (Kendon et al., 2017; 
Hewitt and Lowe, 2018; Coppola et al., 2020; Pichelli et al., 2021). 
Another high-resolution time-slice data base is d4PDF (Mizuta et al., 
2017; Ishii and Mori, 2020). Experiments covering a limited integration 
period have been carried out for coupled ocean–atmosphere RCMs 
(Sein et al., 2015; Zou and Zhou, 2016b, 2017). However, long spin-up 
periods are required to reach a stable stationary state in the deep 
ocean that otherwise might lead to invalid projections (Planton et al., 
2012; Soto-Navarro et al., 2020).

10.3.2.2 Pseudo-global Warming Experiments

Results from downscaling experiments often suffer from large-scale 
circulation biases in the driving global models such as misplaced storm 
tracks (Section 10.3.3.4), while changes in atmospheric circulation 
are often uncertain owing to both climate response uncertainty 
(Section 10.3.4.2) and internal variability (Section 10.3.4.3). In a given 
application, if one can assume that changes in the regional climate 
are dominated by thermodynamic rather than by circulation changes, 
so-called pseudo-global warming (PGW) experiments (Schär et  al., 
1996) may be helpful in mitigating the effects of circulation biases, 
and to fix the large-scale circulation to present climate. In classical 

PGW experiments, boundary conditions for the downscaling are taken 
from reanalysis data, but modified according to the thermodynamic 
signals of climate change. The boundary conditions thus represent 
the sequence of observed weather, but with adjusted temperatures, 
humidity and atmospheric stability. Recent applications of PGW 
experiments include assessments of climate change in Japan (Adachi 
et  al., 2012; Kawase et  al., 2012, 2013), the Los Angeles area 
(Walton et al., 2015), Hawaii (C. Zhang et al., 2016), and the Alps 
(Keller et  al., 2018). Recently, PGW studies have been generalized 
to modify global model simulations with the objective of separating 
the drivers of regional climate change, such as the Mediterranean 
amplification (e.g., Brogli et al., 2019b; Section 10.3.2.3).

Equivalent simulations can be conducted for individual events, 
thereby allowing for very high resolution. With counterfactual past 
climate conditions, such simulations can be used for conditional event 
attribution (Trenberth et  al., 2015; Chapter  11), using hypothetical 
future conditions to generate physical climate storylines of how 
specific events may manifest in a  warmer climate. The approach 
has been employed to study extreme events that require very high 
resolution simulations such as tropical cyclones (Lackmann, 2015; 
Takayabu et al., 2015; Lau et al., 2016; Kanada et al., 2017a; Gutmann 
et  al., 2018; Patricola and Wehner, 2018; J. Chen et  al., 2020) or 
convective precipitation events (Pall et al., 2017; Hibino et al., 2018). 
The range of possible events is broader and has included Korean 
heatwaves (Kim et al., 2018) and monsoon onset in West Africa (Lawal 
et  al., 2016). However, if only individual events are simulated, no 
immediate conclusions can be derived for changes to the occurrence 
probability of these events (F.E.L. Otto et al., 2016; Shepherd, 2016a).

10.3.2.3 Sensitivity Studies With Selected Drivers

Sensitivity studies are used to identify the impact of a specific forcing, 
driver or process on regional climate phenomena and changes and 
improve the process understanding. The influence of a single external 
forcing can be assessed with transient historical simulations within 
two different frameworks (Bindoff et al., 2013; Gillett et al., 2016). The 
first entails simulations taking prescribed (often observed) changes 
only in the external forcing of interest, the others being fixed at 
a constant value (often pre-industrial). The second framework is based 
on simulations in which all external forcings are applied other than 
the one of interest. Both approaches may not give the same results 
since the climate response to a  range of forcings is not necessarily 
equal to the sum of climate responses to individual forcings (Ming and 
Ramaswamy, 2011; Jones et al., 2013; Schaller et al., 2013; Shiogama 
et al., 2013; Marvel et al., 2015; Deng et al., 2020).

To study the influence of internal variability, new approaches such 
as partial coupling simulations are now routinely used since AR5. 
These are coupled ocean–atmosphere simulations in which the 
interaction between atmosphere and ocean is only one-way over 
a specified ocean basin or sub-basin and two-way everywhere else. 
Different implementations have been used such as SST anomaly 
Newtonian relaxation at the air–sea interface or prescription of 
wind-stress anomalies from reanalysis (Kosaka and Xie, 2013, 2016; 
England et  al., 2014; McGregor et  al., 2014; Douville et  al., 2015; 
Deser et al., 2017a). Such simulations have been applied to identify 
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the regional impacts of the Pacific Decadal Variability (PDV) and 
Atlantic Multi-decadal Variability (AMV) (Kosaka and Xie, 2013; 
Watanabe et  al., 2014; Delworth et  al., 2015; Boer et  al., 2016; 
Ruprich-Robert et al., 2017, 2018).

Nudging experiments have been used to identify the relative roles of 
dynamic and thermodynamic processes in climate model biases and 
specific extreme events (Wehrli et al., 2018, 2019). Another related 
framework is used to evaluate the impact land conditions have on 
a climate phenomenon in a pair of experiments with one simulation 
serving as control run, and a perturbed simulation with prescribed 
land conditions (i.e., soil moisture, leaf area index, or surface albedo) 
characterizing a specific state of the land surface (i.e., afforestation 
or deforestation). The difference between the perturbed and control 
simulations enables a  robust assessment of the possible impact of 
land conditions on events like droughts and heatwaves (Seneviratne 
et al., 2013; Stegehuis et al., 2015; Hauser et al., 2016, 2017; van den 
Hurk et al., 2016; Vogel et al., 2017; Rasmijn et al., 2018; Strandberg 
and Kjellström, 2019).

RCM sensitivity simulations have been used in a  similar way to 
assess the contribution of external forcings and large-scale drivers 
to projected regional climate change (Nabat et  al., 2014; Brogli 
et al., 2019a, b) and the influence of selected drivers on observed 
extreme events (Meredith et  al., 2015b; J. Wang et  al., 2017; 
Ardilouze et al., 2019).

In summary, there is robust evidence that sensitivity experiments are 
key to assessing the influence of different forcings and drivers on 
regional climate change.

10.3.2.4 Control Simulations

In recent years, the role of internal variability in the interpretation of 
climate projections has become clearer, particularly at the regional 
scale (Section 10.3.4.3). A considerable fraction of CMIP5 and CMIP6 
resources has been invested in generating an ensemble of centennial 
or multi-centennial control simulations with constant external 
forcings (Pedro et  al., 2016; Rackow et  al., 2018). As part of the 
CMIP6 DECK (Eyring et al., 2016a) pre-industrial control (piControl) 
simulations have been conducted (Menary et  al., 2018). Similarly, 
control simulations with present-day conditions (pdControl) have 
been performed to represent internal variability under more recent 
forcing conditions (Pedro et al., 2016; Williams et al., 2018). Control 
simulations have been used to study the role of internal variability, 
teleconnections and many other fundamental aspects of climate 
models (Z. Wang et  al., 2015; Krishnamurthy and Krishnamurthy, 
2016). Control simulations are also used along with large ensembles 
of historical or scenario simulations to assess the characteristics of 
the regional internal climate variability (Olonscheck and Notz, 2017).

10.3.2.5 Simulations for Evaluating Downscaling Methods

Experiments driven by quasi-perfect boundary conditions or predictors 
(observations or reanalysis) can be useful to evaluate downscaling 
performance (Frei et  al., 2003; Laprise et  al., 2013), including 
the simulation of observed past trends (Lorenz and Jacob, 2010; 

Zubler et al., 2011; Nabat et al., 2014; Gutiérrez et al., 2018; Drugé et al., 
2019; Bozkurt et al., 2020) and the added value of downscaling compared 
to the reanalysis fields (Section 10.3.3.2). Although the reanalysis model 
itself can introduce biases especially for non-assimilated variables (such 
as precipitation) it is assumed that in such a  setting, discrepancies 
between the modelled and observed climate arise mostly from errors 
in the downscaling method (Laprise et  al., 2013) or internal climate 
variability generated by the downscaling method (Böhnisch et  al., 
2020; Ehmele et  al., 2020). Since AR5, reanalysis-driven RCMs have 
been extensively evaluated for many regions, especially in the CORDEX 
framework (see region specific examples in the Atlas).

Over Europe, the VALUE initiative assessed statistical downscaling 
for marginal, temporal, and spatial aspects of temperature and 
precipitation including extremes, and performed a  process-based 
evaluation of specific climatic phenomena (Gutiérrez et  al., 2019; 
Maraun et al., 2019a). Alternatively, statistical downscaling can be 
evaluated in so-called perfect model or pseudo-reality simulations 
(Charles et  al., 1999), where a  high-resolution climate model 
simulation is used as a proxy for a hypothetical present and future 
realities. A statistical downscaling model is first calibrated with this 
pseudo present-day climate and, subsequently, assessed whether it 
correctly reproduces the pseudo-future conditions (Dixon et al., 2016).

10.3.3 Model Performance and Added Value in 
Simulating and Projecting Regional Climate

Assessing model performance is a prerequisite for building confidence in 
regional climate projections. This subsection assesses the performance 
of different model types at simulating regional climate and climate 
change. The subsection builds on the assessment of global model 
performance in Chapter 3, and complements the model assessment in 
Chapter 8, which focuses on the water cycle, and the Atlas.

While the ability of global models to simulate large-scale indicators 
of climate change has improved since AR5 (Chapter 3), the simulation 
of regional climate and climate change poses an additional challenge. 
Users demand regional climate projections for decision-making and 
have high expectations regarding accuracy and resolution (Rössler 
et  al., 2019a), but some scientists consider such projections still 
a  matter of basic research (Hewitson et al., 2014a). For instance, 
large-scale circulation biases or the misrepresentation of regional 
topography as well as regional phenomena and feedbacks are very 
relevant (Hall, 2014; Maraun and Widmann, 2018b). New global 
model ensembles such as CMIP6 (Eyring et al., 2016a), HighResMIP 
(Haarsma et  al., 2016) or, at the regional scale, the convection 
permitting simulations from the CORDEX Flagship Pilot Study (FPS) 
on convective phenomena (Coppola et al., 2020) have the potential 
to substantially improve the basis for generating regional climate 
information, yet uncertainties and (often unresolved) contradictions 
between model projections at the regional scale can be substantial 
(Fernández et al., 2019).

Figure 10.6 shows the mean summer temperature and precipitation 
biases of several state-of-the-art climate model ensembles for 
the western Mediterranean. It additionally illustrates the role of 
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(a) Western Mediterranean June to August mean surface air temperature (1986–2005)

(b) Western Mediterranean June to August mean precipitation (1986–2005)

Figure 10.6 | Illustration of some model biases in simulations performed with dynamical models. 
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observational uncertainty for model evaluation (Section 10.2), where 
observations display differences that can be substantial. Model 
performance varies strongly from model to model, but also between 
ensembles. These biases are an expression of model error that leads 
to misrepresented phenomena and processes, and thus limit the 
confidence in future projections of regional climate. The focus of this 
subsection is therefore to evaluate the representation of relevant 
regional-scale phenomena for representing regional climate.

10.3.3.1 Evaluation Diagnostics

Since AR5, model evaluation has made use of a broad combination 
of diagnostics (Colette et  al., 2012; Kotlarski et  al., 2014; Eyring 
et al., 2016b; Gleckler et al., 2016; Ivanov et al., 2017, 2018; Vautard 
et  al., 2021), ranging from long-term means to indices of extreme 
events (Zhang et al., 2011; Sillmann et al., 2013) or a combination 
of these (Dittus et al., 2016). This evaluation has shown that global 
models have pervasive biases in some aspects of their large-scale 
behaviour (Section 1.5.3.1, Chapter 3). More complex diagnostics are 
used to characterize specific meteorological phenomena (Sprenger 
et al., 2017), such as feedbacks in the El Niño–Southern Oscillation 
(ENSO; Bellenger et  al., 2014), Madden-Julian Oscillation (MJO) 
characteristics (Benedict et  al., 2014; Jiang et  al., 2015; D.  Kim 
et  al., 2015; Ahn et  al., 2017), extratropical modes of variability 
(Lee et al., 2019), cyclone tracking (Neu et al., 2013; Flaounas et al., 
2018), front detection (Hope et  al., 2014; Schemm et  al., 2015), 
thunderstorm environment parameters (Bukovsky et  al., 2017), 
African easterly waves (McCrary et al., 2014; Martin and Thorncroft, 
2015), land–atmosphere coupling (Spennemann and Saulo, 2015; 
Santanello et  al., 2018), and sea–atmosphere coupling (Bellenger 
et al., 2014; Mayer et al., 2017).

New diagnostics for multivariate dependencies are needed to 
characterize compound events (Section  11.8; Hobaek Haff et  al., 
2015; Wahl et al., 2015; Sippel et al., 2016, 2017; Tencer et al., 2016; 
Bevacqua et al., 2017; Careto et al., 2018; Zscheischler et al., 2018). 
However, their success depends on the availability of adequate 
observational data (Section  10.2.2). Multivariate dependencies 
discovered in compound events can also be used for designing and 
evaluating multivariate bias adjustment and statistical downscaling. 
Process-based diagnostics are useful for identifying the cause of model 
errors, although it is not always possible to associate a  systematic 
error with a  specific cause (Eyring et  al., 2019). AR5 discussed 
two approaches of process-based evaluation: (i) the isolation of 
physical components or parametrizations by dedicated experiments 
(Section 10.3.2.4) and (ii) diagnostics conditioned on relevant regimes, 

usually synoptic-scale weather patterns. The regime-based approach 
has been used with both global models (e.g.,  Barton et  al., 2012; 
Catto et al., 2015; Taylor et al., 2019) and RCMs (Endris et al., 2016; 
Bukovsky et al., 2017; Whan and Zwiers, 2017; Pinto et al., 2018), but 
also with perfect prognosis and bias adjustment methods (Marteau 
et al., 2015; Addor et al., 2016; Beranová and Kyselý, 2016; Soares and 
Cardoso, 2018; Soares et al., 2019b).

Recent studies highlight the importance of user-defined or  
user-relevant diagnostics for model evaluation (Maraun et al., 2015; 
Rhoades et  al., 2018; Rössler et  al., 2019b; Nissan et  al., 2020). 
Diagnostics have been used to assess the performance of climate  
models to produce useful input data for impact models as in the 
comparison between RCMs and convection-permitting models to 
capture flood-generating precipitation events in the Alps (Reszler et al., 
2018). Alternatively, the observed impact can be compared to that 
simulated by an impact model that uses input from both observations 
and climate models. This approach has been used to evaluate the 
influence of statistical downscaling and bias adjustment on hydrological 
(Rojas et al., 2011; H. Chen et al., 2012; Gutiérrez et al., 2019; Rössler 
et al., 2019b), agricultural (Ruiz-Ramos et al., 2016; Galmarini et al., 
2019), forest and wildfire (Abatzoglou and Brown, 2012; Migliavacca 
et al., 2013) (Bedia et al., 2013), snow depth (Verfaillie et al., 2017), and 
regional ocean modelling (e.g., Macias et al., 2018).

There is high confidence that to assess whether a  climate model 
realistically simulates required aspects of present-day regional 
climate, and to increase confidence of future projections of these 
aspects, evaluation needs to be based on diagnostics taking into 
account multiple variables and process understanding.

10.3.3.2 Model Improvement and Added Value

Obtaining regional information from global simulations may involve 
a  range of different methods (Section  10.3.1). An approach with 
higher complexity or resolution is useful if it adds further, useful 
information to that of a reference model. Section 10.5 discusses the 
set of considerations that determine if the information is useful. This 
further useful information is often referred to as added value and 
is a  function of variables, processes, and the temporal and spatial 
scales targeted taking into account the needs of specific users 
(Di Luca et al., 2012; Ekström et al., 2015; Giorgi and Gutowski, 2015; 
Torma et  al., 2015; Rummukainen, 2016; Falco et  al., 2019). There 
is no common definition of added value, but here it is considered 
a  characteristic that arises when one methodology gives further 
value to what another methodology yields.

Figure 10.6 (continued): (a) Top row: Mean summer (June to August) near-surface air temperature (in °C) over the Mediterranean area in Berkeley Earth and respective mean 
bias for five multi-model historical experiments with global models (CMIP5, CMIP6 and HighResMIP) and regional climate models (CORDEX EUR-44 and EUR-11) averaged 
between 1986–2005. Bottom row: Box-and-whisker plot shows spread of the 20 annual mean summer surface air temperature averaged over land areas in the western 
Mediterranean region (33°N–45°N, 10°W–10°E, black quadrilateral in the first panel of the top row) for a set of references and single model runs of the five multi-model 
experiments (one simulation per model) between 1986–2005. Additional observation and reanalysis data included in the bottom row are CRU TS, HadCRUT4, HadCRUT5, 
E-OBS, WFDE5, ERA5, ERA-Interim, CERA-20C, JRA-25, JRA-55, CFSR, MERRA2, MERRA. Berkeley Earth is shown in the first box to the left. (b) As (a) but for precipitation 
rate (mm day–1) and showing CRU TS in the first panel of the top row. Biases of the five multi-model experiments are shown with respect to CRU TS. Additional observation 
and reanalysis data included in the bottom row are GPCC, REGEN, E-OBS, GHCN, WFDE5, CFSR, ERA-Interim, ERA5, JRA-55, MERRA2, MERRA. CRU TS is shown in the first 
box to the left. All box-and-whisker plots show the median (line), and the interquartile range (IQR = Q3–Q1, box), with top whiskers extending to the last data less than 
Q3 + 1.5 × IQR and analogously for bottom whiskers. Data outside the whiskers range appear as flyers (circles). Further details on data sources and processing are available 
in the chapter data table (Table 10.SM.11).
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Downscaling is expected to improve the representation of a region’s 
climate compared to the driving global model (Di Luca et al., 2015). 
Arguably, there should be a clear physical reason for the improvement, 
which is applicable to the evaluation of added value in downscaled 
projections (Giorgi et  al., 2016). The added value depends on the 
region, season, and governing physical processes (Lenz et al., 2017; 
Schaaf and Feser, 2018). Thus, added value of downscaling global 
model simulations is most likely where regional- and local-scale 
processes play an important role in a region’s climate, for example 
in complex or heterogeneous terrain such as mountains (Lee and 
Hong, 2014; Prein et al., 2016b), urban areas (Argüeso et al., 2014), 
along coastlines (Feser et al., 2011; Herrmann et al., 2011; Bozkurt 
et  al., 2019), or where convective processes are important (Prein 
et al., 2015). Examples of model improvements and added value are 
given in the following subsections and the Atlas.

A first step in determining added value in downscaling is to analyse 
whether the downscaling procedure gives detail on spatial or 
temporal scales not well-resolved by a global model, thus potentially 
representing climatic features missing in the GCM. This added detail, 
referred to as potential added value (PAV; Di Luca et al., 2012), is 
insufficient for demonstrating added value in downscaling (Takayabu 
et al., 2016), but lack of PAV indicates that the downscaling method 
lacks usefulness. Added value is not guaranteed simply by producing 
model output at finer resolution. It depends on several factors, such 
as the simulation setup and the specific climatic variables analysed 
(Di Luca et al., 2012; Hong and Kanamitsu, 2014; Xue et al., 2014). 
A variety of performance measures are needed to assess added value 
(Section  10.3.3.1; Di Luca et  al., 2016; Wilks, 2016; Ivanov et  al., 
2017, 2018; Soares and Cardoso, 2018).

A further challenge, especially at increasingly higher resolutions, is 
that adequate observational data may not be available to assess 
added value (Section 10.2, e.g., Di Luca et al., 2016; Zittis et al., 2017; 
Bozkurt et  al., 2019). This implies a  need for additional efforts to 
obtain, catalogue and quality-control higher resolution observational 
(or observation-based) datasets (Thorne et al., 2017; Section 10.2). 
Univariate demonstration of added value is necessary, but may be 
insufficient, as better agreement with observations in the downscaled 
variable may be a consequence of compensating errors that are not 
guaranteed to compensate similarly as climate changes. Multivariate 
analysis of added value is better able to demonstrate physical 
consistency between observed and simulated behaviour (Prein et al., 
2013a; Meredith et al., 2015a; Reboita et al., 2018).

10.3.3.3 Performance at Simulating Large-scale Phenomena 
and Teleconnections Relevant for Regional Climate

Regional climate is often controlled by large-scale weather phenomena, 
modes of variability and teleconnections (e.g., Sections 2.3 and 2.4, 
Annex IV). In particular, extreme events are often caused by specific, 
in some cases persistent, circulation patterns (Sections 11.3–11.7). 
It is therefore important for climate models to reasonably represent 
not only continental, but also regional climate and its variability for 
such extremes. As explained in Section  3.3.3, standard resolution 
global models can suffer biases in the location, occurrence frequency 
or intensity of large-scale phenomena, such that statements about 

a  specific regional climate and its change can be highly uncertain 
(Hall, 2014). RCMs have difficulties improving especially large-scale 
circulation biases, although some successful examples exist. But 
due to their enhanced representation of complex topography and 
coastlines, RCMs may add value to simulating the regional expression 
of teleconnections. Bias adjustment cannot mitigate fundamental 
misrepresentations of the large-scale atmospheric circulation 
(Maraun et  al., 2017, Cross-Chapter Box  10.2). This subsection 
illustrates the relevance of large-scale circulation biases for regional 
climate assessments with selected examples from the mid- to high 
latitudes and tropics.

10.3.3.3.1 Mid- to high-latitude atmospheric variability 
phenomena: Blocking and extratropical cyclones

Major large-scale meteorological phenomena for mid- to high 
latitude mean and extreme climate include atmospheric blocking 
and extratropical cyclones (Section 2.3.1.4). Atmospheric blocking is 
characterized by a  quasi-stationary, long-lasting, high-pressure 
system that blocks and diverts the movement of synoptic cyclones 
(Woollings et al., 2018). In regions where blocking occurs, it is known 
to lead to cold conditions in winter and warmth and drought during 
summer, defining the seasonal regional climate in certain years 
(Sousa et al., 2017, 2018b). Extratropical cyclones are storm systems 
that propagate preferentially in confined storm-track regions, 
characterized by large eddy kinetic energy, heat and momentum 
transports that shape regional weather at mid- to high latitudes 
(Shaw et  al., 2016). Given their importance in shaping mean and 
extreme regional climate (Sections 3.3.3.3, 11.3 and 11.4), an 
accurate representation of blocking and extratropical cyclones in 
global and regional climate models is needed to better understand 
regional climate variability and extremes as well as to project future 
changes (Section 11.7.2; Grotjahn et al., 2016; Mitchell et al., 2017; 
Rohrer et al., 2018; Huguenin et al., 2020). An overview of CMIP5 and 
CMIP6 model performance in simulating blocking and extratropical 
cyclones is given in Section 3.3.3.3. CMIP6 models still suffer from 
long-standing blocking biases identified in previous generations 
of models. However, blocking location has improved compared to 
CMIP5, while comparable performance is seen for blocking frequency 
and persistence (Figure 10.7). Increasing horizontal model resolution 
to about 20 km in the HighResMIP experiments improves the 
representation of blocking frequency and its spatial pattern in most 
models, but no clear effect could be shown for blocking persistence. 
Biases associated with these two phenomena are highly region- and 
season-dependent and their amplitudes vary among CMIP models 
(Drouard and Woollings, 2018; Schaller et al., 2018; Woollings et al., 
2018; Harvey et al., 2020; Schiemann et al., 2020).

RCMs have a  very limited ability to reduce large-scale circulation 
errors of the driving GCM (Hall, 2014). In a study of five ERA-Interim-
driven RCMs, Jury et al. (2018) showed that RCMs typically simulate 
fewer blocking events over Europe than are present in the driving 
data, irrespective of the RCM horizontal resolution. Based on a simple 
blocking bias-decomposition method, they suggest that blocking 
frequency biases can contribute to the RCM mean surface biases. 
Over some large domains, reanalysis-driven RCMs can significantly 
improve the representation of storm characteristics compared to the 
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driving reanalysis near regions with complex orography and/or large 
water masses (Poan et al., 2018). However, this is not necessarily true 
if the domain is large enough because the RCM and its biases will then 
control the circulation leading to a biased performance with regard 
to storm characteristics (Pontoppidan et al., 2019). An ensemble of 
12 RCMs with and without air-sea coupling reasonably reproduced 
the climatology of Mediterranean cyclones, and air-sea coupling had 
a rather weak impact (Flaounas et al., 2018). Over the Gulf Stream, 
however, air-sea coupling played an important role in representing 
cyclone development (Vries et al., 2019). Sanchez-Gomez and Somot 
(2018) showed that the effect of RCM internal variability on density 
of cyclone tracks is very signifi cant and larger than for other variables 
such as precipitation. It is larger in summer than in winter, in 
particular over the Iberian Peninsula, northern Africa and the eastern 
Mediterranean, which are regions of enhanced cyclogenesis during 
the warm season.

Biases in the representation of large-scale atmospheric circulation can 
result in biased representation of regional climate. While, in principle, 

the connection between large-scale and regional biases is obvious, 
given the strong control of regional climate by large-scale phenomena, 
research on this connection is still limited. Munday and Washington 
(2018) relate CMIP5 model rainfall biases over South Africa to 
anomalous low-level moisture transport across high topography 
due to upstream wind biases and inaccurate representation of 
unresolved orographic drag effects. Addor et  al. (2016) show that 
the overestimated frequency of westerly synoptic situations was 
a signifi cant contributor to the wet bias in several RCMs in winter over 
Switzerland. Pepler et al. (2014, 2016) suggest that better capturing 
westerly-driven synoptic systems such as cold fronts and cut-off lows 
in climate models could be key in simulating the observed pattern 
correlation between rainfall and zonal wind in southern south-east 
Australia. Cannon (2020) shows global improvement in performance 
going from CMIP5 to CMIP6 for both frequency and persistence of 
circulation types.

The robust quantifi cation of the infl uence of atmospheric circulation 
errors on regional climate remains a challenge as many parametrized 
processes such as cloud radiative effects and soil moisture or snow 
feedbacks can also contribute and interact with the circulation errors. 
Atmospheric nudging experiments where the simulated circulation is 
constrained to be close to that observed have been used to separate 
the circulation effect from other contributions to regional climate 
biases (Wehrli et al., 2018). The nudging approach requires detailed 
and careful implementation in order to limit detrimental effects due 
to the added tendency term in the model equations (Zhang et al., 
2014; Lin et al., 2016). Based on single-model experiments, Wehrli 
et  al. (2018) show that the circulation induced biases are often 
not the main contributors to mean and extreme temperature and 
precipitation biases for many regions and seasons.

There is high confi dence that atmospheric circulation biases can 
deteriorate the model representation of regional land surface climate. 
Assessing the relative contributions of atmospheric circulation and 
other sources of bias remains a challenge due to the strong coupling 
between the atmosphere and other components of the climate 
system, including the land surface.

10.3.3.3.2 Tropical phenomena: ENSO teleconnections

Model performance in simulating ENSO characteristics, including 
ENSO spatial pattern, frequency, asymmetry between warm and cold 
events, and diversity, is assessed in Chapter  3 (Section  3.7.3). The 
ability of the recent generation of GCMs and RCMs to adequately 
simulate ENSO-related teleconnections is reviewed here along with 
relevant methodological issues (see also Annex IV2.3.2, Figure 3.38 
and Section 3.7.3).

Langenbrunner and Neelin (2013) show that there is little 
improvement in CMIP5 relative to CMIP3 in amplitude and spatial 
patterns of the ENSO infl uence on boreal winter precipitation 
(spatial  pattern correlations against observations are typically less 
than 0.5). However, the CMIP5 ensemble accurately represents 
the amplitude of the precipitation response in regions where 
observed teleconnections are strong. Garcia-Villada et  al. (2020) 
found a decline in performance of the representation of simulated 
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Figure  10.7 | Northern Hemisphere blocking performance in historical 
coupled simulations for different multi-model ensembles. Coupled Model 
Intercomparison Project Phases 5 and 6 (CMIP5/6): CMIP5 and CMIP6 Diagnostic, 
Evaluation and Characterization of Klima (DECK) historical simulations, 1950–2005, 
LC/HC: Low- (LC)/high- (HC) resolution coupled simulations from the PRIMAVERA 
project, 1950–2014 following the hist-1950 experiment of the CMIP6 HighResMIP 
Protocol (Haarsma et  al., 2016). (Top) blocking frequency, for example, fraction of 
blocked days; (middle) root-mean-squared error in blocking frequency; (bottom) 
90th percentile of blocking persistence, aggregated over an Atlantic domain (left, ATL: 
90°W–90°E, 50°–75°N) and a Pacifi c domain (right, PAC: 90°E–270°E, 50°–75°N). 
Results are for boreal winter (December–January–February, DJF) and summer (June–
July–August, JJA). Box-and-whisker plots for CMIP5/6 follow the methodology used 
in Figure 10.6 and show median (line), mean (triangle), and interquartile range (box) 
across 29 models for each ensemble. The reference estimate (ERA, asterisk) is from 
a  50-year reanalysis dataset that merged ERA-40 (1962–1978) and ERA-Interim 
(1979–2011) reanalyses. An estimate of internal variability for each metric (IV) is 
shown as a box-and-whisker plot over the asterisk and is obtained from a single-model 
ensemble (ECMWF-IFS high-resolution hist-1950 experiment, 6 ×  65  years). For 
details on the methodology see (Schiemann et  al., 2020). Further details on data 
sources and processing are available in the chapter data table (Table 10.SM.11).
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ENSO teleconnection patterns for model experiments with fewer 
observational constraints. They also show that ENSO warm phase 
(El Niño) teleconnections are better represented than those for 
the cold phase (La Niña). Individual CMIP5 and CMIP6 models 
show a  good ability to represent the observed teleconnections at 
aggregated spatial scales (Power and Delage, 2018; Section  3.7.3 
and Figure  3.38). The evaluation of the atmospheric dynamical 
linkages is also an important part of the assessment. Hurwitz et al. 
(2014) showed that CMIP5 models broadly simulate the expected 
(as seen in the MERRA reanalysis) upper-tropospheric responses to 
central equatorial Pacific or eastern equatorial Pacific ENSO events in 
boreal autumn and winter. CMIP5 models also simulate the correct 
sign of the Arctic stratospheric response, consisting of polar vortex 
weakening during eastern and central Pacific Niño events and 
vortex strengthening during both types of La Niña events. In contrast, 
most CMIP5 models do not capture the observed weakening of the 
Southern Hemisphere polar vortex in response to central Pacific 
ENSO events (Brown et al., 2013).

In RCMs, the effects of tropical large-scale modes and 
teleconnections are inherited through the boundary conditions 
and influenced by the size of the numerical domain. Done et  al. 
(2015) and Erfanian and Wang (2018) claim that large domains that 
include source oceanic regions are required to capture the remote 
influence of teleconnections, although, without spectral nudging, 
this can lead to biased synoptic-scale patterns (Prein et al., 2019). 
RCMs generally reproduce the regional precipitation responses 
to ENSO, and can sometimes even improve the representation of 
these teleconnections compared to the driving reanalysis (Endris 
et  al., 2013; Fita et  al., 2017), but the overall performance may 
depend both on the driving reanalysis or GCM (Endris et al., 2016; 
Chandrasa and Montenegro, 2020) and on the chosen RCMs (Whan 
and Zwiers, 2017).

New studies since AR5 have shown that model performance 
assessment regarding ENSO teleconnections remains a  difficult 
challenge due to the different types of ENSO and model errors in 
ENSO spatial patterns, as well as the strong influence of atmospheric 
internal variability at mid- to high latitudes (Coats et al., 2013; Polade 
et  al., 2013; Capotondi et  al., 2015; Deser et  al., 2017c; Tedeschi 
and Collins, 2017; Garcia-Villada et  al., 2020). Another difficulty 
comes from the non-stationary aspects of teleconnections in both 
observations and models, raising methodological questions on how 
best to compare a given model with another model or observations 
(Herein et al., 2017; Perry et al., 2017; O’Reilly, 2018; O’Reilly et al., 
2019; Abram et al., 2020).

There is robust evidence that an accurate representation of both 
atmospheric circulation and sea surface temperature (SST) variability 
are key factors for the realistic representation of ENSO teleconnections 
in climate models. A  robust and thorough evaluation of model 
performance regarding ENSO teleconnections is a challenging task 
with many methodological issues related to asymmetry between the 
warm and cold phases, non-stationarity and time-varying interaction 
between the Pacific and other ocean basins, signal-to-noise issues 
in the mid-latitudes and observational uncertainties, particularly for 
precipitation (Section 10.2.2.3).

10.3.3.4 Performance at Simulating Regional 
Phenomena and Processes

Regional climate is shaped by a wide range of weather phenomena 
occurring at scales from about 2000 km to 2 km (Figure 10.3). These 
modulate the influence of large-scale atmospheric phenomena and 
create the characteristic and potentially severe weather conditions. 
The climate in different regions will be affected by different mesoscale 
phenomena, of which several may be relevant. A skilful representation 
of these phenomena is a  necessary condition for providing credible 
and relevant climate information for a given region and application. 
Therefore, it is important to understand the strengths and weaknesses 
of different model types in simulating these phenomena. The 
performance of different dynamical climate model types to simulate 
a selection of relevant mesoscale weather phenomena is assessed here.

10.3.3.4.1 Convection including tropical cyclones

Convection is the process of vertical mixing due to atmospheric 
instability. Deep moist convection is associated with thunderstorms 
and severe weather such as heavy precipitation and strong wind 
gusts. Convection may occur in single locations, in spatially extended 
severe events such as supercells, and organized into larger mesoscale 
convective systems such as squall lines or tropical cyclones, and 
embedded in fronts (see below). Shallow and deep convection are 
not explicitly simulated but parametrized in standard global and 
regional models. In consequence, these models suffer from several 
biases. AR5 has stated that many CMIP3 and CMIP5 models simulate 
the peak in the diurnal cycle of precipitation too early, but increasing 
resolution and better parametrizations help to mitigate this problem 
(Flato et al., 2014). Similar issues arise for RCMs with parametrized 
deep convection (Prein et al., 2015), which also tend to overestimate 
high cloud cover (Langhans et al., 2013; Keller et al., 2016).

Non-hydrostatic RCMs at convection-permitting resolution (4 km 
and finer) improve features such as the initiation and diurnal cycle 
of convection (Zhu et al., 2012; Prein et al., 2013a, b; Fosser et al., 
2015; Stratton et al., 2018; Sugimoto et al., 2018; Finney et al., 2019; 
Berthou et  al., 2020; Ban et  al., 2021; Pichelli et  al., 2021), the 
triggering of convection by orographic lifting (Langhans et al., 2013; 
Fosser et al., 2015), and maximum vertical wind speeds in convective 
cells (Meredith et  al., 2015a). Also spatial patterns of precipitation 
(Prein et al., 2013a, b; Stratton et al., 2018), precipitation intensities 
(Prein et al., 2015; Fumière et al., 2020; Ban et al., 2021; Pichelli et al., 
2021), the scaling of precipitation with temperature (Ban et al., 2014), 
cloud cover (Böhme et al., 2011; Langhans et al., 2013) and its resultant 
radiative effects (Stratton et  al., 2018), as well as the annual cycle 
of tropical convection (Hart et al., 2018) are improved. Phenomena 
such as supercells, mesoscale convective systems, or the local weather 
associated with squall lines are not captured by global models and 
standard RCMs. Convection-permitting RCM simulations, however, 
have been shown to realistically simulate supercells (Trapp et  al., 
2011), mesoscale convective systems, their life cycle and motion (Prein 
et al., 2017; Crook et al., 2019), and heavy precipitation associated 
with a squall line (Kendon et al., 2014). There is high confidence that 
simulations at convection-permitting resolution add value to the 
representation of deep convection and related phenomena.
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Convection is the key ingredient of tropical cyclones. An 
intercomparison of high-resolution AGCM simulations (Shaevitz 
et al., 2014) showed that tropical cyclone intensities appeared to be 
better represented with increasing model resolution. Takayabu et al. 
(2015) have compared simulations of typhoon Haiyan at different 
resolutions ranging from 20  km to 1 km (Figure  10.8). While the 
eyewall structure in the precipitation pattern was strongly smoothed 
in the coarse resolution simulations, it was well-resolved at the highest 
resolution. Gentry and Lackmann (2010) found similar improvements 
in simulating hurricane Ivan for horizontal resolutions between 8 km 
and 1 km. High-resolution coupled ocean–atmosphere simulations 
improve the representation of the radial structure of core convection 
and thereby the rapid intensification of the cyclone (Kanada 
et  al., 2017b). There is high confidence that convection-permitting 
resolution is required to realistically simulate the three-dimensional 
structure of tropical cyclones.

Initial studies with convection-permitting global models suggests 
that improvements in representing convection, as described for 
RCMs above, have a positive impact on the tropical and extratropical 
atmospheric circulation and, thus, regional climate (Satoh et  al., 
2019; Stevens et al., 2019; see also Section 8.5.1.2 and Chapter 7). 
Computational constraints currently limit these simulations to 
a length of few months only, such that they cannot yet be used for 
routine climate change studies.

10.3.3.4.2 Mountain wind systems

Mountain slope and valley winds are localized thermally generated 
diurnal circulations that have a strong influence on temperature and 
precipitation patterns in mountain regions. During the day, heating 
of mountain slopes induces upslope winds; during the night this 
circulation reverses. This phenomenon is not realistically represented 
by global models and coarse-resolution RCMs. RCM simulations at 

4 km resolution showed good skill in simulating the diurnal cycle 
of temperature and wind on days of weak synoptic forcing in the 
Rocky Mountains (Letcher and Minder, 2017) as well as in simulating 
the mountain-plain wind circulation over the Tianshan mountains in 
central Asia (Cai et al., 2019), while in the Alps, a 1 km resolution has 
been required (Zängl, 2004).

Föhn winds are synoptically-driven winds across a mountain range 
that are warm and dry due to adiabatic warming in the downwind 
side. In an RCM study for the Japanese Alps, Ishizaki and Takayabu 
(2009) found that at least 10 km resolution was required to 
realistically simulate the basic characteristics of Föhn events.

Synoptically-forced winds may be channelled and accelerated in long 
valleys. For instance, the Tramontana, Mistral and Bora are northerly 
winds blowing down-valley from central France and the Balkans into 
the Mediterranean (Flaounas et  al., 2013). In winter, these winds 
may cause severe cold air outbreaks along the coast. Flaounas 
et al. (2013) have shown that a GCM with a horizontal resolution of 
roughly 3.75° longitude/1.875° latitude (roughly 400 km × 200 km 
depending on latitude) is unable to reproduce these winds because 
of the coarse representation of orography. Fifty-kilometre RCM 
simulations did not realistically represent the Mistral (Obermann 
et al., 2018) and Bora winds (Belušić et al., 2018), but simulations 
at 12 km added substantial value. Similarly, Cholette et  al. (2015) 
found that a 30 km RCM resolution was not sufficient to adequately 
simulate the channelling of winds in the St Lawrence River Valley in 
eastern Canada, whereas a 10 km resolution was.

There is high confidence that climate models with resolutions 
of around 10 km or finer are necessary for realistically simulating 
mountain wind systems such as slope and valley winds and the 
channelling of winds in valleys.

10.3.3.4.3 Coastal winds and lake effects

Simulating coastal climates and the influence of big lakes are 
a modelling challenge, due to the complex coastlines, the different 
heat capacities of land and water, the resulting wind system, and 
differential evaporation. The AR5 concluded that RCMs can add value 
to the simulation of coastal climates.

Summer coastal low-level jets off the mid-latitude western continental 
coasts are forced by the semi-permanent subtropical anticyclones, 
inland thermal lows, strong across-shore temperature contrasts in 
upwelling regions, and high coastal topography. They are important 
factors in shaping regional climate by, for instance, preventing 
onshore advection of humidity and thereby causing aridity in the 
Iberian Peninsula (Soares et al., 2014), or by transporting moisture 
towards precipitating regions as in the North American monsoon 
(Bukovsky et al., 2013).

Reanalyses and most global models do not well resolve the details 
of coastal low-level jets (Bukovsky et al., 2013; Soares et al., 2014), 
but they are still able to represent annual and diurnal cycles and 
interannual variability (Cardoso et  al., 2016; Lima et  al., 2019). 
Bukovsky et al. (2013) found RCM simulations at a 50 km resolution 
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Figure 10.8 | Hourly accumulated precipitation profiles (mm hour –1) around 
the eye of Typhoon Haiyan. Represented by (a) Global Satellite Mapping of 
Precipitation (GSMaP) data (multi-satellite observation), (b) Guiuan radar (PAGASA), 
(c) Weekly Ensemble Prediction System (WEPS) data (JMA; 60 km), (d)  NHRCM 
(20 km), (e) NHRCM (5 km), and (f) WRF (1 km) models. Panels (b), (d–f) are adapted 
from Takayabu et  al. (2015), CCBY3.0 https://creativecommons.org/licenses/by/3.0. 
Further details on data sources and processing are available in the chapter data table 
(Table 10.SM.11).
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to improve the representation of the coastal low-level jet in the Gulf 
of California and the associated precipitation pattern compared to 
the driving global models. Lucas-Picher et  al. (2017) find indirect 
evidence via precipitation patterns that 12 km simulations further 
improve the representation. Soares et al. (2014) demonstrated that 
an 8 km resolution RCM simulated a  realistic three-dimensional 
structure of the Iberian coastal low-level jet, and the surface winds 
compare well with observations. Lucas-Picher et al. (2017) showed 
that a  0.44° resolution RCM underestimated winds along the 
Canadian east coast, whereas a 0.11° resolution version simulated 
more realistic 10 metre wind speed. Also, the Etesian winds in the 
Aegean Sea were realistically simulated by 12 km resolution RCMs 
(Dafka et al., 2018).

A particularly relevant coastal phenomenon is the sea breeze, which 
is caused by the differential heating of water and land during the 
diurnal cycle and typically reaches several tens of kilometres inland. 
Reanalyses and global models have too coarse a  resolution to 
realistically represent this phenomenon, such that they typically 
underestimate precipitation over islands and misrepresent its diurnal 
cycle (Lucas-Picher et al., 2017). RCMs improve the representation of 
sea breezes and thereby precipitation in coastal areas and islands. 
Over Cuba and Florida only a  12 km-resolution RCM is able to 
realistically simulate the inland propagation of precipitation during 
the course of the day (Lucas-Picher et al., 2017). RCM simulations 
at 20 km horizontal resolution realistically represented the sea 
breeze circulation in the Mediterranean Gulf of Lions including the 
intensity, direction and inward propagation (Drobinski et al., 2018). 
Even though a coupled ocean–atmosphere simulation improved the 
representation of diurnal SST variations, the sea breeze representation 
itself was not improved.

Big lakes modify the downwind climate. In particular during winter 
they are relatively warm compared to the surrounding land, provide 
moisture, destabilize the passing air column and produce convective 
systems. The increase in friction when moving air reaches land causes 
convergence and uplift, and may trigger precipitation. Gula and 
Peltier (2012) found that a state-of-the-art GCM does not realistically 
simulate these effects over the North American Great Lakes, but 
a 10 km RCM better represents them and thereby simulates realistic 
downwind precipitation patterns, in particular enhanced snowfall 
during the winter season. Similar results were found by Wright 
et  al. (2013), Notaro et  al. (2015) and Lucas-Picher et  al. (2017). 
In a  convection permitting simulation of the Lake Victoria region, 
a  too strong nocturnal land breeze resulted in unrealistically high 
precipitation (Finney et al., 2019).

There is high confidence that climate models with sufficiently high 
resolution are necessary for realistically simulating lake and coastal 
weather including coastal low-level jets, lake and sea breezes, as well 
as lake effects on rainfall and snow.

In regions like Fenno-Scandinavia or central-eastern Canada, very large 
fractions of land are covered by small and medium sized lakes. Other 
regions have fewer but larger lakes, such as central-eastern Africa, 
the eastern border between the USA and Canada, and central Asia. In 
these regions it has been considered essential to include a lake model 

in an RCM to realistically represent regional temperatures (Samuelsson 
et al., 2010; Deng et al., 2013; Mallard et al., 2014; Thiery et al., 2015; 
Pietikäinen et al., 2018), as well as remote effects (Spero et al., 2016). 
The most common approach in RCMs is the two-layer lake model, 
including a  lake-ice model, with parametrized vertical temperature 
profiles (Mironov et al., 2010; Golosov et al., 2018). For the Caspian 
Sea, it is found that a three-dimensional ocean model simulated the 
SST fields better than a one-dimensional lake model when coupled to 
the same RCM (Turuncoglu et al., 2013).

There is medium evidence and high agreement that it is important to 
include interactive lake models in RCMs to improve the simulation 
of regional temperature, in particular in seasonally ice-covered areas 
with large fractions of lakes. There is medium evidence of the local 
influence of lakes on snow and rainfall as well as the importance of 
including lakes in regional climate simulations.

10.3.3.4.4 Fronts

Weather fronts are two-dimensional surfaces separating air masses 
of different characteristics and are a  key element of mid-latitude 
cyclones. In particular cold fronts are regions of relatively strong 
uplift and hence often associated with severe weather (e.g., Schemm 
et al., 2016). Stationary or slowly moving fronts may cause extended 
heavy precipitation. The evaluation of how climate models represent 
fronts, however, remains limited. Catto et  al. (2014) found in both 
ERA-Interim and CMIP5 models that frontal frequency and strength 
were realistically simulated, albeit with some biases in the location. 
Follow-up investigations, for boreal and austral winter (Catto et al., 
2015) found frontal precipitation frequency to be too high and the 
intensity too low, but these compensating biases resulted in only 
a  small total precipitation bias. Blázquez and Solman (2018) found 
similar results for Southern Hemisphere (SH) winter, and also showed 
that CMIP5 models typically overestimate the fraction of frontal 
precipitation compared to total precipitation. As for the reference, the 
ERA-Interim reanalysis misrepresents conditional symmetric instability 
associated with fronts, and the corresponding precipitation (Glinton 
et  al., 2017). Only a  few studies evaluating fronts in RCMs have 
been conducted. Kawazoe and Gutowski (2013) diagnosed strong 
temperature gradients associated with extreme winter precipitation 
in the North American Regional Climate Change Assessment Program 
(NARCCAP) RCM ensemble (Mearns et  al., 2012) and found the 
models agreed well with gradients in a  reanalysis. De Jesus et  al. 
(2016) diagnosed the representations of cold fronts over southern 
Brazil in two RCMs, finding that they were only underestimated 
by about 5% across the year, but in one RCM, summer cold fronts 
were underestimated by 17%. An RCM-based reanalysis suggests 
that high-resolution RCM simulations improve the representation of 
orographic influences on fronts (Jenkner et al., 2009).

10.3.3.5 Performance at Simulating Regional Feedbacks

Both SRCCL (Jia et al., 2019) and SROCC (Hock et al., 2019) highlight 
the weaknesses of climate models at simulating atmosphere–surface 
feedbacks. The performance at simulating some of these feedbacks 
is assessed below (climate feedbacks in urban areas are discussed in 
Box 10.3).
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The snow-albedo feedback contributes to enhanced warming at 
high elevations (Section  8.5; Pepin et  al., 2015). Global models 
often do not simulate it realistically due to their misrepresentation 
of orography in complex terrain (Hall, 2014; Walton et  al., 2015). 
The elevation dependence of historical warming, which is partly 
caused by the snow-albedo effect, is realistically represented across 
Europe by the ENSEMBLES RCMs (Kotlarski et  al., 2015). Some 
EURO-CORDEX RCMs simulate a  spring snow–albedo feedback 
close to that observed, whereas others considerably overestimate it 
(Winter et al., 2017). In a multi-physics ensemble RCM experiment, 
the cold bias in north-eastern Europe is amplified by the albedo 
feedback (García-Díez et al., 2015). For the Rocky Mountains, RCM 
simulations generally reproduce the observed spatial and seasonal 
variability in snow cover, but strongly overestimate the snow albedo 
(Minder et al., 2016). There is high confidence (medium evidence and 
high agreement) that RCMs considerably improve the representation 
of the snow-albedo effect in complex terrain.

Soil-moisture feedbacks influence changes in both temperature 
and precipitation. More than 30% of CMIP5 models overestimate 
the influence of preceding precipitation (a proxy for soil moisture) 
on temperature extremes in Europe and the USA (Donat et  al., 
2018), and many CMIP5 models simulate an unrealistic influence 
of evaporation on temperature extremes for wet regions in Europe 
and the US (Ukkola et al., 2018). RCMs were found to realistically 
simulate the correlation between latent and sensible heat fluxes and 
temperature (coupling strength) over Africa (Knist et al., 2017; Careto 
et al., 2018) and in northern and southern Europe, but to overestimate 
it in central Europe (Knist et al., 2017). Land surface models driven 
by global reanalysis agreed relatively well with observations. 
However, the coupling strength varied strongly across models at the 
regional scale, and a realistic partitioning of the incoming radiation 
into latent and sensible heat fluxes did not necessarily result in 
a realistic soil moisture-temperature coupling (Gevaert et al., 2018; 
Boé et al., 2020a).

Evaluating the representation of soil-moisture–precipitation feedbacks 
in climate models is challenging as different processes may induce 
feedbacks including moisture recycling, boundary-layer dynamics 
and mesoscale circulation. Moreover, the effects of soil moisture 
on precipitation may be region and scale dependent and may even 
change sign depending on the strength of the background flow (Taylor 
et al., 2013; Froidevaux et al., 2014; Guillod et al., 2015; Larsen et al., 
2016; Tuttle and Salvucci, 2016). On seasonal-to-interannual time 
scales, CMIP5 models showed a stronger soil-moisture–precipitation 
feedback than estimated by satellite data (Levine et al., 2016). Taylor 
et  al. (2013) found that convection-permitting RCMs perform well 
at simulating surface-induced mesoscale circulations in daytime 
convection and the observed negative soil moisture feedback, 
whereas an RCM with parametrized convection, even when run at 
the same resolution, simulated an unrealistic positive feedback. 
There is medium evidence and high agreement that simulations at 
convection-permitting resolution are required to realistically represent 
soil-moisture–precipitation feedbacks.

Ocean–atmosphere RCMs have successfully been used to 
understand and simulate phenomena involving strong regional 

feedbacks like tropical cyclones in the Indian Ocean (Samson 
et al., 2014), Indian summer monsoon (Samanta et al., 2018), East 
Asian summer monsoon (Zou et  al., 2016), near coastline intense 
precipitation in the Mediterranean (Berthou et  al., 2015, 2018), 
air-sea fluxes influencing heat and humidity advection over land 
(Sevault et al., 2014; Lebeaupin Brossier et al., 2015; Akhtar et al., 
2018) or snow bands in the Baltic region (Pham et al., 2017). The 
positive impact of ocean-coupling on the simulation of strongly 
convective phenomena such as Medicanes, a  class of severe 
cyclones in the Mediterranean, can only be diagnosed when using 
relatively fine atmospheric resolution of about 10 km (Akhtar et al., 
2014; Flaounas et al., 2018; Gaertner et al., 2018). A positive impact 
of ocean coupling has been quantified in marginal sea regions with 
reduced large-scale influence (e.g.,  in the Baltic Sea area during 
weak phases of the NAO and thus weak influence of Atlantic 
westerlies (Kjellström et al., 2005; Pham et al., 2018). There is some 
evidence that coupled ocean components also positively impact 
RCM simulations of inland climates such as precipitation extremes 
in central Europe (Ho-Hagemann et al., 2017; Akhtar et al., 2019). 
There is high confidence that coupled ocean–atmosphere RCMs 
improve the representation of ocean–atmosphere feedbacks and 
related phenomena.

The influence of ice-sheet mass balance on regional climate, explored 
with global and regional models by (Noël et al., 2018; Fettweis et al., 
2020), is discussed in Section 9.4.

10.3.3.6 Performance at Simulating Regional Drivers 
of Climate and Climate Change

Dust, with its regional character in both emissions and climatic 
influences, has traditionally been specified in climate simulations 
with a  climatological estimate. In CMIP5 models, the influence of 
vegetation changes on mineral dust is largely underestimated while 
the influence of surface wind and precipitation are overestimated, 
resulting in a low bias of dust load (Pu and Ginoux, 2018). Interactive 
dust emission modules that simulate the dust optical depth in most of 
the key emission regions have only been recently introduced (Pu and 
Ginoux, 2018). However, coarse dust is underestimated in global 
models (Adebiyi and Kok, 2020). Simulations of future changes in 
dust are hindered by the uncertainties in future regional wind and 
precipitation as the climate warms (Evan et al., 2016), in the effect 
of CO2 fertilization on source extent (Huang et al., 2017), in the dust 
feedbacks (Evans et al., 2019), and in the effect of human activities 
that change land use and disturb the soil, including cropping and 
livestock grazing, recreation and urbanization, and water diversion 
for irrigation (Ginoux et al., 2012).

Volcanoes also provide forcings with a  marked regional impact 
(Cross-Chapter Box  4.1). This implies that models are expected to 
capture these effects (Bethke et al., 2017). Both proxy analyses and 
simulations have demonstrated reduced Asian monsoon precipitation 
after tropical and Northern Hemisphere (NH) volcanic eruptions due 
to reduced humidity and divergent circulation (Man and Zhou, 2014; 
Zhuo et al., 2014; F. Liu et al., 2016; Stevenson et al., 2016). Global 
model experiments (Zanchettin et al., 2013; Ortega et al., 2015; Sjolte 
et al., 2018; Michel et al., 2020) have suggested that tropical volcanic 
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eruptions (larger than the one from Mount Pinatubo in 1991) may 
lead to a positive phase of the winter NAO in the following few years 
(with an uncertainty on the exact years affected), but this influence 
is not well-reproduced in climate models and requires very large 
ensembles (Driscoll et  al., 2012; Toohey et  al., 2014; Swingedouw 
et  al., 2017; Ménégoz et  al., 2018b). The ability to simulate the 
effect of volcanic aerosol in global models is evaluated in VolMIP 
(Zanchettin et  al., 2016). Given the relevance of volcanic aerosol, 
a  good knowledge of the initial conditions is important because 
the response has proven to be sensitive to them (Ménégoz et  al., 
2018a; Zanchettin et  al., 2019). A  few decadal prediction systems 
have illustrated that current systems can predict some aspects of 
regional climate a few years in advance (Swingedouw et al., 2017; 
Illing et al., 2018; Ménégoz et al., 2018a; Hermanson et al., 2020). 
However, a better performance requires information about volcanic 
location (Haywood et al., 2013; Pausata et al., 2015; Stevenson et al., 
2016; F. Liu et al., 2018a), strength (Emile-Geay et al., 2008; H.-G. Lim 
et al., 2016; F. Liu et al., 2018b), and seasonality (Stevenson et al., 
2017; Sun et al., 2019a, b).

Some recent regional climate changes can only be simulated by 
climate models if anthropogenic aerosols are correctly included 
(Sections 10.4.2.1, 10.6.3 and 10.6.4; Chapters 6 and 8). Examples 
of the importance of correctly representing anthropogenic aerosols 
are the recent enhanced warming over Europe (Nabat et al., 2014; 
Dong et al., 2017), the cooling over the East Asian monsoon region, 
leading to a weakening of the monsoon (Section 8.3.2.4; Song et al., 
2014; Q. Wang et  al., 2017), as well as changes in the monsoons 
of West Africa (Sections 8.3.2.4 and 10.4.2.1) and South Asia 
(Sections 8.3.2.4 and 10.6.3; Undorf et al., 2018). The relevance of 
appropriately representing anthropogenic aerosols has been widely 
studied in regional models (Boé et al., 2020a; Gutiérrez et al., 2020), 
with an advantage for models with interactive aerosol schemes 
(Drugé et  al., 2019; Nabat et  al., 2020). Without a  fully coupled 
chemistry module, radiative forcing can be simulated by including 
simple models of sulphate chemistry or specifying the optical 
properties from observations and prescribing the effect of aerosols 
on the cloud-droplet number (Fiedler et  al., 2017, 2019; Stevens 
et al., 2017). In all cases, the specification of the aerosol load limits 
the trustworthiness of the simulations at the regional scale when 
enough detail is not provided (Samset et al., 2019; Shonk et al., 2020; 
Z. Wang et al., 2021).

The inclusion of irrigation in global and regional models over the 
South Asian monsoon region (Section  10.6.3) has been found to 
be important to represent the monsoon circulation and rainfall 
correctly (Lucas-Picher et al., 2011; Guimberteau et al., 2012; Shukla 
et al., 2014; Tuinenburg et al., 2014; Cook et al., 2015a; Devanand 
et al., 2019). Similarly, the inclusion of irrigation over northern India 
and western Pakistan could be important for the correct simulation 
of precipitation over the Upper Indus Basin in northern Pakistan 
(Saeed et  al., 2013). Irrigation in the East African Sahel inhibits 
rainfall over the irrigated region and instead enhances rainfall to the 
east, coherent with both observations and theoretical understanding 
of the local circulation anomalies induced by the lower surface 
air temperatures over the irrigated region (Alter et  al., 2015). 
Although several studies show how modelled irrigation reduces 

daytime temperature extremes, few compare modelled results with 
observations. Global model studies have found improvements in 
simulated surface temperature when including irrigation (Thiery 
et  al., 2017), in particular in areas where the model used has 
a  strong land-atmosphere coupling (Chen and Dirmeyer, 2019). 
An RCM study over the North China Plain showed that the inclusion 
of irrigation led to a better representation of the observed nighttime 
warming (Chen and Jeong, 2018).

There is medium confidence that representing irrigation is important 
for a realistic simulation of South Asian monsoon precipitation. There 
is limited evidence that including irrigation in climate models improves 
the simulation of maximum and minimum daily temperatures as well 
as precipitation for other regions.

Regional land-radiation management, including modifying the 
albedo through, for instance, no-tillage practices, has been suggested 
as a  measure to decrease regional maximum daily temperatures 
(see  review in Seneviratne et  al., 2018), but although modelled 
results and theoretical understanding are coherent, few studies 
have verified the results with observations. Hirsch et al. (2018) is an 
exception, showing that implementing minimal tillage, crop residue 
management and crop rotation in a global model over regions where 
it is practiced, improves the simulation of surface heat fluxes.

10.3.3.7 Statistical Downscaling, Bias Adjustment 
and Weather Generators

The performance of statistical downscaling models, bias adjustment 
and weather generators is determined by the chosen model structure 
(e.g.,  to represent variability and extremes or spatial dependence) 
and, if applicable, the predictors selected (Maraun et  al., 2019a). 
The VALUE initiative has assessed a  range of such methods in 
a perfect-predictor experiment where the predictors are taken from 
reanalysis data (Maraun et al., 2015, 2019a; Gutiérrez et al., 2019). 
Table 10.2 shows an overview comprising performance results from 
VALUE and other studies. These results isolate the performance of the 
statistical method in the present climate. The overall performance in 
a climate change application also depends on the performance of the 
driving climate model (Sections 10.3.3.3–10.3.3.6) and the fitness of 
both the driving model and the statistical method for projecting the 
climatic aspects of interest (Section 10.3.3.9).

10.3.3.7.1 Performance of perfect prognosis methods

Perfect prognosis methods can perform well when the synoptic 
forcing (i.e., the explanatory power of large-scale predictors) is strong 
(Schoof, 2013). Using this approach, downscaling of precipitation is 
particularly skilful in the presence of strong orographic forcing. The 
representation of daily variability and extremes requires analogue 
methods or stochastic regression models, although the former 
typically do not extrapolate to unobserved values (Gutiérrez et al., 
2019; Hertig et al., 2019). Temporal precipitation variability is well-
represented by analogue methods and stochastic regression, but 
analogue methods typically underestimate temporal dependence 
of temperature (Maraun et al., 2019b). Spatial dependence of both 
temperature and precipitation is only well-represented by analogue 
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methods, for which analogues are defined jointly across locations, 
and by stochastic regression methods explicitly representing spatial 
dependence (Widmann et al., 2019). Overall, there is high confidence 
that analogue methods and stochastic regression are able to 
represent many aspects of daily temperature and variability, but 
the analogue method is inherently limited in representing climate 
change (Gutiérrez et al., 2013).

10.3.3.7.2 Performance of bias adjustment methods

This subsection assesses the performance of bias adjustment in 
a perfect predictor context. In practice, climate model imperfections 
may cause substantial additional issues in the application of 
bias adjustment. These are assessed separately in Cross-Chapter 
Box 10.2.

Table 10.2 | Performance of different statistical method types in representing local weather at daily resolution. Individual state-of-the-art implementations 
may perform better. ‘+’: should work reasonably well based on empirical evidence and/or expert judgement; ‘o’: problems may arise depending on the specific context; ‘–’: weak 
performance either by construction or inferred from empirical evidence; ‘?’: not studied. The categorisation assumes that predictors are provided by a well-performing dynamical 
model. Statements about extremes refer to moderate events occurring at least once every 20 years. Adopted and extended from Maraun and Widmann (2018b).
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Temperature

Mean + + + o + + + + + + + + 6

Variance – o + o o + + + + + + + 6

Extremes – o + + o + + + + + + + 8, 10

Temperature, temporal variability

Autocorrelation + + – – + + + + + + + + 2, 10, 12

Mean spells o o – – + + + + + + + + 2, 10, 12

Extreme spells + + – o + + + + + + + + 2, 8

Interannual variance – o – – + o o o – o – –/o 12

Climate change + – + – + o o o + + + + 1, 5, 10, 12

Temperature, spatial variability

Means o o – –/+ + + + + –/? –/? –/? ? 2, 14

Extremes – – – –/+ + + + + –/? –/? –/? ? 8, 14

Precipitation, marginal

Wet-day probabilities – – + + + + + + + + + + 3, 6, 7, 11

Mean intensity – – + + + + + + + + + + 3, 6, 7, 9, 11

Extremes – – + + o + o + o o o o 3, 7, 8, 9, 11

Precipitation, temporal variability

Transition probabilities – – + + o + + + + + + + 3, 11, 12

Mean spells – – + + o + + + o + o o/+ 3, 4, 7, 11, 12

Extreme spells – – + + + + + + – o – –/o 3, 4, 8, 9, 11

Interannual variance – o o o + o o o – o – –/o 4, 7, 12

Climate change + – + o + o o o + + + + 1, 12, 13

Precipitation, spatial variability

Means – – – –/+ o + + + –/o –/o –/o o 3, 4, 11, 14

Extremes – – – –/+ o o o o –/? –/? –/? ? 3, 14

References: (1) Casanueva et  al. (2020); (2) Dubrovsky et  al. (2019); (3) Evin et  al. (2018); (4) Frost et  al. (2011); (5) Gutiérrez et  al. (2013); (6) Gutiérrez et  al. (2019); 
(7) Gutmann et al. (2014); (8) Hertig et al. (2019); (9) Hu et al. (2013a); (10) Huth et al. (2015); (11) Keller et al. (2015); (12) Maraun et al. (2019b); (13) San-Martín et al. (2017); 
(14) Widmann et al. (2019).
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Bias adjustment methods, if driven by reanalysis predictors, in 
principle adjust well all the aspects that they intend to address 
(Maraun and Widmann, 2018b). For temperature, all univariate 
methods are good for adjusting means, variance, and high quantiles 
(Gutiérrez et  al., 2019; Hertig et  al., 2019). For precipitation, 
means, intensities, wet-day frequencies, and wet–dry and dry–wet 
transitions are well-adjusted (Gutiérrez et al., 2019; Maraun et al., 
2019b). The representation of high quantiles depends on the 
chosen method, although flexible quantile mapping performs best 
(Hertig et  al., 2019). Empirical (non-parametric) methods perform 
better than parametric methods over the observed range, but it is 
unclear how this translates into extrapolation to unobserved values 
(IPCC, 2015; Hertig et al., 2019). Many quantile mapping methods 
overestimate interannual variability (Maraun et al., 2019b). Temporal 
and spatial dependence are usually not adjusted and thus inherited 
from the driving model (Maraun et al., 2019b; Widmann et al., 2019). 
Spatial fields are thus typically too smooth in space, even after bias 
adjustment (Widmann et al., 2019).

Several studies show improved simulations of present-day impacts, 
when the impact model is fed with bias-adjusted climate model 
output, including the assessment of river discharge (Rojas et al., 2011; 
Muerth et al., 2013; Montroull et al., 2018), forest fires (Migliavacca 
et al., 2013), crop production (Ruiz-Ramos et al., 2016), and regional 
ocean modelling (Macias et al., 2018).

There is high confidence that bias adjustment can improve the 
marginal distribution of simulated climate variables, if applied to 
a climate model that adequately represents the processes relevant 
for a given application (Cross-Chapter Box 10.2).

10.3.3.7.3 Performance of weather generators

Weather generators represent well most aspects that are explicitly 
calibrated. This typically includes mean, variance, high quantiles 
(for precipitation, if explicitly modelled), and short-term temporal 
variability for both temperature and precipitation, whereas 
interannual variability is strongly underestimated (Frost et al., 2011; 
Hu et al., 2013a; Keller et al., 2015; Dubrovsky et al., 2019; Gutiérrez 
et  al., 2019; Hertig et  al., 2019; Maraun et  al., 2019b; Widmann 
et al., 2019). There is growing evidence that some spatial weather 
generators fairly realistically capture the spatial dependence of 
temperature and precipitation (Frost et al., 2011; Hu et al., 2013a; 
Keller et al., 2015; Evin et al., 2018; Dubrovsky et al., 2019). There is 
high confidence that weather generators can realistically simulate 
a  wide range of local weather characteristics at single locations, 
but there is limited evidence and low agreement of the ability of 
weather generators to realistically simulate the spatial dependence 
of atmospheric variables across multiple sites.

10.3.3.8 Performance at Simulating Historical 
Regional Climate Changes

This section assesses how well climate models perform at realistically 
simulating historical regional climatic trends. Current global model 
ensembles reproduce global to continental-scale surface temperature 
trends at multi-decadal to centennial time scales (CMIP5, CMIP6), but 

underestimate precipitation trends (CMIP5) (Sections 3.3.1 and 3.3.2). 
For regional trends, AR5 concluded that the CMIP5 ensemble cannot 
be taken as a  reliable representation of reality and that the true 
uncertainty can be larger than the simulated model spread (Kirtman 
et  al., 2014). Case studies of regional trend simulations by global 
models can be found in Sections 10.4.1 and 10.6, and region-by-
region assessments in the Atlas. A  key limitation for assessing the 
representation of regional observed trends by single transient 
simulations of global models (or downscaled versions thereof) is the 
strong amplitude of internal variability compared to the forced signal 
at the regional scale (Section 10.3.4.3). Even on multi-decadal time 
scales, an agreement between observed and individual simulated 
trends would be expected to occur only by chance (Laprise, 2014).

In the context of downscaling, the ability of downscaling methods to 
reproduce observed trends when driven with boundary conditions or 
predictors taken from reanalysis data (which reproduce the observed 
internal variability on long time scales) can be assessed. For temperature 
in the continental USA, reanalysis-driven RCMs skilfully simulated recent 
spring and winter trends, but did not reproduce summer and autumn 
trends, (Bukovsky, 2012). Over Central America, observed warming 
trends were reproduced (Cavazos et al., 2020). In contrast, a reanalysis-
driven coupled atmosphere–ocean RCM covering the Mediterranean 
could not reproduce the observed SST trend (Sevault et al., 2014).

Similar studies have been carried out for statistical downscaling 
and bias adjustment using predictors from reanalyses (or in case of 
bias adjustment, dynamically downscaled reanalyses). For a  range 
of different perfect prognosis methods, Huth et  al. (2015) found 
that simulated temperature trends were too strong for winter and 
too weak for summer. The performance was similar for the different 
methods, indicating the importance of choosing informative predictors. 
Similarly, Maraun et al. (2019b) found that the performance of perfect 
prognosis methods depends mostly on the predictor and domain 
choice (for instance, temperature trends were only captured by those 
methods including surface temperature as predictor). Bias adjustment 
methods reproduced the trends of the driving reanalysis, apart from 
quantile mapping methods, which deteriorated these trends.

RCM experiments are often set up such that changes in forcing agents 
are included only via the boundary conditions, but not explicitly 
included inside the domain. Jerez et al. (2018) demonstrated that not 
including time-varying GHG concentrations within the RCM domain 
may misrepresent temperature trends by 1–2°C per century. Including 
the past trend in anthropogenic sulphate aerosols in reanalysis-driven 
RCM simulations substantially improved the representation of recent 
brightening and warming trends in Europe (Nabat et al., 2014; see 
Sections 10.3.3.6 and 10.6.4, and Atlas.8.4). Similarly, Bukovsky (2012) 
argued that RCMs may not capture observed summer temperature 
trends in the USA because changes in land cover are not taken 
into account. Barlage et al. (2015) have revealed that including the 
behaviour of groundwater in land schemes increases the performance 
of an RCM model to represent climate variability in the central USA. 
Hamdi et al. (2014) found that an RCM that did not incorporate the 
historical urbanization in the land-use, land-cover scheme is not able 
to reproduce the warming trend observed in urban stations, with 
a larger bias for the minimum temperature trend.
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Overall, there is high confidence that including all relevant forcings is 
a prerequisite for reproducing historical trends.

10.3.3.9 Fitness of Climate Models for 
Projecting Regional Climate

AR5 stated that confidence in climate model projections is based 
on the physical understanding of the climate system and its 
representation in climate models. A  climate model’s credibility for 
future projections may be increased if the model is able to simulate 
past variations in climate (Sections 10.3.3.8, 10.4.1 and 10.6; Flato 
et al., 2014). In particular, the credibility of downscaled information 
depends on the quality of both the downscaling method and of the 
global model providing the large-scale boundary conditions (Flato 
et al., 2014). Credibility is closely linked to the concept of adequacy 
or fitness-for-purpose (Section 1.5.4.1; Parker, 2009). From a regional 
perspective, one may ask about the fitness of a  climate model for 
simulating future changes of specific aspects of a specific regional 
climate. The required level of model fitness may depend on the user 
context (Section  10.5). A  key challenge is to link performance at 
representing present and past climate (Sections 10.3.3.3–10.3.3.8) 
to the confidence in future projections (Section 1.3.5; Baumberger 
et al., 2017) and it is addressed in this subsection.

A general idea of model fitness for a  given application may be 
obtained by checking whether relevant large- (Section 10.3.3.4) and 
regional-scale (Sections 10.3.3.5 and 10.3.3.6) processes are explicitly 
resolved (Figure 10.3). The basis for confidence in climate projection 
is a solid process understanding (Flato et al., 2014; Baumberger et al., 
2017). Thus, the key to assessing the fitness-for-purpose of a model is 
the evaluation of how relevant processes controlling regional climate 
are represented (Collins et al., 2018). A process-based evaluation may 
be more appropriate than an evaluation of the variables of interest 
(e.g.,  temperature, precipitation), because biases in the latter may 
in principle be reduced if the underlying processes are realistically 
simulated (Cross-Chapter Box 10.2), while individual variables may 
appear as well-represented because of compensating errors (Flato 
et al., 2014; Baumberger et al., 2017). Combining a process-based 
evaluation with a  mechanistic explanation of projected changes 
further increases confidence in projections (Bukovsky et al., 2017). 
Fitness-for-purpose can also be assessed by comparing the simulated 
response of a  model with simulations of higher resolution models 
that better represent relevant processes (Baumberger et al., 2017). 
For instance, Giorgi et al. (2016) have corroborated their findings on 
precipitation changes comparing standard RCM simulations with 
convection-permitting simulations.

The evaluation of model performance at historical variability and long-
term changes provides further relevant information (Flato et al., 2014). 
Trend evaluation may provide very useful insight, but has limitations, 
in particular at the regional scale, mainly due to multi-decadal internal 
climate variability (Section  10.3.3.8), observational uncertainty 
(in  both driving reanalysis and local trends; Section  10.2), and the 
fact that often not all regional forcings are known, and that past 
trends  may be driven by forcings other than those driving future 
trends (Sections 10.4.1 and 10.6.3).

Increasing resolution (Haarsma et al., 2016) or performing downscaling 
may be particularly important when it modifies the climate change 
signal of a  lower resolution model in a  physically plausible way 
(Hall, 2014). Improvements may result from a better representation 
of regional processes, upscale effects, as well as the possibility of 
a  region-specific model tuning (Sørland et  al., 2018). For instance, 
Gula and Peltier (2012) showed that a higher resolution allows for 
a more realistic simulation of lake-induced precipitation, resulting in 
a more credible projection of changes in the snow belts of the North 
American Great Lakes. Similarly, Giorgi et  al. (2016) demonstrated 
that an ensemble of RCMs better represents high-elevation surface 
heating and in turn increased convective instability. As a result, the 
summer convective precipitation response was opposite to that 
simulated by the driving global models (Figure  10.9). Similarly, 
Walton et  al. (2015) showed that a  kilometre-scale RCM enables 
a  more realistic representation of the snow-albedo feedback in 
mountainous terrain compared to standard resolution global models, 
leading to a  more plausible simulation of elevation-dependent 
warming. Bukovsky et al. (2017) argue that strong seasonal changes 
in warm-season precipitation in the Southern Great Plains of the USA, 
projected by RCMs, are more credible than the weaker global model 
changes because precipitation is better simulated in the RCMs.

Including additional components, feedbacks and drivers can 
substantially modify the simulated future climate. For example, 
Kjellström et  al. (2005) and Somot et  al. (2008) have shown that 
a  regional ESM can significantly modify the SST response to 
climate change of its driving global model with implications for 
the climate change signal over both the sea and land. In particular, 
coupled ocean–atmosphere RCMs may increase the credibility of 
projections in regions of strong air-sea coupling such as the East 
Asia–western North Pacific domain (Zou and Zhou, 2016b, 2017). 
Recent studies demonstrate the importance of including regional 
patterns of evolving aerosols in RCMs for simulating regional climate 
change (Boé et al., 2020a; Gutiérrez et al., 2020). RCMs not including 
the plant physiological response to increasing CO2 concentrations 
have been shown to substantially underestimate projected increases 
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Figure 10.9 | Projected changes in summer (June to August) precipitation 
(in percent with respect to the mean precipitation) over the Alps between 
the periods 2070–2099 and 1975–2004. (a) Mean of four global climate 
models (GCMs) regridded to a common 1.32° × 1.32° grid resolution; (b) mean of 
six regional climate models (RCMs) driven with these GCMs. The grey isolines show 
elevation at 200 m intervals of the underlying model data. Further details on data 
sources and processing are available in the chapter data table (Table  10.SM.11). 
Figure adapted from Giorgi et al. (2016).
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in extreme temperatures across Europe compared to global models 
that explicitly model this effect (Schwingshackl et al., 2019).

A difference between the climate changes simulated by two models 
does not automatically imply the more complex or higher resolution 
model is superior (e.g.,  Dosio et  al., 2019). Studies comparing 
convection-permitting RCM simulations to simulations of climate 
models with parametrized convection find, depending on the 
considered models, regions and seasons, either similar or qualitatively 
different projected changes in short duration extreme precipitation 
(Chan et  al., 2014a, b, 2020; Ban et  al., 2015; Tabari et  al., 2016; 
Fosser et al., 2017; Kendon et al., 2017, 2019; Vanden Broucke et al., 
2018). Process studies provide evidence that convection-permitting 
simulations better represent crucial local and mesoscale features of 
convective storms and thus simulate more plausible changes (Meredith 
et al., 2015a; Prein et al., 2017; Fitzpatrick et al., 2020), but further 
research is required to confirm and reconcile the different findings.

Studies assessing the fitness of statistical approaches for regional 
climate projections are still very limited in number. For statistical 
downscaling, a key issue is to include predictors that control long-term 
changes in regional climate. Models differing only in the choice 
of predictors may perform similarly in the present climate, but may 
project opposite precipitation changes (Fu et  al., 2018; Manzanas 
et al., 2020). In addition to trend-evaluation studies (Section 10.3.3.8), 
perfect-model experiments (Section 10.3.2.5) have been used to assess 
whether a  given model structure with a  chosen set of predictors is 
capable of reproducing the simulated future climates (Gutiérrez et al., 
2013; Räty et al., 2014; Dayon et al., 2015; Dixon et al., 2016; San-Martín 
et al., 2017). Importantly, it is found that standard analogue methods 
inherently underestimate future warming trends because of missing 
analogues for a warmer climate (Gutiérrez et al., 2013). 

Bias adjustment assumes that model biases are time invariant 
(or more precisely, independent of the climate state), such that the 
adjustment made to present climate simulations is still applicable 
to future climate simulations. Many findings challenge the validity 
of this assumption, as already assessed in AR5 (Flato et al., 2014). 
Further research has addressed this issue by means of perfect 
model experiments (Section  10.3.2.5) and process understanding. 
Perfect-model studies with GCMs found that circulation, energy, 
and water-cycle biases are roughly state-independent (Krinner 
and Flanner, 2018), whereas temperature biases depend linearly 
on temperature (Kerkhoff et  al., 2014). Others show that regional 
temperature biases may depend on soil moisture and albedo, 
and may thus be state-dependent (Maraun, 2012; Bellprat et  al., 
2013; Maraun et al., 2017; see Cross-Chapter Box 10.2 for further 
limitations of bias adjustment). The fitness of weather generators for 
future projections depends on whether they account for all relevant 
changes in their parameters, either by predictors or change factors 
(Maraun and Widmann, 2018b).

In any case, the fitness of regional climate projections based on 
dynamical downscaling or statistical approaches depends on the fitness 
of the driving models in projecting boundary conditions, predictors and 
change factors (Hall, 2014; Maraun and Widmann, 2018b).

Overall, there is high confidence that an assessment of model fitness 
for projections applying process-based evaluation, process-based 
plausibility checks of projections and a comparison of different model 
types, increases the confidence in climate projections. There is high 
confidence that increasing model resolution, dynamical downscaling, 
statistical downscaling with well-simulated predictors controlling 
regional climate change, and adding relevant model components can 
increase the fitness for projecting some aspects of regional climate 
when accompanied by a process-understanding analysis.

10.3.3.10 Synthesis of Model Performance at Simulating 
Regional Climate and Climate Change

Global models reproduce many of the features of observed climate 
and its variability at regional scales. However, global models 
can show a  variety of biases in, for instance, precipitation and 
temperature at scales ranging from continental (Prasanna, 2016) to 
sub-continental scales (Lovino et al., 2018), both in the mean and 
in higher order moments of the climatological distribution of the 
variable (Figure  10.6; Ren et  al., 2019; Xin et  al., 2020). Regional 
biases could occur even if all the relevant large-scale processes are 
correctly represented, but not their interaction with regional features 
such as orography or land–sea contrasts (Section  10.3.3.4). These 
biases have been considered an important limiting factor in model 
usability, especially at the regional scale (Palmer, 2016). In  spite 
of this, global model simulations have been extensively used to 
create regional estimates of climate change (Chapters 11, 12 and 
Atlas), taking into account the result of a performance assessment 
(Chapter  11, Sections 10.3.3.3–10.3.3.8, and Atlas; Jiang et  al., 
2020). However, their application is limited in part by the effective 
resolution of these models (Klaver et al., 2020).

Global model performance at the regional scale is assessed in 
terms of the time or spatial averages of key variables (see Atlas; 
Brunner et  al., 2019), the ability to reproduce their seasonal 
cycle (Hasson et  al.,  2013) or a  set of extreme climate indicators 
(Chapter  11; Luo et  al., 2020) and the representation of regional 
processes and phenomena, feedbacks, drivers and forcing impacts 
(Sections  10.3.3.4–10.3.3.6). In many cases, the performance 
estimates have been used to select models for either an application 
or a more in-depth study (Lovino et al., 2018), to select the models 
that provide boundary conditions to perform RCM simulations 
(McSweeney et al., 2015) or to weight the results of the global model 
simulations (Sanderson et al., 2015; Brunner et al., 2020). While some 
large-scale metrics are improved between the CMIP5 and CMIP6 
experiments (Chapter 3; Cannon, 2020), there is not yet concluding 
evidence of a  systematic improvement for surface variables at the 
regional scale.

The special class of high-resolution global models (Sections 1.5.3.1 
and 10.3.3.1, Chapter  3; Haarsma et  al., 2016; Prodhomme et  al., 
2016) is expected to improve some of the regional processes 
that are not appropriately represented in standard global models 
(Roberts et  al., 2018). There is general consensus that increasing 
global model resolution improves some long-standing biases 
(Chapter  3, Section  10.3.3.3, and Figures 10.6 and 10.7; Demory 
et al., 2014, 2020; Schiemann et al., 2014; Dawson and Palmer, 2015; 
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van Haren et al., 2015; Feng et al., 2017; Fabiano et al., 2020), although 
the resolution increase is not a  guarantee of overall improvement 
(Section 8.5.1; Fabiano et al., 2020; Hertwig et al., 2021). For instance, 
increasing resolution in global models has been shown to improve 
Asian monsoon rainfall anchored to orography and the monsoon 
circulation (Johnson et al., 2016), but fails to solve the major dry bias. 
It is also difficult to disentangle the role of resolution increase and 
model tuning on the performance of the GCM (Anand et al., 2018). 
Some efforts have been undertaken to complement the performance 
improvements of resolution by using stochastic parametrizations 
(Palmer, 2019), which explicitly acknowledge the multi-scale nature 
of the climate system, in standard resolution global models with some 
success (Dawson and Palmer, 2015; MacLeod et al., 2016; Zanna et al., 
2017, 2019). The expectation is to achieve a similar performance to 
the increase in resolution at a reduced computational cost.

Despite their known errors that affect model performance, there 
is high confidence that global models provide useful information 
for the production of regional climate information. There is robust 
evidence and high agreement that the increase of global model 
resolution helps in reducing the biases limiting performance at the 
regional scale, although resolution per se does not automatically 
solve all performance limitations shown by global models. There is 
robust evidence that stochastic parametrizations can help to improve 
some aspects of the global model performance that are relevant to 
regional climate information.

Global models tend to have difficulties in simulating climate over 
regions where unresolved local scale processes, feedbacks and 
non-linear scale interactions result in a  degradation of the model 
performance compared to models with higher resolution. In this case, 
RCMs and variable resolution global models can resolve part of these 
processes in the regions of interest at an acceptable computational 
cost (Rummukainen, 2016; Giorgi, 2019; Gutowski Jr. et al., 2020).

The assessment of RCM performance needs to focus not only on 
mean climatology (Atlas), but also trends (Section  10.3.3.8) and 
extremes (Chapter 11), and the RCM’s ability at correctly reproducing 
relevant processes, forcings and feedbacks including aerosols, plant 
responses to increasing CO2, and so on, (Schwingshackl et al., 2019; 
Boé et al., 2020a; Sections 11.2. and 10.3.3.3 to 10.3.3.8) to be fit for 
future projections (Section 10.3.3.9).

When RCMs are driven by global models, part of the uncertainty 
in the RCM simulation is introduced by the global model biases 
(Kjellström et  al., 2018; Sørland et  al., 2018; Christensen and 
Kjellström, 2020). As RCMs are typically not able to mitigate global 
model biases in large-scale dynamical processes, if such biases 
are substantial, and if the corresponding large-scale processes are 
important drivers of regional climate, downscaling is questionable 
(Section  10.3.3.3). However, when global models have weak 
circulation biases and regional climate change is controlled mainly 
by regional-scale processes and feedbacks, dynamical downscaling 
has the potential to add substantial value to global model 
simulations (Section 10.3.3.4 and Atlas; Hall, 2014; Rummukainen, 
2016; Giorgi, 2019; Schwingshackl et  al., 2019; Boé et  al., 2020a; 
Lloyd et al., 2021).

There is very high confidence (robust evidence and high agreement) 
that RCMs add value to global simulations in representing many 
regional weather and climate phenomena, especially over regions 
of complex orography or with heterogeneous surface characteristics 
and for local-scale phenomena. Realistically representing local-scale 
phenomena such as land–sea breezes requires simulations at 
a  resolution of the order of 10 km (high confidence). Simulations 
at  kilometre-scale resolution add value in particular to the 
representation of convection, sub-daily summer precipitation extremes 
(high confidence) and soil-moisture–precipitation feedbacks (medium 
confidence). Resolving regional processes may be required to correctly 
represent the sign of regional climate change (medium confidence). 
However, the performance of RCMs and their fitness for future 
projections depend on their representation of relevant processes, 
forcings and drivers in the specific context (Sections 10.3.3.4–10.3.3.8).

Statistical downscaling, bias adjustment and weather generators 
outperform uncorrected output of global and regional models 
for a  range of statistical aspects at single locations due to their 
calibration (Casanueva et  al., 2016), but RCMs are superior when 
spatial fields are relevant (Mehrotra et  al., 2014; Vaittinada Ayar 
et al., 2016; Maraun et al., 2019a). Similarly, there is some evidence 
that bias adjustment is comparable in performance when applied to 
global models and dynamically downscaled global models only for 
single locations, but dynamical downscaling prior to bias adjustment 
clearly adds value once spatial dependence is relevant (Maraun 
et al., 2019a). These results may explain why dynamical downscaling 
does not add value to global model simulations for (single-site) 
agricultural modelling, when both global and regional models are 
bias adjusted (Glotter et al., 2014), but dynamical downscaling adds 
value compared to bias-adjusted global model output for spatially 
distributed hydrological models (Qiao et al., 2014).

Overall, statistical downscaling methods with carefully chosen 
predictors and an appropriate model structure for a given application 
realistically represent many statistical aspects of present-day daily 
temperature and precipitation (high confidence, Section  10.3.3.7). 
Bias adjustment has proven beneficial as an interface between 
climate model projections and impact modelling in many different 
contexts (high confidence) (Section  10.3.3.7). Weather generators 
realistically simulate many statistical aspects of present-day daily 
temperature and precipitation (high confidence) (Section 10.3.3.7). 
The performance of these approaches and their fitness for future 
projections also depends on predictors and change factors taken from 
the driving dynamical models (high confidence) (Section 10.3.3.9).

10.3.4 Managing Uncertainties in 
Regional Climate Projections

Regional climate projections are affected by three main sources 
of uncertainty (Sections 10.2.2, 1.4.3 and 4.2.5): unknown future 
external forcings, imperfect knowledge and implementation of the 
response of the climate system to external forcings, and internal 
variability (Lehner et al., 2020). In a  regional downscaling context, 
uncertainties arise in every step of the modelling chain. Here the 
propagation of uncertainties (Section 10.3.4.1), the management of 
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uncertainties (Section  10.3.4.2), the role of the internal variability 
for regional projections (Section 10.3.4.3), and the design and use 
of ensembles to account for uncertainties (Section 10.3.4.4) will be 
assessed. Observational uncertainty, in particular for the calibration of 
statistical downscaling methods (Section 10.2.3.1), also contributes 
to projection uncertainty.

10.3.4.1 Propagation of Uncertainties

Modelling chains for generating regional climate information range 
from the definition of forcing scenarios to the global modelling, 
and potentially to dynamical or statistical downscaling and bias 
adjustment (Section  10.3.1). The propagation and potential 
accumulation of uncertainties along the chain has been termed the 
cascade of uncertainty (Wilby and Dessai, 2010). Even within one 
model, like a global model, uncertainty propagates across scales. From 
a process point of view, these uncertainties are related to forcings 
and global climate sensitivity, and errors in the representation of the 
large-scale circulation (Section  10.3.3.3; McNeall et  al., 2016) and 
regional processes (Section  10.3.3.4), feedbacks (Section  10.3.3.5) 
and drivers (Section 10.3.3.6). From a modelling point of view, these 
uncertainties are related to the choice of dynamical and statistical 
models (Section  10.3.1) and experimental design (Section  10.3.2). 
The overall uncertainty can be statistically decomposed into the 
individual sources (Evin et al., 2019; Christensen and Kjellström, 2020), 
although there might be non-linear dependencies between them.

Uncertainty propagation often increases the spread in regional climate 
projections when comparing global model and downscaled results, 
which has been used as an argument against top-down approaches 
to climate information (Prudhomme et al., 2010). Increased spread 
in the modelling chain may also arise from a more comprehensive 
representation of previously unknown or underrepresented 
uncertainties (Maraun and Widmann, 2018b). The increased spread 
in this case goes together with a better representation of processes 
and thus an increased model fitness-for-purpose (Section 10.3.3.9).

10.3.4.2 Representing and Reducing Uncertainties

Climate response uncertainties (Chapter  1) can be represented by 
multi-model ensembles, although the sampled uncertainty typically 
underestimates the full range of uncertainty (Collins et  al., 2013b; 
Shepherd et al., 2018; Almazroui et al., 2021). Traditionally, climate 
response uncertainty has been characterized by the ensemble spread 
around the multi-model mean change. The change has then further 
been qualified in terms of the agreement across models and compared 
to estimates of internal climate variability (Collins et  al., 2013b). 
Since AR5, several limitations of this approach have been identified 
(Madsen et  al., 2017) such as the failure to address physically 
plausible, but low-likelihood, high-impact scenarios (Chapters 1, 4, 8 
and 9; Sutton, 2018) or that qualitatively different or even opposite 
changes may be equally plausible at the regional scale (Shepherd, 
2014). In a  multi-model mean these different responses would be 
lumped together, strongly dampened, and qualified as non-robust, 
whereas in fact high impacts might occur. Further, the multi-model 
mean itself is often implausible because it is a statistical construct 
(Zappa and Shepherd, 2017). Overall, there is high confidence that 

some regional future climate changes are not well-characterized by 
multi-model mean and spread.

Since AR5, physical climate storyline approaches (see also 
Chapter  1, Section  10.5.3, Box  10.2, and Atlas.2.5.2) have been 
developed to better characterize and communicate uncertainties 
in regional climate projections (Shepherd, 2019). A  special class 
of such storylines attempts to attribute regional uncertainties 
to uncertainties in remote drivers. For instance, the Dutch 
Meteorological Service has presented climate projections for the 
Netherlands for different plausible changes of the mid-latitude 
atmospheric circulation and different levels of European warming 
(van den Hurk et al., 2014). Manzini et al. (2014) have quantified 
the impact of uncertainties in tropical upper troposphere warming, 
polar amplification, and stratospheric wind change on Northern 
Hemisphere winter climate change. Based on these results, Zappa 
and Shepherd (2017) separated the multi-model ensemble into 
physically consistent sub-groups or storylines of qualitatively 
different projections in relevant remote drivers of the atmospheric 
circulation. In a similar vein, (Ose et al., 2020) trace uncertainties in 
projections of the East Asian summer monsoon and Mindlin et al. 
(2020) conditioned the response of Southern Hemisphere mid-
latitude circulation and precipitation to greenhouse gas forcing on 
large-scale climate indicators (Section 8.4.2.9.2).

These physical climate storylines help to physically explain contradicting 
regional projections and thus make the conveyed information a better 
representation of the true uncertainty (Hewitson et al., 2014a). 
Additionally, the attribution of regional uncertainties to drivers may in 
principle help reduce uncertainty in the case where some storylines can 
be ruled out because the projected changes in the driving processes 
appear to be physically implausible (Zappa and Shepherd, 2017). There 
is thus high confidence that storylines attributing uncertainties in 
regional projections to uncertainties in changes of remote drivers aid 
the interpretation of uncertainties in climate projections.

Another approach that has continued to develop for characterising 
and reducing projection uncertainties is the use of emergent 
constraints (Chapters 1, 4, 5 and 7; Hall et  al., 2019). The idea is 
to link the spread in climate model projections via regression to 
the spread in present climate model biases for relevant driving 
processes. Models with lower biases are assigned higher weight in 
the projections, which in turn reduces the spread of the projections 
in a physical way and may additionally reduce projection uncertainty. 
For instance, Simpson et  al. (2016) have reduced the spread in 
projections of North American winter hydroclimate by linking this 
spread to model biases in the representation of relevant stationary 
wave patterns. Other examples of using emergent constraints in 
a regional context are Brown et al. (2016), G. Li et al. (2017), Giannini 
and Kaplan (2019), Ose (2019) and Zhou et al. (2019).

10.3.4.3 Role of Internal Variability

A regional climate projection based on a  single simulation from 
a single global model or driving a single RCM alone will inevitably 
be affected by not considering the internal variability (Figure 10.10). 
This is mainly due to the dominant influence of the chaotic atmospheric 
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circulation on regional climate variability, in particular at mid- to high 
latitudes. Internal variability is an irreducible source of uncertainty 
for mid- to long-term projections with an amplitude that typically 
decreases with increasing spatial scale and lead time (Sections 1.4.3 
and 4.2.1). However, regional-scale studies show that both large- 
and local-scale internal variability together can still represent 
a substantial fraction of the total uncertainty related to hydrological 
cycle variables, even at the end of the 21st century (Lafaysse et al., 
2014; Vidal et al., 2016; Aalbers et al., 2018; Gu et al., 2018).

Analysis of multi-model archives such as CMIP or CORDEX simulation 
results cannot easily disentangle model uncertainty and uncertainty 
related to internal variability. Since AR5, the development of 
single-model (global model and/or RCM) initial-condition large 
ensembles (SMILEs) has emerged as a  promising way to robustly 
assess the regional-scale forced response to external forcings and the 
respective contribution of internal variability and model uncertainty 
to future regional climate changes (Section 4.2.5; Deser et al., 2014, 
2020; Kay et al., 2015; Sigmond and Fyfe, 2016; Aalbers et al., 2018; 
Bengtsson and Hodges, 2019; Dai and Bloecker, 2019; Leduc et al., 
2019; Maher et al., 2019; von Trentini et al., 2019; Lehner et al., 2020). 
The recent development of a multi-model archive of SMILE simulations 
facilitates the quantification and comparison of  the influence of 
internal variability on global model-based regional climate projections 
between different models (Deser et  al., 2020; Lehner et  al., 2020). 
Another related development is the more frequent use of observation-
based statistical models to assess the influence of internal variability 
on regional-scale global and regional model projections (Thompson 
et  al., 2015; Salazar et  al., 2016). However, these methods often 
implicitly assume that regional-scale internal variability does not 
change under anthropogenic forcing, which is a  strong assumption 
that does not seem to hold at regional and local scales (LaJoie and 
DelSole, 2016; Pendergrass et  al., 2017; W. Cai et  al., 2018; Dai 
and Bloecker, 2019; Mankin et al., 2020; Milinski et al., 2020).

The appropriate ensemble size for a robust use of SMILEs depends on 
the model and physical variable being investigated, the spatial and 
time aggregation being performed, the magnitude of the acceptable 
error and the type of questions one seeks to answer (Deser et al., 2012, 
2017b; Kang et al., 2013; Wettstein and Deser, 2014; Dai and Bloecker, 
2019; Maher et al., 2019). It is noteworthy that the recent development 
of ensembles with a very large ensemble size (greater than 100) have 
led to new insights and methodologies to robustly assess the required 
ensemble size for questions such as the estimation of the forced response 
to external forcing or a forced change in modes of internal variability, 
such as ENSO, and its associated teleconnections (Herein et al., 2017; 
Maher et al., 2018; Haszpra et al., 2020; Milinski et al., 2020).

The use of SMILEs assumes that they have a realistic representation 
of internal variability and its evolution under anthropogenic climate 
change (Eade et  al., 2014; McKinnon et  al., 2017; McKinnon and 
Deser, 2018; Chen and Brissette, 2019). Assessing the realism of 
simulated internal variability for past and current climates remains 
an active research field with a  number of issues such as the 
shortness and uncertainties of the observed record, in particular in 
data-scarce regions (Section  10.2.2.3), the signal-to-noise paradox 
(Section 4.4.3.1; Scaife and Smith, 2018), uncertainty in past observed 

external forcing estimates (Chapters 2, 6 and 7) and the limitations 
of assumptions underlying the statistical methods used to derive 
observational large ensembles (McKinnon et al., 2017; McKinnon and 
Deser, 2018; Castruccio et al., 2019). Calibration methods inspired by 
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Figure  10.10 | Observed and projected changes in austral summer 
(December to February) mean precipitation in Global Precipitation 
Climatoloy Centre (GPCC), Climatic Research Unit Time Series (CRU TS) and 
100 members of the Max Planck Institute for Meteorology Earth System 
Model (MPI-ESM. (a) 55-year trends (2015–2070) from the ensemble members 
with the lowest (left) and highest (right) trend (% per decade, baseline 1995–2014). 
(b) Time series (%, baseline 1995–2014) for different spatial scales (from top to 
bottom: global averages; South-Eastern South America; grid boxes close to São Paulo 
and Buenos Aires) with a five-point weighted running mean applied (a variant on 
the binomial filter with weights [1-3-4-3-1]). The brown (green) lines correspond 
to the ensemble member with weakest (strongest) 55-year trend and the grey lines 
to all remaining ensemble members. Box-and-whisker plots show the distribution of 
55-year linear trends across all ensemble members, and follow the methodology used 
in Figure 10.6. Trends are estimated using ordinary least squares. Further details on 
data sources and processing are available in the chapter data table (Table 10.SM.11).

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1410

Chapter 10 Linking Global to Regional Climate Change

10

weather and seasonal forecasts can be used to improve the reliability 
of regional-scale climate projections from large ensembles (Brunner 
et al., 2019; O’Reilly et al., 2020). Interestingly, reliability is improved 
when the calibration is performed separately for the dynamical and 
residual components of the ensemble resulting from dynamical 
adjustment (Section 10.4.1; O’Reilly et al., 2020).

Importantly, accurately partitioning uncertainty in regional climate 
projections can provide an incentive for immediate action, accepting 
a  large range of possible outcomes due to internal variability, 
while confounding model uncertainty with internal variability may 
be understood as a  lack of knowledge and lead to delayed action 
in adaptation decision-making (Section  10.5.3; Maraun, 2013b; 
Mankin et al., 2020).

There is high confidence that the availability of SMILEs allows a robust 
assessment of the relative contributions of model uncertainty and 
internal variability in regional-scale projection uncertainty. There is 
high confidence that the use of SMILEs with appropriate ensemble 
size leads to an improved estimate of regional-scale forced response 
to an external forcing as well as of the full spectrum of possible 
changes associated with internal variability. There is high confidence 
that these improved estimates are beneficial for characterizing the 
full distribution of outcomes that is a  key ingredient of climate 
information for robust decision-making and risk-analysis frameworks.

10.3.4.4 Designing and Using Ensembles for Regional Climate 
Change Assessments to Take Uncertainty Into Account

Ensembles of climate simulations play an important role in quantifying 
uncertainties in the simulation output (Sections 10.3.4.2 and 
10.3.4.3). In addition to providing information on internal variability, 
ensembles of simulations can estimate scenario uncertainty and 
model (structural) uncertainty. Chapter  4, especially Box  4.1, 
discusses issues involved with evaluating ensembles of global 
model simulations and their uncertainties. In a downscaling context, 
further considerations are necessary, such as the selection of global 
model–RCM combinations when performing dynamical downscaling. 
This is a  relevant issue when resources are limited. The structural 
uncertainty of both the global model and the downscaling method 
can be important (e.g., Mearns et al., 2012; Dosio, 2017), as well as 
further potential uncertainty created by inconsistencies between the 
global model and the downscaling method (e.g., Dosio et al., 2019), 
which could include, for example, differences in topography or the 
way to model precipitation processes (Mearns et al., 2013).

An important consideration is which set of global models should be 
used for global model–RCM combinations. If adequate resources 
exist, then large numbers of global model–RCM combinations are 
possible (Déqué et  al., 2012; Coppola et  al., 2021; Vautard et  al., 
2021). However, coordinated downscaling programmes can be limited 
by the human and computational resources available, for producing 
ensembles of downscaled output, which limits the number of feasible 
global model–RCM combinations. With this limitation in mind, a small 
set of GCMs may be chosen that span the range of equilibrium climate 
sensitivity in available global models (e.g., Mearns et al., 2012, 2013; 
Inatsu et al., 2015), though this range may be inconsistent with the 

likely range (Chapter 4), or some other relevant measure of sensitivity, 
such as the projected range of tropical SSTs (Suzuki-Parker et al., 2018). 
A further choice is to emphasize models that do not have the same 
origins or that do not use similar parametrizations and thus might be 
viewed as independent, a criterion that could be applied to both global 
models (Chapter 4) and RCMs (Evans et al., 2014). Global models and 
RCMs could also be discarded that unrealistically represent processes 
controlling the regional climate of interest (McSweeney et al., 2015; 
Maraun et  al., 2017; Bukovsky et  al., 2019; Eyring et  al., 2019). 
Box 4.1 offers a more detailed discussion of the issues surrounding 
these approaches. Finally, global models may be selected to represent 
different physically self-consistent changes in regional climate (Zappa 
and Shepherd, 2017). Statistical methods can provide estimates of 
outcomes from missing global model–RCM combinations in a  large 
matrix (Déqué et al., 2012; Heinrich et al., 2014; Evin et al., 2019).

However, even using a relatively small set of global models can still 
involve substantial computation that strains available resources, 
both for performing the simulations and for using all simulations 
in the ensemble for further impacts assessment. The NARCCAP 
programme (Mearns et al., 2012) used only a subset of its possible 
global model–RCM combinations that balanced comprehensiveness 
of sampling the matrix with economy of computation demand, while 
still allowing discrimination, via ANOVA methods, of global model 
and RCM influences on regional climate change (Mearns et  al., 
2013). An advantage of the sparse, but balanced matrix for those 
using the downscaling output for further studies, is that they have 
a smaller, yet comprehensive set of global model–RCM combinations 
to work with. Alternatively, data-clustering methods can clump 
together downscaling simulations featuring similar climate-change 
characteristics, so that only one representative simulation from 
each cluster may be needed for further impacts analysis, again 
systematically reducing the necessary number of simulations to work 
with (Mendlik and Gobiet, 2016; Wilcke and Bärring, 2016).

Independently of the resources, participation of multiple models in 
a  simulation programme such as CORDEX for RCMs or CMIP for 
global models creates ensembles of opportunity, which are ensembles 
populated by models that participants chose to use without there 
necessarily being an overarching guiding principle for an optimum 
choice. As discussed in Chapter 4, these ensembles are likely suboptimal 
for assessing sources of uncertainty. An important contributor to the 
suboptimal character of such an ensemble is that the models are 
not independent. Some may also have larger biases than others. Yet 
often, the output from models in these ensembles has received equal 
weight when viewed collectively, as was the case in much of the AR5 
assessment (e.g., Collins et al., 2013b; Knutti et al., 2013; Flato et al., 
2014; Kirtman et al., 2014). A number of emerging methodologies aim 
at optimizing the ensembles available by weighting the simulation 
results according to a  number of criteria relevant at the regional 
scale that aim at obtaining more realistic estimates of the uncertainty 
(Sanderson et al., 2015; Brunner et al., 2020).

There is high confidence that ensembles for regional climate projections 
should be selected such that models unrealistically simulating processes 
relevant for a given application are discarded, but at the same time, the 
chosen ensemble spans an appropriate range of projection uncertainties.
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Cross-Chapter Box 10.2 | Relevance and Limitations of Bias Adjustment

Coordinators: Alessandro Dosio (Italy), Douglas Maraun (Austria/Germany)

Contributors: Ana Casanueva (Spain), José Manuel Gutiérrez (Spain), Stefan Lange (Germany), Jana Sillmann (Norway/Germany)

Bias adjustment is an approach to post-process climate model output and has become widely used in climate hazard and impact studies 
(Gangopadhyay et  al., 2011; Hagemann et  al., 2013; Warszawski et  al., 2014) and national assessment reports (Cayan et  al., 2013; 
Georgakakos et al., 2014). Despite its wide use, bias adjustment was not assessed in AR5 (Flato et al., 2014). Several problems have been 
identified that may arise from an uncritical use of bias adjustment, and that may result in misleading impact assessments. The rationale of 
this Cross-Chapter Box is to provide an overview of the use of bias adjustment in this Report, and to assess key limitations of the approach.

Bias-adjusted climate model output is used extensively throughout this Report. Several results from Chapter 8, and many of the 
climatic impact-drivers in Chapter 12 (Section 12.2) are based on bias adjustment. The Atlas presents many results both as raw and 
bias-adjusted data (Atlas.1.4.5). The application of bias adjustment in the WGI report was informed by the assessment in Chapter 10 
and this Cross-Chapter Box. Finally, bias adjustment is crucial for many studies assessed in the WGII report. An overview of bias 
adjustment can be found in Section 10.3.1.3, a general performance assessment of individual method classes in Section 10.3.3.7. 
The fitness of bias adjustment for climate change applications is assessed in Section 10.3.3.9.

Relevance of bias adjustment
An argument made for the use of bias adjustment is the fact that impact models are commonly very sensitive, often non-linearly, to 
the input climatic variables and their biases, in particular when threshold-based climate indices are required (Dosio, 2016). There are, 
however, cases where bias adjustment may not be necessary or useful, such as: when only qualitative statements are required; when 
only changes in mean climate are considered (instead of absolute values); when percentile-based indices are used.

Modification of the climate change signal
Bias adjustment methods like quantile mapping can modify simulated climate trends, with impacts on changes to climate indices, 
in particular, extremes (Haerter et al., 2011; Dosio et al., 2012; Ahmed et al., 2013; Hempel et al., 2013; Maurer and Pierce, 2014; 
Cannon et al., 2015; Dosio, 2016; Casanueva et al., 2020). Some argue that these trend modifications are implicit corrections of 
state-dependent biases (Boberg and Christensen, 2012; Gobiet et al., 2015). However, others argue that the modification is generally 
invalid because the modification is linked to the representation of day-to-day rather than long-term variability (Pierce et al., 2015; 
Maraun et al., 2017); a given temperature value does not necessarily belong to the same weather state in present and future climate 
(Maraun et al., 2017); the modification affects the models climate sensitivity (Hempel et al., 2013); and is affected by random internal 
climate variability (Switanek et al., 2017). Thus, trend preserving quantile mapping methods have been developed (Section 10.3.1.3.2), 
although some authors found no clear advantage of these methods (Maurer and Pierce, 2014). Further research is required to fully 
understand the validity of trend modifications by quantile-mapping.

Bias adjustment in the presence of large-scale circulation errors
The large-scale circulation has a strong impact on regional climate, thus circulation errors will cause regional climate biases (Section 10.3.3.3). 
As bias adjustment in general does not account for circulation errors, it is therefore important to understand the impact of these errors on the 
outcome of the bias adjustment (Addor et al., 2016; Photiadou et al., 2016; Maraun et al., 2017). If the frequency of precipitation-relevant 
weather types is biased, a standard bias adjustment (not accounting for this frequency bias) would remove the overall climatological bias, 
but the precipitation falling in a given weather type could still be substantially biased (Addor et al., 2016). Adjusting the number of wet 
days can artificially deteriorate the spell-length distribution (Maraun et al., 2017). In the presence of location biases of circulation patterns, 
bias adjustment may introduce physically implausible solutions (Maraun et al., 2017). Bias adjusting the location of circulation features 
(Levy et al., 2013) may introduce inconsistencies with the model orography, land–sea contrasts, and SSTs (Maraun et al., 2017).

There is medium confidence that the selection of climate models with low biases in the frequency, persistence and location of 
large-scale atmospheric circulation can reduce negative impacts of bias adjustment.

Using bias adjustment for statistical downscaling
Bias adjustment is often used to downscale climate model results from grid box data to finer resolution or point scale. It is sometimes 
even directly applied to coarse-resolution global model output to avoid an intermediate dynamical downscaling step (Johnson and 
Sharma, 2012; Stoner et al., 2013). But bias adjustment does not add any information about the processes acting on unresolved scales 
and is therefore by construction not capable of bridging substantial scale gaps (Maraun, 2013a; Maraun et al., 2017). Using bias
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Cross-Chapter Box 10.2 (continued)

adjustment for downscaling has been shown to artificially modify long-term trends, misrepresent the spatial characteristics of extreme 
events, and misrepresent local weather phenomena such as temperature inversions (Maraun, 2013a; Gutmann et al., 2014; Maraun 
et al., 2017). Crucially, sub-grid influences on the local climate change signal are not represented. For instance, if a mountain chain is 
not resolved in the driving model, the snow–albedo feedback is not represented by the bias adjustment such that local temperature 
trends in high altitudes are under-represented (Cross-Chapter Box 10.2, Figure 1; Maraun et al., 2017). It has therefore been suggested 
to account for local random variability by combining bias adjustment with stochastic downscaling (Volosciuk et al., 2017; Lange, 
2019), although this approach still does not account for local modifications of the climate change signal. Two approaches have been 
proposed to represent these local changes: dynamical downscaling with high-resolution RCMs (Maraun et al., 2017) or statistical 
emulators of such (Walton et al., 2015). Sections 10.3.3.4–10.3.3.6 and 10.3.3.9 discuss other examples where RCMs improve the 
representation of regional phenomena and regional climate change.
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Cross-Chapter Box 10.2, Figure 1 | Boreal spring (March to May) daily mean surface air temperature in the Sierra Nevada region in California. 
(a) Present climate (1981–2000 average, in °C) in the GFDL-CM3 GCM, interpolated to 8 km (left), GCM bias adjusted (using quantile mapping) to observations at 
8 km resolution (middle) and WRF RCM at 3 km horizontal resolution (right). (b) Climate change signal (2081–2100 average minus 1981–2000 average according 
to RCP8.5, in °C) in the GCM (left), the bias adjusted GCM (middle) and the RCM (right). Further details on data sources and processing are available in the chapter 
data table (Table 10.SM.11). Figure adapted from Maraun et al. (2017).
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10.4 Interplay Between Anthropogenic 
Change and Internal Variability 
at Regional Scales

This section focuses on the assessment of the methodologies used to 
identify the physical causes of past and future regional climate change 
in the context of the ongoing anthropogenic influence on the global 
climate. The main foci are the attribution of past regional-scale changes 
(Sections 10.4.1–2) and the robustness and future emergence of the 
regional-scale response to anthropogenic forcing (Section 10.4.3).

In this chapter, regional-scale attribution is defined as the process 
of evaluating the relative contributions of multiple causal factors 
(or drivers) to regional climate change (Cross-Working Group Box: 
Attribution in Chapter 1; Rosenzweig and Neofotis, 2013; Shepherd, 
2019). Attribution at regional scale builds upon the usual definition of 
attribution used in the AR5 (Cross-Working Group Box: Attribution in 
Chapter 1; Hegerl et al., 2010). However, in contrast with global-scale 
attribution methods where internal variability might be considered as 
a noise problem (Section 3.2), the preliminary detection step is not 
always required to perform regional-scale attribution since causal 

Cross-Chapter Box 10.2 (continued)

Overall, there is high confidence that the use of bias adjustment for statistical downscaling, in particular to downscale coarse resolution 
global models, has severe limitations.

Bias adjustment of multiple variables
Impact models, as well as indices of climatic impact-drivers, often require input of several meteorological variables (Chapter 12). In several 
situations, for example, if the dependence between the variables is not well-simulated, univariate bias adjustment of the individual 
variables may increase biases in the resulting indicator (Zscheischler et al., 2019). A simple alternative would be a bias adjustment of 
the indicator, but such a procedure may substantially alter the climate change signal, in particular for extreme events (Casanueva et al., 
2018). In principle, multivariate bias adjustment methods are good to adjust all statistical aspects of the multivariate distribution that they 
intend to adjust. Depending on the method, this includes the correlation structure or even broader aspects of the dependence (Cannon, 
2016, 2018; Vrac, 2018; François et al., 2020). If multivariate adjustment includes a spatial dimension, then spatial dependence is adjusted 
well (Vrac, 2018), but care is needed when applied across large areas (François et al., 2020). Adjustment of multivariate dependence 
necessarily modifies the temporal sequencing of the driving model (Cannon, 2016; Maraun, 2016). The extent of the modification depends 
on the chosen method and the number of variables to adjust (Vrac and Friederichs, 2015; Cannon, 2016; Vrac, 2018; François et al., 2020).

Bias adjustment in the presence of observational uncertainty and internal variability
Observational uncertainties and internal variability introduce uncertainty in the estimation of biases and thus in the calibration of 
bias-adjustment methods. Dobor and Hlásny (2019) found a considerable influence of the choice of the observational dataset and 
calibration period on the adjustment for some regions. RCM biases are typically larger than observational uncertainties, but in some 
regions, and in particular for wet-day frequencies, spatial patterns and the intensity distribution of daily precipitation, the situation 
may reverse (Kotlarski et al., 2019). Switanek et al. (2017) found a strong influence of internal variability and thus of the choice of 
calibration period on the calibration of quantile mapping and on the modification of the climate change signal.

Bias adjustment is typically evaluated using cross-validation, that is, by calibrating the adjustment function to one period of the observational 
record, and by evaluating it on a different one. Maraun et al. (2017) and Maraun and Widmann (2018a) demonstrated that, in the presence 
of multi-decadal internal variability, cross-validation may lead to a rejection of a valid bias adjustment or even lead to a positive evaluation 
of an invalid adjustment. The authors therefore argued that, in the presence of substantial internal variability, the evaluation of bias 
adjustment requires to consider aspects that have not been adjusted, such as temporal, spatial, or multivariable dependence.

There is high confidence that observational uncertainty and internal variability adversely affect bias adjustment and introduce 
uncertainties in bias-adjusted future projections.

Overall assessment and new avenues
In the light of these issues, several authors dismiss the use of bias adjustment for climate change studies (Vannitsem, 2011; Ehret et al., 2012). 
Ehret et al. (2012) and IPCC (2015) propose to at least provide the raw model output alongside the adjusted data. Maraun et al. (2017) 
argue that the target resolution should be similar to the model resolution to avoid downscaling issues. IPCC (2015) and Maraun et al. 
(2017) highlighted the relevance of understanding model biases and the misrepresentations of the underlying physical processes prior to 
any adjustment. Together with Galmarini et al. (2019), they point out the need for collaboration between bias adjustment users, experts in 
climate modelling and experts in the considered regional climate. As new research avenues, development of process-oriented bias adjustment 
methods (Addor et al., 2016; Verfaillie et al., 2017; Manzanas and Gutiérrez, 2019) or run-time bias adjustment integrated into the climate 
simulation, for example, to reduce circulation errors (Guldberg et al., 2005; Kharin et al., 2012; Krinner et al., 2019, 2020) are proposed.
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factors of regional climate change may also include internal modes of 
variability in addition to external natural and anthropogenic forcing. 
Importantly, regional-scale (or process-based) attribution also seeks 
to determine the physical processes and uncertainties involved in the 
causal factor’s influence (Cross-Working Group Box: Attribution in 
Chapter 1).

Section  10.4.1 describes regional-scale attribution methodologies 
and assesses their application to regional changes of temperature 
and precipitation. Section 10.4.2 presents three illustrative attribution 
examples that illustrate a number of specific regional-scale challenges 
and methodological aspects. Section 10.4.3 focuses on methodologies 
used to assess the robustness and emergence of the regional climate 
response to anthropogenic forcing. A  basic description of future 
regional climate change for all regions considered in the report 
(as defined in Section 1.4.5) appears in the Atlas.

10.4.1 Methodologies for Regional 
Climate Change Attribution

Attribution at sub-continental and regional scales is usually more 
complicated than at the global scale due to various factors: a larger 
contribution from internal variability, an increased similarity among 
the responses to different external forcings leading to a more difficult 
discrimination of their effects, the importance at regional scale of 
some omitted forcings in global model simulations, and model 
biases related to the representation of small-scale phenomena 
(Zhai et  al., 2018). Since AR5 and in addition to standard optimal 
fingerprint regression-based approaches (Section  3.2.1 and Zhai 
et al. 2018), several emerging methodologies have been increasingly 
used for regional-scale climate change attribution. These include 
several statistical approaches that differ in their use or omission of 
spatiotemporal co-variance information. Dynamical adjustment and 
pattern recognition techniques fall into the category of spatiotemporal 
methods while univariate detection and attribution methods rely on 
single grid-point analysis. Finally, the development, evaluation and use 
of all these methodologies rely upon the availability of multiple and 
high-quality observational datasets (Section 10.2) as well as multi-
model simulations of the historical period constrained by different 
external forcing combinations, including single-forcing experiments 
and single-model initial-condition large ensembles (SMILEs).

10.4.1.1 Optimal Fingerprinting Methods

Optimal fingerprint regression-based methods have been applied to 
detection and attribution of mean temperature anthropogenic signal 
in several regions of the world such as Canada, India, central Asia, 
northern and western China, Australia, and North Africa (Xu et al., 
2015; C. Li et al., 2017; Dileepkumar et al., 2018; Y. Wang et al., 2018; 
Peng et al., 2019; Wan et al., 2019). The influence of anthropogenic 
forcing, and in particular that of greenhouse gases (GHGs), is 
robustly detected in annual and seasonal mean temperatures for 
all considered regions. Most of the observed regional temperature 
changes since the mid-twentieth century can only be explained by 
external forcings, with anthropogenic influence being the dominant 
factor. GHG increase is found to be the primary factor of the 

anthropogenic-induced warming while the aerosol forcing leads to 
a cooling offsetting a fraction of the GHG change (C. Li et al., 2016, 
2017). While the influence of external natural forcing can often be 
detected as well, its contribution to observed changes is usually much 
smaller (C. Li et al., 2017; Wan et al., 2019). Temperature detection 
results are found to be robust to the use of different observational 
datasets and detection methodologies (Dileepkumar et al., 2018).

Detection of mean precipitation changes caused by human influence is 
much more difficult, due to a larger role of internal variability at regional 
to local scales, as well as substantial modelling and observational 
uncertainty (Wan et al., 2015; Sarojini et al., 2016; C. Li et al., 2017). 
However, multi-decadal precipitation changes due to anthropogenic 
forcing have been detected for several regions. Ma et al. (2017b) show 
that anthropogenic forcing has strongly contributed to the observed 
shift of China daily precipitation towards heavy precipitation. The 
observed weakening of the East Asia summer monsoon, also known 
as the southern flooding and northern drought pattern has been 
partially linked to anthropogenic forcing (Section  8.3.2.4.2; Song 
et  al., 2014; Zhou et  al., 2017; Tian et  al., 2018). Changes in GHGs 
lead to increasing precipitation over southern China, while changes 
in anthropogenic aerosols over East Asia are the dominant factors 
determining drought conditions over northern China (Song et al., 2014; 
Tian et al., 2018). Based on all-forcing and single-forcing simulation 
ensembles with a high-resolution model, Delworth and Zeng (2014) 
found that the observed long-term regional austral autumn and winter 
rainfall decline over southern and particularly south-west Australia is 
partially reproduced in response to anthropogenic changes in GHGs 
and ozone in the atmosphere, whereas anthropogenic aerosols do 
not contribute to the simulated precipitation decline. In contrast, the 
observed increase of north-west Australian summer rainfall since 1950 
has been partially attributed to anthropogenic aerosol based on CMIP5 
detection and attribution single-forcing simulations (Section 8.3.2.4.6; 
Dey et al., 2019a, b).

It is noteworthy that these methods require a very significant reduction 
of spatial and temporal dimensions in order to reliably estimate the 
co-variance matrix of internal variability (an entire region is thus often 
considered as being only one or a few spatial points that represent 
the spatial average of the whole region or a few sub-regions; time 
samples are often 5- or 10-year averages). Finally, model bias is rarely 
considered in statistical models used in detection and attribution 
regional studies, while it has been shown to have a strong impact 
on the stability of detection results and their associated confidence 
intervals when increasing the spatial dimension (Ribes and Terray, 
2013). New statistical methods are emerging to provide some 
alternative to standard optimal fingerprinting but they have not yet 
been evaluated and applied at regional scales (Section 3.2.2).

10.4.1.2 Other Spatiotemporal Statistical Methods for Isolating 
Regional Climate Responses to External Forcing

The primary objective of any attribution method is to optimally 
separate the influences of external forcing and internal variability 
on a global or regional climate record. In a multi-model ensemble 
context, the estimation of the externally-forced climate response has 
been typically performed by ensemble averaging of linear trends or 
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regional domain spatial average, thus not taking into account the 
available and complete space and time co-variance information. 
Since AR5, methods using spatiotemporal information have been 
further developed and used to improve the separation between 
external and internal drivers in multiple or single historical climate 
realizations performed by a given global model.

The typical ensemble size of CMIP historical climate simulations for 
a  given model traditionally range between one and ten members, 
with three often being the default choice. At the regional scale, 
a simple ensemble average with such sample sizes does not provide 
robust estimates of the response patterns to external forcing (Maher 
et al., 2019; Deser et al., 2020). Since AR5, pattern filtering methods 
such as signal-to-noise maximizing empirical orthogonal functions 
(Ting et  al., 2009) have been shown to improve the identification 
of forced response patterns when few model members are available 
(Wills et al., 2020). Using SMILEs as a test bed, it has been shown that 
pattern filtering strongly reduces the number of ensemble members 
needed to estimate the forced response pattern compared to simple 
ensemble averaging. Pattern filtering allows the identification of low 
signal-to-noise signals such as the El Niño-like response to volcanic 
eruptions (Khodri et al., 2017; Wills et al., 2020).

Methods to extract the response to external forcing in an observed or 
simulated single realization include dynamical adjustment (Smoliak 
et al., 2015; Deser et al., 2016; Sippel et al., 2019) and time scale 
separation methods (DelSole et al., 2011; Wills et al., 2018, 2020). 
Dynamical adjustment seeks to isolate changes in surface air 
temperature or precipitation that are due purely to atmospheric 
circulation changes. The residual can then be analysed and attributed 
to internal changes in both land or ocean surface conditions and 
the thermodynamical response to external forcing. Smoliak et  al. 
(2015) performed their dynamical adjustment using partial least 
squares regression of temperature to remove variations arising from 
sea level pressure changes. Deser et  al. (2016) used constructed 
atmospheric circulation analogues and resampling to estimate the 
dynamical contribution to changes in temperature. Sippel et  al. 
(2019) used machine learning techniques known as regularized linear 
regression to provide estimates of circulation-induced components 
of precipitation and temperature variability from global to local 
scales. It is noteworthy that the dynamical adjustment method by 
itself cannot account for the component of the forced response 
associated with circulation changes that project onto atmospheric 
internal variability. However, this component can be estimated within 
a model framework by averaging the dynamical contribution across 
multiple members of a SMILE (Deser et al., 2016).

Dynamical adjustment methods have been used by, for instance, 
Deser et al. (2016), Saffioti et al. (2016), O’Reilly et al. (2017), Gong 
et al. (2019), and R. Guo et al. (2019). Deser et al. (2016) focused on 
the causes of observed and simulated multi-decadal trends in North 
American temperature. They demonstrated that the main advantage 
of this technique is to narrow the spread of temperature trends 
found by the model ensemble and to bring the dynamically-adjusted 
observational trend much closer to the forced response estimated 
by the model ensemble mean. Similar results were obtained by 
Saffioti et al. (2016) regarding recent observed winter temperature 

and precipitation trends over Europe. Similarly, O’Reilly et al. (2017) 
applied dynamical adjustment techniques to more carefully 
determine the influence of the Atlantic Multi-decadal Variability 
(AMV; Annex IV.2.7) on continental climates. Over Europe, summer 
temperature anomalies induced thermodynamically by the warm 
phase of the AMV are further reinforced by circulation anomalies; 
meanwhile, precipitation signals are largely controlled by dynamical 
responses to the AMV. Based on a  partial least-squares approach, 
Gong et al. (2019) showed that recent winter temperature 30-year 
trends over northern East Asia are strongly influenced by internal 
variability linked to decadal changes of the Arctic Oscillation. Using 
dynamical adjustment purely on precipitation observations, R. Guo 
et  al. (2019) showed that human influence has led to increased 
winter precipitation across north-eastern North America, as well as 
a small region of north-western North America, and to an increase in 
precipitation across much of north-western and north central Eurasia. 
The latter results confirm previous findings obtained by standard 
optimal fingerprinting methods (Wan et al., 2015).

Time scale separation methods such as the low-frequency 
component analysis and ensemble empirical mode decomposition 
methods take advantage of the longer time scale associated with 
anthropogenic external forcing compared to that of most internal 
modes of variability. The low-frequency component analysis method 
tries to find low-frequency variability patterns by searching for linear 
combinations of a moderate number of empirical orthogonal functions 
that maximize the ratio of low-frequency to total variance. It has first 
been used to separate internal modes of interannual and decadal 
variability from slowly varying and externally-forced variability 
in the Pacific and Atlantic oceans (Wills et  al., 2018, 2019). The 
methodology has also been applied to patterns of observed surface 
air temperature to isolate the slow components of observed changes 
that are consistent with the expected response to anthropogenic 
greenhouse gas and aerosol forcing (Wills et al., 2020).

The ensemble empirical mode decomposition method (Wu and 
Huang, 2009; Wilcox et  al., 2013; Ji et  al., 2014; Qian and Zhou, 
2014) decomposes data, such as time series of historical temperature 
and precipitation, into independent oscillatory modes of decreasing 
frequency. The last step of the method leaves behind a  smooth 
and low-frequency residual time series. Typically, the non-linear 
anthropogenic trend (e.g.,  of 20th-century temperature) can be 
reconstructed by summing the long-term mean, the residual, and 
eventually the lowest-frequency mode to account for a multi-decadal 
forced signal, for instance associated with anthropogenic aerosol 
forcing. The ensemble empirical mode decomposition method is an 
example of a data-driven, non-parametric approach that can be used 
to directly provide an estimate of the forced response without the 
need for model data (Qian, 2016).

10.4.1.3 Other Regional-scale Attribution Approaches

The univariate detection method does not use spatial pattern 
information, but compares observed trends in gridded datasets 
with distributions of trends from ensembles of simulations during 
the historical period (Knutson et al., 2013; Knutson and Zeng, 2018). 
The trends arising from simulations constrained by natural forcing-only 
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and all-forcing are compared with distributions of trends purely due 
to internal variability and derived from long simulations with constant 
pre-industrial external forcing. Consistency between observed and 
simulated historical trends is also assessed with statistical tests that 
can be applied independently over a large number of grid points. The 
fraction of area over a given region where the change is classified 
as detectable, attributable, or consistent/inconsistent, is then finally 
estimated. The method can be viewed as a  simple consistency 
test for both amplitude and pattern of observed versus simulated 
trends. Its application to CMIP3 and CMIP5 models suggests that 
80% of the Earth’s surface has a detectable anthropogenic warming 
signal (Knutson et al., 2013). Regarding regional land precipitation 
changes over the 1901–2010 and 1951–2010 periods, application of 
the univariate detection method based on CMIP5 models suggests 
attributable anthropogenic changes at several locations such as 
increases over regions of the north-central USA, southern Canada, 
Europe, and southern South America and decreases over parts of the 
Mediterranean region, northern tropical Africa and south-western 
Australia (Delworth and Zeng, 2014; Knutson and Zeng, 2018).

Another regional attribution technique is based on the similarity of 
past changes between observations and one or several simulations 
of a large ensemble that share the same time evolution for a suggested 
driver of these changes. Huang et al. (2020b) used a perturbed physics 
ensemble to attribute the drying trend of the Indian monsoon over 
the latter half of the 20th century to decadal forcing from the Pacific 
Decadal Variability (PDV; Annex IV.2.6). The ensemble members 
predicted different trends in PDV behaviour across the 20th century 
and the negative precipitation trend was only replicated in those 
members with a  strong negative-to-positive PDV transition across 
the 1970s, consistent with the observed PDV behaviour (see also the 
detailed case study in Section 10.6.3). In a similar manner, Cvijanovic 
et al. (2017) addressed the possible influence of Arctic sea ice loss on 
the North Pacific pressure ridge and, consequently, on south-western 
USA precipitation. They sampled the uncertainties in selected sea 
ice physics parameters to achieve a ‘low Arctic sea ice’ state in their 
perturbed simulations. They then compared the latter with control 
simulations representative of sea ice conditions at the end of the 
20th century to assess changes purely due to sea ice loss.

New methods aiming to remove underlying model biases before 
performing detection and attribution, for instance related to 
precipitation changes, are emerging based on image transformation 
techniques such as warping (Levy et al., 2014a). By correcting location 
and seasonal precipitation biases in CMIP5 models, Levy et al. (2014b) 
showed that the agreement between observed and fingerprint 
patterns can be improved, further enhancing the ability to attribute 
observed precipitation changes to external forcings. The improvement 
mainly relies on the assumption that precipitation changes are tied to 
the underlying climatology, which has been shown to be a reasonable 
assumption in regions of the world where intensification of the 
hydrological cycle is expected (Held and Soden, 2006).

Importantly, evidence that the models employed in regional-scale 
attribution are fit for purpose is essential in order to estimate the 
degree of confidence in the attribution results (Section 10.3.3). For 
example, models need to be evaluated and assessed in their ability to 

simulate internal variability modes that are known to be important 
drivers of regional climate change (Sections 3.7 and 10.3.3.3 
and Annexes IV.2 and IV.3). Models are likely to have different 
performance in different regions and therefore their evaluation 
needs to be performed in terms of key physical processes and 
mechanisms relevant to the climate of the region under consideration 
(Section 10.3.3).

To conclude, there is very high confidence (robust evidence and high 
agreement) that the use of diverse and independent attribution 
methods, multiple model ensemble types and observed datasets 
strengthens the robustness of results of regional-scale attribution 
studies. Since AR5, multiple SMILEs have provided an adequate 
testbed for new attribution methodologies aimed at separating 
forced signals from internal variability in observational records as 
well as small-size single-model ensembles.

10.4.2 Regional Climate Change Attribution Examples

This section focuses on three illustrative examples that span 
different regions, time scales, and attribution methods, without 
aiming at being comprehensive. These examples illustrate attribution 
statements that are based upon multiple lines of evidence, combining 
multiple observational datasets, different generations and types of 
models, process understanding and assessment of various sources 
of uncertainty. Detection and attribution assessments for all AR6 
regions and specific variables can be found in the Atlas.

10.4.2.1 The Sahel and West African Monsoon 
Drought and Recovery

The Sahel, fed by the West African monsoon, has experienced severe 
decadal rainfall variations (Figure 10.11a). Abundant rainfall in the 
1950s–1960s was followed by a large negative trend (Figure 10.11b) 
until at least the 1980s, over which annual rainfall fell by 20–30% 
(Hulme, 2001). The subsequent partial recovery (B. Wang et al., 2021) 
is more uncertain: rain-gauge studies suggest a return to long-term 
positive anomalies in the western Sahel in the early 2000s (Panthou 
et  al., 2018), while CHIRPS merged satellite/gauge data show 
a wetter western Sahel since 1981 (Bichet and Diedhiou, 2018a, b). 
The recovery has been more significant over the central rather than 
the western Sahel (Lebel and Ali, 2009; Maidment et  al., 2015; 
Sanogo et al., 2015) and a multiple-gauge record supports a greater 
recovery to the eastern side (Nicholson et al., 2018). In this attribution 
example, drivers of the long-term drought and subsequent partial 
recovery are discussed, including anthropogenic GHG and aerosol 
emissions, and sea surface temperature (SST) variations that, in part, 
relate to internal variability. The reader is also referred to assessment 
in Section 8.3.2.4. We define the Sahel within 10°N–20°N across to 
30°E, consistent with the eastern boundary used in Chapter 8, and 
the rainy season as spanning June to September.

The role of SST forcing in the rainfall decline is assessed first. Competing 
mechanisms from equatorial Atlantic SSTs and inter-hemispheric 
SST gradients regulate decadal variability in the Sahel (Nicholson, 
2013), alternatively explained by tropical warming leading to 
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Sahel drought, while North Atlantic warming promotes increased 
rainfall (Rodríguez-Fonseca et al., 2015). The SST influence has been 
formalized in an AMV framework (Giannini et al., 2013; Martin and 
Thorncroft, 2014; Martin et al., 2014; Park et al., 2015), suggesting 
that relative North Atlantic SST warming increases the Northern 
Hemisphere differential warming, enhancing Sahel rainfall. The AMV 
influence is supported by CMIP5 initialized decadal hindcasts (Gaetani 
and Mohino, 2013; Mohino et al., 2016; Sheen et al., 2017), which 
outperform empirical predictions based on persistence. Some caution 
is needed since the full magnitude of internal variability is not captured 
in most CMIP5 models, as poor resolution prevents reproduction 
of AMV teleconnection responses (Vellinga et  al., 2016), and the 
magnitude of AMV-related SST variation may be underestimated 
in CMIP5 (Section 3.7.7, which also assesses that the AMV may be 
partially forced). The influence of PDV has been studied to a  lesser 
extent, with the PDV positive phase having a  negative impact on 
Sahel rainfall in combined observational/CMIP5 analysis (Villamayor 
and Mohino, 2015). The closer match between the observed rainfall 
declining trend and those in an atmosphere-only SMILE, in which SSTs 
are matched to observations, compared to three coupled SMILEs in 

which they are not, suggests that the underlying ocean surface might 
be essential in driving the decline (Figure 10.11e).

In terms of anthropogenic emissions, regional aerosol emissions 
from Europe, and to a  lesser extent from Asia, have been shown 
in a  global model to weaken Sahel precipitation either through 
a weakened Saharan heat low or via the Walker circulation (Dong 
et al., 2014). Greenhouse gases (GHGs) and anthropogenic aerosol 
can be considered together to control ITCZ position based on 
temperature asymmetry at the hemispheric scale. GHGs increase 
Sahel precipitation, while aerosol reduces it (in coupled slab-ocean 
model experiments by Ackerley et al. (2011) following Biasutti and 
Giannini (2006)). This effect is stronger when models account for 
aerosol–cloud interactions (Allen et al., 2015). Perturbed physics GCM 
ensembles suggests that aerosol emissions were the main driver of 
observed drying over 1950–1980 (Ackerley et al., 2011), supported 
by CMIP5 single-forcing experiments (Polson et al., 2014). A coherent 
drying signal in CMIP5 over the extended 1901–2010 period has 
also been found, although smaller than the observed trend (Knutson 
and Zeng, 2018). By applying aerosol scaling factors to the historical 
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Figure 10.11 | Attribution of historic precipitation change in the Sahelian West African monsoon during June to September. (a) Time series of CRU TS 
precipitation anomalies (mm day–1, baseline 1955–1984) in the Sahel box (10°N–20°N, 20°W–30°E) indicated in panel (b) applying the same low-pass filter as that used in 
Figure 10.10. The two periods used for difference diagnostics are shown in grey columns. (b) Precipitation change (mm day–1) in CRU TS data for 1980–1990 minus 1950–1960 
periods. (c) Precipitation difference (mm day–1) between 1.5× and 0.2× historical aerosol emissions scaling factors averaged over 1955–1984 and five ensemble members 
of HadGEM3 experiments after Shonk et al. (2020). (d) Sahel precipitation anomaly time series (mm day–1, baseline 1955–1984) in Coupled Model Intercomparison Project 
Phase 6 (CMIP6) for 49 historical simulations with all forcings (red), and thirteen for each of greenhouse gas-only forcing (light blue) and aerosol-only forcing (grey), with 
a thirteen-point weighted running mean applied (a variant on the binomial filter with weights [1-6-19-42-71-96-106-96-71-42-19-6-1]). The CMIP6 subsample of all forcings 
matching the individual forcing simulations is also shown (pink). (e) Precipitation linear trend (% per decade) for (left) decline (1955–1984) and (right) recovery periods 
(1985–2014) for ensemble means and individual CMIP6 historical experiments (including single-forcing) as in panel (d) plus 34 CMIP5 models (dark blue). Box-and-whisker 
plots show the trend distribution of the three coupled and the d4PDF atmosphere-only single-model initial-condition large ensembles (SMILEs) used throughout Chapter 10 and 
follow the methodology used in Figure 10.6. The two black crosses represent observational estimates from GPCC and CRU TS. Trends are estimated using ordinary least-squares 
regression. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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period in order to sample the uncertainty in CMIP5 aerosol radiative 
forcing, Shonk et al. (2020) found differences of 0.5 mm day–1 for Gulf 
of Guinea rainfall between strong and weak aerosol experiments 
as illustrated in Figure 10.11c, although the drying appears further 
south than observed due to model bias.

For the partial recovery in West African monsoon and Sahel rainfall 
since the late 1980s, a  detection study using three reanalyses 
(Cook and Vizy, 2015) shows a  connection to increasing Saharan 
temperatures at a  rate two to four times greater than the tropical 
mean, also confirmed by multiple observational and satellite-based 
data (Zhou and Wang, 2016; Vizy and Cook, 2017) and the review 
of Cook and Vizy (2019). Reanalyses are also noted to significantly 
underestimate the Saharan warming (Zhou and Wang, 2016). 
Saharan warming causes a stronger thermal low and more intense 
monsoon flow, providing more moisture to the central and eastern 
Sahel, supported by CMIP5 models (Lavaysse et al., 2016), although 
not all models capture the observed rainfall–heat–low relationship. 
Sahel rainfall is also incorrectly located in prototype versions of 
a  few CMIP6 models, related to tropospheric temperature biases 
(Martin et  al., 2017). Amplified Saharan warming has increased 
the wind shear, leading to a tripling of extreme storms since 1982, 
which may partially explain the recovery (Taylor et al., 2017). Instead, 
observations, multiple models and SST-sensitivity experiments with 
AGCMs have suggested that stronger Mediterranean Sea evaporation 
enhances low-level moisture convergence to the Sahel, increasing 
rainfall (Park et  al., 2016). Meanwhile, an AGCM study suggested 
that GHGs alone (in the absence of SST warming) could cause 
Sahel rainfall recovery, with an additional role for anthropogenic 
aerosol (Dong and Sutton, 2015); recent changes in North Atlantic 
SSTs, although substantial, did not exert a  significant impact on 
the recovery. Large spread in the recovery in a five-member AGCM 
ensemble suggests that atmospheric internal variability cannot be 
discounted (Roehrig et al., 2013).

Consistent timing of the southward ITCZ shift during the decline 
period in CMIP3 and CMIP5 historical simulations supports the role 
of external forcing, chiefly anthropogenic aerosol (Hwang et  al., 
2013). The evolution of the observed decline and recovery is largely 
followed by the CMIP5 multi-model mean, further supporting the 
role of external drivers (Giannini and Kaplan, 2019). Updated results 
from CMIP6 for historical simulations with all and single forcings 
are represented in Figure  10.11d,e showing smaller trends than 
those observed. Giannini and Kaplan (2019) attempted to unify the 
driving mechanisms for decline and recovery based on singular-value 
decomposition of observed and modelled SSTs. Since the 1950s, 
tropical warming arising from GHGs and North Atlantic cooling 
from aerosol led to regional stabilization, suppressing Sahel rainfall. 
The subsequent reduction in aerosol emissions then led to North 
Atlantic warming and recovery of Sahel rainfall. Such mechanisms 
continue into the near-term future in idealized and modified RCP 
experiments, with scenarios featuring more aggressive reductions in 
aerosol emissions, or including aerosol–cloud interactions, favouring 
a greater northward shift of rainfall (Allen, 2015; Westervelt et al., 
2017, 2018; Scannell et al., 2019). There is paleoclimate evidence of 
changes to Sahel rainfall in the past, in particular with enhancement 
of the West African monsoon during the mid-Holocene. However, the 

mechanisms governing such a change have been shown to be largely 
dynamical in nature (D’Agostino et  al., 2019), suggesting that the 
mid-Holocene cannot be used to inform the credibility of changes 
due to greenhouse warming.

There is very high confidence (robust evidence and high agreement) 
that patterns of 20th-century ocean and land surface temperature 
variability have caused the Sahel drought and subsequent recovery 
by adjusting meridional gradients. There is high confidence (robust 
evidence and medium agreement) that the changing temperature 
gradients that perturb the West African monsoon and Sahel rainfall 
are themselves driven by anthropogenic emissions: warming by 
GHG emissions was initially restricted to the tropics but suppressed 
in the North Atlantic due to nearby emissions of sulphate aerosols, 
leading to a  reduction in rainfall. The North Atlantic subsequently 
warmed following the reduction of aerosol emissions, leading to 
rainfall recovery.

10.4.2.2 The South-Eastern South America Summer Wetting

A positive trend in summer (December to February) precipitation has 
been detected in multiple observational sources in south-eastern 
South America since the beginning of the 20th  century (Gonzalez 
et al., 2013; Vera and Díaz, 2015; Wu et al., 2016; H. Zhang et al., 
2016; Díaz and Vera, 2017; Saurral et  al., 2017). Sedimentary 
records from the Mar Chiquita lake indicate that the last quarter 
of the 20th  century was wetter than any period during the last 
200  years (Piovano et  al., 2004). In this attribution example the 
drivers contributing to the positive trend for the period 1951–2014 
are discussed (Figure  10.12a). Precipitation anomalies of Climatic 
Research Unit Time Series (CRU TS) as well as for the two members 
of a SMILE with the most negative and positive trends for 1951–2014 
are displayed in Figure 10.12b. The trend for 1951–2014 using CRU TS 
and GPCC is illustrated in Figure 10.12c, and for the region defined by 
the black quadrilateral, it amounts to 2.8 (CRU TS) – 3.5 (GPCC) mm 
per month and decade (see black crosses in Figure  10.12d) while 
the mean summer monthly precipitation for the same period is 
104 (CRU TS) –109 (GPCC) mm. The trend is also detectable in daily 
and monthly extremes (Re and Barros, 2009; Marengo et al., 2010; 
Penalba and Robledo, 2010; Doyle et al., 2012; Donat et al., 2013; 
Lorenz et al., 2016).

The influence of SST anomalies on south-eastern South America 
precipitation have been studied extensively on interannual to 
multi-decadal time scales (Paegle and Mo, 2002). The positive phase 
of El Niño–Southern Oscillation (ENSO; Annex IV.2.3) is related 
to stronger mean and extreme rainfall over south-eastern South 
America (Ropelewski and Halpert, 1987; Grimm and Tedeschi, 2009; 
Robledo et al., 2016). The ENSO influence may be modulated by the 
PDV (Kayano and Andreoli, 2007; Fernandes and Rodrigues, 2018) 
and the AMV (Kayano and Capistrano, 2014). PDV and AMV also 
influence the south-eastern South American climate independently 
of ENSO (Barreiro et al., 2014; Grimm and Saboia, 2015; Robledo 
et  al., 2020). While Pacific SSTs dominate the overall influence of 
oceanic variability in the region, the Atlantic variability seems 
to dominate on multi-decadal time scales and has been proposed 
as a  driver for the long-term positive trend (Seager et  al., 2010; 
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Figure 10.12 | South-Eastern South America positive mean precipitation trend and its drivers during 1951–2014. (a) Mechanisms that have been suggested to 
contribute to South-Eastern South America summer wetting. (b) Time series of austral summer (December to February) precipitation anomalies (%, baseline 1995–2014) over 
the South-Eastern South American region (26.25°S–38.75°S, 56.25°W–66.25°W), black quadrilateral in the fi rst map of panel (c). Black, brown and green lines show low-pass 
fi ltered time series for CRU TS), and the members with driest and wettest trends of the MPI-ESM single-model initial-condition large ensemble (SMILE; between 1951–2014), 
respectively. The fi lter is the same as the one used in Figure 10.10. (c) Mean austral summer precipitation spatial linear 1951–2014 trends (mm per month and decade) 
from CRU TS and GPCC. Trends are estimated using ordinary least squares regression. (d) Distribution of precipitation 1951–2014 trends over South-Eastern South America 
from GPCC and CRU TS (black crosses), CMIP6 all-forcing historical (red circles) and MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF SMILEs (grey box-and-whisker plots). Grey 
squares refer to ensemble mean trends of their respective SMILE and the red circle refers to the CMIP6 multi-model mean. Box-and-whisker plots follow the methodology used 
in Figure 10.6. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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Barreiro et al., 2014). Based on experiments designed to test how 
south-eastern South America precipitation is modulated by tropical 
Atlantic SSTs, Seager et  al. (2010) showed that cold anomalies 
in the tropical Atlantic favour wetter conditions by inducing an 
upper-tropospheric flow towards the equator, which, via advection 
of vorticity, leads to ascending motion over south-eastern South 
America (Figure  10.12a). Monerie et  al. (2019) supported this 
argument showing a negative relationship between south-eastern 
South America precipitation and the AMV index (Huang et  al., 
2015) using an AGCM coupled to an ocean mixed-layer model with 
nudged SSTs.

The positive trend of precipitation has also been attributed to 
anthropogenic GHG emissions and stratospheric ozone depletion. 
CMIP5 models only show a positive trend when including anthropogenic 
forcings (Vera and Díaz, 2015). These results were supported by 
Knutson and Zeng (2018) based on univariate detection/attribution 
analysis of annual mean trends for the 1901–2010 and 1951–2010 
periods. However, the main features of summer mean precipitation 
and variability of South America are still not well-represented in all 
CMIP5 and CMIP6 models (Gulizia and Camilloni, 2015; Díaz and Vera, 
2017; Díaz et al., 2021). This motivates the construction of ensembles 
that exclude the worst performing models (Section  10.3.3.4). The 
construction of ensembles of CMIP5 historical simulations with 
realistic representation of precipitation anomalies with opposite sign 
over south-eastern South America and eastern Brazil showed that the 
trend since the 1950s could be related to changes in precipitation 
characteristics only when simulations included anthropogenic 
forcings (Díaz and Vera, 2017). GHG emissions have been related 
to increased precipitation in south-eastern South America through 
three different mechanisms (Figure  10.12a). First, GHG warming 
induces a non-zonally uniform pattern of SST warming that includes 
a  warming pattern over the Indian and Pacific oceans that excites 
wave responses over South America (Junquas et  al., 2013). Zonally 
uniform SST patterns of warming alone lead to precipitation signals 
opposite to those observed in an AGCM (Junquas et al., 2013). Second, 
GHG radiative forcing drives an expansion of the Hadley cell so that 
its descending branch moves poleward from the region, generating 
anomalous ascending motion and precipitation (H. Zhang et al., 2016; 
Saurral et al., 2019). The third mechanism by which increased GHG 
can contribute to increased precipitation in the region is through 
a  delay of the stratospheric polar vortex breakdown. As depicted 
in Figure 10.12a, both stratospheric ozone depletion and increased 
GHGs have contributed to the later breakdown of the polar vortex 
in recent decades (McLandress et  al., 2010; Wu and Polvani, 2017; 
Ceppi and Shepherd, 2019). Mindlin et  al. (2020) developed future 
atmospheric circulation storylines (Section  10.3.4.2, Box  10.2) for 
Southern Hemisphere mid-latitudes with the CMIP5 models and found 
that for south-eastern South America summer precipitation, increases 
are related to the late-spring breakdown of the stratospheric polar 
vortex. The connecting mechanism is through a  lagged southward 
shift of the jet stream (Saggioro and Shepherd, 2019), which enhances 
cyclonic activity over the region (Wu and Polvani, 2017).

A common feature among the above discussed studies is that even 
if global models simulate positive trends when forced with GHG 
and/or stratospheric ozone, these trends are in general smaller 

than those observed (e.g.,  CMIP6 trends in red open circles in 
Figure  10.12d). Díaz  et  al. (2021) showed that to capture the 
observed trend a multi-model ensemble of SMILEs is needed. Out of 
the 12 large ensembles examined (with ensemble size varying in the 
16–100  range), only seven simulated the observed trend within 
their range. This could partly be explained by model biases in mean 
precipitation and its interannual variability. In the sub-ensemble of six 
models that reproduce reasonably well the observed spatial patterns 
of mean precipitation and interannual variability, the ensemble mean 
spread is lower, and the forced response, taken as the multi-model 
ensemble mean, is slightly more positive than that of the six poorly 
performing models. The signal-to-noise ratio, estimated as the ratio 
of the forced response to the spread due to internal variability, is 
also slightly higher for the best-performing models, suggesting that 
selecting the best-performing models may have an influence on 
both attribution of the observed trend and emergence of the forced 
response in future (Section 10.4.3).

There is high confidence that South-Eastern South America summer 
precipitation has increased since the beginning of the 20th century. 
Since AR5, science has advanced in the identification of the drivers of 
the precipitation increase in South-Eastern South America since 1950, 
including GHG through various mechanisms, stratospheric ozone 
depletion and Pacific and Atlantic variability. There is high confidence 
that anthropogenic forcing has contributed to the South-Eastern 
South America summer precipitation increase since 1950, but very 
low confidence on the relative contribution of each driver to the 
precipitation increase.

10.4.2.3 The South-western North America Drought

Persistent hydroclimatic drought in south-western North America 
remains a much-studied event. Drought is a regular feature of the 
south-western North America’s climate regime, as can be seen in 
both the modern record, and through paleoclimate reconstructions 
(Cook et al., 2010; Woodhouse et al., 2010; Williams et al., 2020), as 
well as in future climate model projections (Cook et al., 2015a). Since 
the early 1980s, which were relatively wet in terms of precipitation 
and streamflow, the region has experienced major multi-year 
droughts such as the turn-of-the-century drought that lasted 
from 1999 to 2005, and the most recent and extreme 2012–2014 
drought that in certain locations is perhaps unprecedented in the 
last millennium (Section  8.3.1.6; Griffin and Anchukaitis, 2014; 
Robeson, 2015). Shorter dry spells also happened between these 
multi-year droughts making 1980 to present a  period with an 
exceptionally steep trend from wet to dry (Figure 10.13a), leading 
to strong declines in Rio Grande and Colorado river flows (Lehner 
et al., 2017b; Udall and Overpeck, 2017). While robust attribution 
of this trend is complicated by the large natural variability in this 
region, the 20th century warming has been suggested to increase 
the chances for hydrological drought periods by lowering runoff 
efficiency (Woodhouse et al., 2016; Lehner et al., 2017b; Woodhouse 
and Pederson, 2018) and affecting evapotranspiration (Williams 
et al., 2020). There is some evidence suggesting that the Last Glacial 
Maximum, a period of low atmospheric CO2, about 21 ka ago, has 
a  thermodynamically-driven zonal mean precipitation response 
similar to that of the current state with relatively high CO2 levels 
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when compared with the pre-industrial period. Pluvial conditions 
at that time and a reduction in precipitation from the Last Glacial 
Maximum to the pre-industrial period are consistent with drying 
trends for the region in models with GHG concentrations exceeding 
pre-industrial levels. However, the dominant large-scale drivers 
responsible for the precipitation changes observed during these 
two transitions are markedly different: mainly ice-sheet retreat and 
increasing insolation on one hand, increasing GHGs on the other 
hand. This suggests that the Last Glacial Maximum correspondence 
is fortuitous which strongly limits its use to capture future 
hydrological cycle changes (Section 8.3.2.4.4; Morrill et al., 2018; 
Lowry and Morrill, 2019). Furthermore, the conclusion of the Last 
Glacial Maximum drying versus wetting seems to strongly depend 
on the physical property of interest, hydrologic or vegetation 
indicators (Scheff et al., 2017). Droughts are characterized by deficits 
in total soil moisture content that can be caused by a combination 
of decreasing precipitation and warming temperature, which 
promotes greater evapotranspiration. Regional-scale attribution 
of the prevalence of south-western North America drought since 
1980 then mostly focuses on the attribution of change in these 
two variables.

The observed south-western North America drying fits the narrative 
of what might happen in response to increasing GHG concentrations 
due to a  poleward expansion of the subtropics, that is conducive 
to drying trends over subtropical to mid-latitude regions (Hu et al., 
2013b; Birner et  al., 2014; Lucas et  al., 2014). However, several 
studies based on modern reanalyses and CMIP5 models have 
recently shown that the current contribution of GHGs to Northern 
Hemisphere tropical expansion is much smaller than in the Southern 
Hemisphere and will remain difficult to detect due to large internal 
variability, even by the end of the 21st  century (Section  3.3.3.1; 
Garfinkel et al., 2015; Allen and Kovilakam, 2017; Grise et al., 2018, 
2019). In addition, the widening of the Northern Hemisphere tropical 
belt exhibits strong seasonality and zonal asymmetry, particularly 
in autumn and the North Atlantic (Amaya et al., 2018; Grise et al., 
2018). Therefore, it seems that the recent Northern Hemisphere 
tropical expansion results from the interplay of internal and forced 
modes of tropical width variations and that the forced response 
has not robustly emerged from internal variability (Sections 3.3.3.1 
and 10.4.3).

A second possible causal factor is the role for ocean-forced or 
internal atmospheric circulation change. Analysis of observed 
and CMIP5-simulated precipitation indicates that the drought 
prevalence since 1980 is linked to natural, internal variability in the 
climate system (Knutson and Zeng, 2018). Based on observations 
and ensembles of SST-driven atmospheric simulations, Seager 
and Hoerling (2014) suggested that robust tropical Pacific and 
tropical North Atlantic forcing drove an important fraction of 
annual mean precipitation and soil moisture changes and that 
early 21st  century multi-year droughts could be attributed to 
natural decadal swings in tropical Pacific and North Atlantic SSTs. 
A cold state of the tropical Pacific would lead by well-established 
atmospheric teleconnections to anomalous high pressure across 
the North Pacific and southern North America, favouring a weaker 
jet stream and a  diversion of the Pacific storm track away from 

the south-west (Delworth et al., 2015; Seager and Ting, 2017). The 
multi-year drought of 2012–2016 has been linked to the multi-year 
persistence of anomalously high atmospheric pressure over the 
north-eastern Pacific Ocean, which deflected the Pacific storm track 
northward and suppressed regional precipitation during California’s 
rainy season (Swain et al., 2017). Going into more detail, Prein et al. 
(2016a) used an assessment of changing occurrence of weather 
regimes to judge that changes in the frequency of certain regimes 
during 1979–2014 have led to a decline in precipitation by about 
25%, chiefly related to the prevalence of anticyclonic circulation 
patterns in  the north-east Pacific. Finally, the moderate model 
performance in representing Pacific SST decadal variability and 
its remote influence (Section  3.7.6) as well as its change under 
warming may affect attribution results of observed and future 
precipitation changes (Seager et al., 2019).

It has also been suggested that the ocean-controlled influence 
is limited and internal atmospheric variability has to be invoked 
to fully explain the observed history of drought on decadal time 
scales (Seager and Hoerling, 2014; Seager and Ting, 2017). From 
roughly 1980 to the present, the regional climate signals show an 
interesting mix between forced and internal variability. Lehner et al. 
(2018) used a dynamical adjustment method and large ensembles 
of coupled and SST-forced atmospheric experiments to suggest 
that the observed south-western North America rainfall decline 
mainly results from the effects of atmospheric internal variability, 
which is in part driven by a PDV-related phase shift in Pacific SST 
around 2000 (Figure 10.13b,c). Based upon four SMILEs (three using 
a  GCM and another one an AGCM constrained by observed SSTs) 
and a  CMIP6 multi-model suite constrained by observed external 
forcings, Figure 10.13 shows, in agreement with Lehner et al. (2018), 
that observed SSTs with their associated atmospheric response are 
the main drivers of the south-western North America precipitation 
decrease during the 1983–2014 period. Once aspects of the internal 
variability are removed by dynamical adjustment, the observed 
precipitation change signal and simulated anthropogenically-forced 
components look more similar (Lehner et al., 2018).

Importantly, as the AR6 assessment views the PDV as being mostly 
driven by internal variability (Section 3.7.6), the lines of evidence cited 
above suggest that the contribution of natural and anthropogenic 
forcings to the precipitation decline has a  small amplitude. Unlike 
the precipitation deficit, the accompanying south-western North 
America warming is driven primarily by anthropogenic forcing from 
GHGs rather than atmospheric circulation variability and may help to 
enhance the drought through increased evapotranspiration (Knutson 
et  al., 2013; Diffenbaugh et  al., 2015; Williams et  al., 2015, 2020; 
Lehner et al., 2018, 2020).

To conclude, there is high confidence (robust evidence and medium 
agreement) that most (>50%) of the anomalous atmospheric 
circulation that caused the south-western North America negative 
precipitation trend can be attributed to teleconnections arising from 
tropical Pacific SST variations related to PDV. There is high confidence 
(robust evidence and medium agreement) that anthropogenic 
forcing has made a  substantial contribution (about 50%) to the 
south-western North America warming since 1980.
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10.4.2.4 Assessment Summary

The robustness of regional-scale attribution differs strongly between 
temperature and precipitation changes. While the influence of 
anthropogenic forcing on regional temperature long-term change 
has been detected and attributed in almost all land regions, a robust 
detection and attribution of human influence on regional precipitation 

change has not yet fully occurred for many land regions 
(Section 10.4.3). Although the contribution of anthropogenic forcing 
to long-term regional precipitation change has been detected in 
some regions, a robust quantification of the contributions of different 
drivers remains elusive. The delayed emergence of the anthropogenic 
precipitation fingerprint with respect to temperature is likely due 
to the opposing sign of the fast and slow land precipitation forced 
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Figure 10.13 | Attribution of the south-western North America precipitation decline during the 1983–2014 period. (a) Water year (October to September) 
precipitation spatial linear trend (in percent per decade) over North America from 1983 to 2014. Trends are estimated using ordinary least squares. Top row: observed 
trends from CRU TS, REGEN, GPCC, and the Global Precipitation Climatology Project (GPCP). Middle row: driest, mean and wettest trends (relative to the region enclosed in 
the black quadrilateral, bottom row) from the 100 members of the MPI-ESM coupled SMILE. Bottom row: driest, mean and wettest trends relative to the above region from 
the 100 members of the d4PDF atmosphere-only SMILE. (b) Time series of water year precipitation anomalies (%, baseline 1971–2000) over the above south-western North 
America region for CRU TS (grey bar charts). Black, brown and green lines show low-pass filtered time series for CRU TS, driest and wettest members of the d4PDF SMILE, 
respectively. The filter is the same as the one used in Figure 10.10. (c) Distribution of south-western region-averaged water-year precipitation 1983–2014 trends (in percent 
per decade) for observations (CRU TS, REGEN, GPCC and GPCP, black crosses), CMIP6 all-forcing historical simulations (red circles), the MIROC6, CSIRO-Mk3-6-0, MPI-ESM and 
d4PDF SMILEs (grey box-and-whisker plots). Grey squares refer to ensemble mean trends of their respective SMILE and the red circle refers to the CMIP6 multi-model mean. 
Box-and-whisker plots follow the methodology used in Figure 10.6. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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responses and time-dependent SST change patterns (Sections 8.2.1 
and Section 10.4.3), stronger internal variability (Section 10.3.4.3) as 
well as larger observational uncertainty (Section 10.2) and impact of 
model biases. The contribution of internal variability to the observed 
changes can also be very sensitive to the period length and level 
of spatial aggregation for the region under scrutiny (Section 4.4.1 
and Cross-Chapter Box 3.1; Kumar et al., 2016). Finally, even in the 
case of temperature changes at multi-decadal time scale, internal 
variability can still be a substantial driver of regional changes due to 
cancellation between different external forcings (Nath et al., 2018).

To conclude, it is virtually certain (robust evidence and high agreement) 
that anthropogenic forcing has been a major driver of temperature 
change since 1950 in many sub-continental regions of the world. 
There is high confidence (robust evidence and medium agreement) 
that anthropogenic forcing has contributed to multi-decadal mean 
precipitation changes in several regions, for example western Africa, 
south-east South America, south-western Australia, northern central 
Eurasia, and South and East Asia. However, at regional scale, the role 
of internal variability is stronger while uncertainties in observations, 
models and external forcing are all larger than at the global scale, 
precluding a  robust assessment of the magnitude of the relative 
contributions of greenhouse gases, including stratospheric ozone, 
and different aerosol species.

10.4.3 Future Regional Changes: Robustness and 
Emergence of the Anthropogenic Signal

Regional climate projections are one key element of the multiple lines 
of evidence that are used for climate risk assessments as well as for 
adaptation and policy decisions at regional scales (Sections 10.3.3.9 
and 10.5). Regional climate projections can be separated into 
two components: the regional-scale forced response or regional-scale 
climate sensitivity when normalized by the global mean temperature 
change (Seneviratne and Hauser, 2020) and the climate internal 
variability characterizing the future period or global warming level 
under scrutiny. This section assesses a  few methodological aspects 
related to robustness and emergence properties of the regional-
scale forced response as well as the possible influence of internal 
variability on the emergence of the anthropogenic signal.

10.4.3.1 Robustness of the Anthropogenic 
Signal at Regional Scale

Standard methodologies to derive the regional forced response include 
pattern-scaling and the time-shift or epoch approach (Section 4.2.4; 
Tebaldi and Arblaster, 2014; Vautard et al., 2014; Herger et al., 2015; 
Tebaldi and Knutti, 2018; Christensen et  al., 2019). Pattern-scaling 
assumes that the spatial patterns of regional change, often based on 
a time-averaged 20- or 30-year period at the end of the 21st century, 
are roughly constant in time, and simply scale linearly with global 
mean warming. The time-shift approach defines a target in terms of 
global warming level (GWL) and locates the time segment, usually 
20 or 30 years, in historical or scenario simulations in which global 
mean warming matches the required GWL (Section  10.1.2 and 
Cross-Chapter Box  11.1). Physical consistency between multiple 

variables and space-time co-variance are fully preserved in the 
time-shift approach, which is not the case for pattern-scaling (Herger 
et  al., 2015). Importantly, pattern scaling cannot account for the 
non-linearity arising from either interacting quasi-linear processes 
(Chadwick and Good, 2013) and purely non-linear mechanisms, 
which have been shown to be present in CMIP5 models for high 
GWL (4°C) and affect precipitation more than temperature at the 
regional-scale (Section 8.5.3.1; Good et al., 2015, 2016). The time-shift 
approach can also be used to test whether regional climate change 
patterns depend on the rate of global mean warming and external 
forcing pathways, in addition to global warming magnitude. A global 
evaluation of both approaches in projecting the forced temperature 
and precipitation response for a highly mitigated scenario based on 
a moderately mitigated one has been performed using a perfect-model 
framework (Tebaldi and Knutti, 2018). The amplitude of errors for 
both approaches appears to be substantially smaller than model 
uncertainty approximated by the CMIP5 multi-model spread.

Based on large and coordinated modelling exercises such as CMIP5 
and CORDEX, the time-shift approach has been largely used to 
assess differences in regional climate impacts for different GWLs, 
with a  strong focus on 1.5°C versus 2°C (Karmalkar and Bradley, 
2017; Dosio and Fischer, 2018; Karnauskas et al., 2018; W. Liu et al., 
2018; Taylor et  al., 2018; Weber et  al., 2018; Chapter  3, SR1.5, 
Hoegh-Guldberg et al., 2018). Comparisons between pattern-scaling 
and time-shift approaches allow assessment of the scalability 
of the regional climate change signal and the extent to which 
pattern-scaling assumptions still hold at regional scale for a  wide 
range of GWL. This was the approach followed by Matte et al. (2019) 
in their assessment of the scalability of European regional climate 
projections. Based on EURO-CORDEX projections, they performed 
a  detailed comparison between the pattern scaling and the GWL 
spatial patterns (GWL range: 1°C, 2°C and 3°C) for different seasons, 
regional model resolutions, and both temperature and precipitation. 
High pattern correlation values (greater than 0.9) are found between 
the scaled pattern and all GWL patterns for temperature. In the case 
of precipitation, the correspondence is slightly lower, especially in 
summer, for high GWLs (2°C and 3°C) and much lower for 1°C.

Figure  10.14 illustrates a  similar comparison based on the CMIP6 
multi-model ensemble forced with the scenario SSP5-8.5 and 
applied to two large-scale continental areas. The forced response 
to anthropogenic forcing is simply taken as the CMIP6 multi-model 
mean of future regional climate change relative to the 1850–1900 
reference period. Robustness of the forced response is based on 
both significance of the change and model agreement about the 
sign (direction) of change (Cross-Chapter Box Atlas.1; Figure 10.14). 
Caution has to be exercised against a  too literal interpretation of 
lack of robust change given that significance and sign agreement 
can be sensitive to spatial and temporal aggregation (Cross-Chapter 
Box Atlas.1, Figure  2) and lack of a  robust change does not 
necessarily translate to lack of regional-scale climate change impacts 
(McSweeney and Jones, 2013; Hibino and Takayabu, 2016).

If projected regional mean temperature (Figure  10.14a) and 
precipitation (Figure 10.14b) changes were to scale linearly with global 
mean warming, the adjusted spatial patterns would be congruent 
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with each other at different GWLs. While pattern scaling seems to 
be a reasonable fi rst-order approximation for both temperature and 
precipitation changes in tropical and high latitude regions (high pattern 
correlation values), there are a number of regions exhibiting substantial 
amplitude differences at different GWLs (northern Africa and Middle 
East, southern and eastern Europe for temperature; south-western 
North America, Chile and north-eastern Brazil for precipitation). These 
differences hint at the possible infl uence of non-linear mechanisms 
(Good et  al., 2015), including soil-moisture feedbacks (Seneviratne 
et al., 2010; Vogel et al., 2017), a time-dependent balance between the 
different contributions of fast and slow response to greenhouse gas 
forcing as well as changing SST response patterns (Long et al., 2014; 
Good et al., 2016; Ceppi et al., 2018; Zappa et al., 2020). Decreasing 

spatial pattern amplitude with increasing GWL suggests that the 
initial transient regional response overshoots the long-term change 
in regions such as northern Africa for summer temperature and south-
western South America for precipitation (Zappa et al., 2020). In the 
latter region, long simulations with stabilized GHG concentrations 
even suggest a  change of sign when near-equilibrium is reached 
(Sniderman et  al., 2019). The reverse behaviour, increasing pattern 
amplitude with increasing GWL, is seen for summer temperature in 
southern and eastern Europe and for precipitation in south-western 
North America (Sniderman et al., 2019; Zappa et al., 2020), suggesting 
that, in these regions, the initial transient response is lagging global 
mean warming and fi nal regional climate change will be reached once 
GHG concentrations are stabilized.

Spatial patterns of change at increasing global warming levels since pre-industrial period (1850 1900)
(All patterns are CMIP6 multi-model mean changes and have been scaled to a 1 C global warming level)

(a) Summer land temperature

(b) Annual mean land precipitation

Robustness and scalability of anthropogenic signals at regional scale

Correlation, RMSD

45454545 31 45Number of models

45454545 31 45

No change or no robust signal
Robust signal

Conflicting signals

Colour

Figure 10.14 | Robustness and scalability of anthropogenic signals at regional scale. (a) Spatial patterns of European and African summer (June to August) surface 
air temperature change (in °C °C–1) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model mean (45 models, one member per model, historical 
simulations and scenario SSP5-8.5) at different global warming levels (GWLs) and the end-21st  century scaling pattern estimated from the multi-model mean difference 
between 2081–2100 and the pre-industrial period (1850–1900) divided by the corresponding global mean warming. The scale of all GWL patterns has been adjusted to 
a global mean warming of 1°C (for example, the resulting 3°C spatial pattern has been divided by three). The scales of the GWL patterns have to be multiplied by their threshold 
values to obtain the actual simulated warming. The metrics shown in the bottom left corner of the GWL pattern plots indicate the spatial pattern correlation and the root-mean-
square difference between the GWL patterns and the scaling pattern. The number in bold just above the metrics gives the number of used CMIP6 models (out of 45) that have 
reached the GWL threshold. Areas with robust change (at least 66% of the models have a signal-to-noise ratio greater than one and 80% or more of the models agree on 
the sign of the change) are coloured with no pattern overlaid (Cross-Chapter Box Atlas.1). Areas with a signifi cant change (at least 66% of the models have a signal-to-noise 
ratio greater than one) and lack of model agreement (meaning that less than 80% of the models agree on the sign of the change) are marked by cross-hatching. Areas with 
no change or no robust change (less than 66% of the models have a signal-to-noise ratio greater than one) are marked by negatively sloped hatching. (b) Same as (a) but for 
North, Central and South America annual mean precipitation relative change (percent °C–1). The baseline for precipitation climatology is 1850–1900. Further details on data 
sources and processing are available in the chapter data table (Table 10.SM.11).
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There is high confidence that the time-evolving contribution of 
different mechanisms operating at different time scales can modify 
the amplitude of the regional-scale response of temperature, and 
both the amplitude and sign of the regional-scale response of 
precipitation, to anthropogenic forcing. These mechanisms include 
non-linear temperature, precipitation and soil-moisture feedbacks, 
and slow and fast response of SST patterns and atmospheric 
circulation changes to increasing GHGs.

10.4.3.2 Emergence of the Anthropogenic 
Signal at Regional Scale

This section provides an assessment of the different approaches 
used in emergence studies as well as sensitivities to methodological 
choices. The section then focuses on the possible influence of 
internal variability on future emergence of the simulated mean 
precipitation anthropogenic signal at regional scales with some 
illustrative examples.

In climate science, emergence or distinguishability of a signal refers to 
the appearance of a persistent change in the probability distribution 
and/or temporal properties of a  climate variable compared with 
that of a  reference period (Section  1.4.2; Giorgi and Bi, 2009; 
Mahlstein et al., 2011, 2012; Hawkins and Sutton, 2012). Similar to 
anthropogenic climate change detection (Cross-Working Group Box: 
Attribution in Chapter 1), signal emergence can be detected, at least 
initially, without identifying the physical causes of the emergence 
(Section  1.4.2). In the context of human influence on climate, the 
objective of emergence studies is the search for the appearance of 
a signal characterizing an anthropogenically-forced change relatively 
to the climate variability of a reference period, defined as the noise.

Precise definitions of signal and noise as well as a  metric to 
measure the relative importance of the signal are key ingredients 
of the emergence framework and depend on the framing question. 
In particular, emergence study results can depend on the specific 
definitions of signal and noise such as the level of spatial and 
temporal aggregation (McSweeney and Jones, 2013). For instance, 
grid-point scale emergence will likely be delayed compared with 
region-average emergence (Section  11.2.4 and Cross-Chapter 
Box Atlas.1, Figure 2; Fischer et al., 2013; Maraun, 2013b; Lehner et al., 
2017a). The signal is often estimated by a running mean multi-decadal 
average or probability distribution function of the physical variable 
under scrutiny in order to avoid false emergence due to manifestation 
of multi-decadal internal variability (King et al., 2015). In the case of 
extremes such as climate records, a notion of multi-year persistence 
or recurrence can also be used to fully characterize the anthropogenic 
signal and its emergence (Christiansen, 2013; Bador et al., 2016).

Emergence is also sensitive to the noise characteristics: assuming 
a  common signal definition, larger signal-to-noise values and 
earlier emergence will arise if the noise is based on decadal mean 
variability rather than interannual variability (Kusunoki et al., 2020). 
Depending on the framing question, the noise can include or omit 
external natural forcing such as volcanic and solar forcing (Zhang 
and Delworth, 2018; Silvy et  al., 2020). Furthermore, emergence 
results are very sensitive to the choice and length of the reference 

period (Section 1.4.1). The reference period can be the pre-industrial, 
the very recent past or even a  time-evolving baseline, depending 
on both the framing and assumption that adaptation to the current 
climate has already occurred (King et al., 2015; Zhang and Delworth, 
2018; Brouillet and Joussaume, 2020). These choices will then 
determine the type of simulations and periods that will be used to 
construct the noise distribution. Finally, the permanence of future 
emergence cannot be taken for granted when emergence occurs in 
the late-21st century based on simulations ending in 2100 (Hawkins 
et al., 2014; King et al., 2015; Lehner et al., 2017a).

Robust assessments and comparisons of past emergence between 
observations and models are strengthened by the use of consistent 
definitions of signal and noise (Lehner et al., 2017a; Hawkins et al., 
2020). In the case of future emergence under increasing greenhouse 
gas emissions, two main approaches have been followed to assess 
emergence. The first is based on estimating the signal and noise (and 
sometimes the signal-to-noise ratio as well) in individual models 
before using the resulting distribution median or mean to construct 
the final emergence metric (Hawkins and Sutton, 2012; Maraun, 
2013b; Sui et  al., 2014; Barrow and Sauchyn, 2019). The second 
method first estimates the signal as a  multi-model mean change 
and the noise variance as a combination of internal variability and 
model structural differences (Giorgi and Bi, 2009; Mariotti et  al., 
2015; Nguyen et al., 2018). The first approach allows the definition 
of emergence of the signal relative to internal variability only and 
treats model error as source of uncertainty (Maraun, 2013b; Lehner 
et al., 2017a). The second assumes that the multi-model mean is the 
optimal estimate of the signal and confounds internal variability and 
model structural differences in the noise estimate. It is noteworthy 
that most emergence studies implicitly assume model independence 
(Annan and Hargreaves, 2017; Boé, 2018; Box  4.1) and therefore 
sensitivity of emergence results to model selection or weighting is 
rarely performed (Akhter et al., 2018).

Metrics can vary from a  simple signal-to-noise ratio to statistical 
distributional tests (King et al., 2015; Gaetani et al., 2020) and give 
median estimates and uncertainty bounds for the date (or time of 
emergence) corresponding to the exceedance of specific thresholds by 
the emergence metric. Reconciling future emergence results among 
different studies is challenging due to their many methodological 
differences including the choice of the reference period, the selected 
climate models and scenario, the precise definition of signal and noise 
and the choice of different signal-to-noise thresholds to characterize 
robust emergence. Contrasting with binary yes/no statements, 
emergence can also be viewed as a continuous process characterized 
by an amplitude or level, for example the value of the signal-to-noise 
ratio, that is a function of time or global warming level.

Since AR5, the development and production of SMILEs (Sections 4.2.5 
and 10.3.4.3) has allowed the assessment of the influence of internal 
variability on anthropogenic signal emergence. The influence of 
internal variability, and specifically of the unforced atmospheric 
circulation, on temperature signal emergence can delay or advance 
the time of emergence by a decade or two in mid- to high-latitude 
regions (Lehner et al., 2017a; Koenigk et al., 2020). Internal variability 
can also result in small or decreasing decadal to multi-decadal 

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1426

Chapter 10 Linking Global to Regional Climate Change

10

heatwave frequency trends under the historical anthropogenic forcing 
over most regions, thereby delaying emergence of unprecedented 
heatwave frequency trends relative to the pre-industrial trend 
distribution (Sections 11.2–11.3; Perkins-Kirkpatrick et al., 2017).

Regional precipitation future changes are much more impacted by 
internal variability than their temperature counterpart (Monerie 
et al., 2017b; Dai and Bloecker, 2019; Singh and AchutaRao, 2019; 
von Trentini et  al., 2019; Koenigk et  al., 2020). Relative to mean 
temperature changes, this larger infl uence of internal variability 
on mean precipitation changes contributes, among other factors 

(Sarojini et al., 2016), to a much delayed emergence of the forced 
precipitation response in observations (Hawkins et al., 2020). Based on 
the CMIP6 multi-model ensemble forced with the scenario SSP5-8.5, 
we assess the future emergence of mean precipitation forced change 
as a  function of GWLs for all AR6 land regions (Figure  10.15a). 
The methodology is a  straightforward adaptation of the standard 
approach (Hawkins and Sutton, 2012). While the standard method 
is only based on the signal-to-noise ratio exceedance of a specifi ed 
threshold (taken as one), the approach used here assumes that 
grid-point emergence occurs when the forced change is considered 
robust following the AR6 WGI defi nition of robustness for projected 

Percentage area of AR6 land regions with robust annual mean precipitation change
(a) Function of Global Warming Levels

Future emergence of anthropogenic signal at regional scale

2°C

(b) Function of time
AR6 Multi-model Single-model initial condition large ensembles

Wetter

Drier

1.5°C1°C

End of 21st century4°C3°C

Figure 10.15 | Future emergence of anthropogenic signal at regional scale. (a) Percentage area of land regions with robust annual mean precipitation change as 
a function of increasing global warming levels (GWLs). Robustness of the precipitation change is fi rst estimated at each grid-point followed by the estimation of the AR6 region area 
with robust changes. For each Coupled Model Intercomparison Project Phase 6 (CMIP6) model considered (45 models, one member per model, historical simulations and scenario 
SSP5-8.5), the annual mean precipitation change is based on the difference between a 20-year average centred on the GWL crossing year and the mean precipitation during the 
pre-industrial period (1850–1900) taken as a reference. The change is considered to be robust when at least 66% of the models (30 out of 45) have a signal-to-noise ratio greater 
than one and at least 80% of them (36 out of 45) agree on the sign of change. The signal-to-noise ratio is estimated for each model from the ratio between the change and the 
standard deviation of non-overlapping 20-year means of the corresponding pre-industrial simulation (scaled by square root of 2 times 1.645). (b) Time evolution of the percentage 
area of land region with robust annual mean precipitation change for fi ve AR6 land regions. Thick solid lines represent precipitation changes based on the same CMIP6 ensemble 
as in (a). Thin solid, dotted and dashed lines represent changes based on the three coupled single-model initial-condition large ensembles (SMILEs) used in Chapter 10, illustrating 
the infl uence of internal variability on the emergence of robust change. The change is estimated from the difference between all consecutive 20-year periods from 1900–1919 up 
to 2081–2100 and the pre-industrial period. The line colour indicates the sign of the robust change given by the multi-model mean (CMIP6) or ensemble mean (SMILE) change: 
brown (decreasing precipitation) and dark green (increasing precipitation). Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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changes (Cross-Chapter Box Atlas.1). At a GWL of 1°C, emergence 
only occurs in high-latitude regions (Wan et al., 2015; R. Guo et al., 
2019), albeit with only small (less than 30%) area fraction with 
robust change. Robust changes in tropical and subtropical regions 
only appear from GWLs of 1.5°C, for example in south-western South 
America (Boisier et al., 2016), western Africa (Hawkins et al., 2020; 
Section 10.4.2.1) and southern Australia (Delworth and Zeng, 2014). 
Substantial (taken here simply as area fraction greater than 50%) 
emergence only occurs in some tropical, subtropical and mid-latitude 
regions when high GWLs (3°C–4°C) are reached. Importantly, even 
at these high GWL values, there are still a  large number of these 
regions with robust changes covering less than 50% of their area. 
In contrast, most high-latitude regions have an area fraction with 
robust changes greater than 80% at GWLs of 3°C and above.

We now illustrate the potential influence of internal variability on 
late or lack of emergence for a few AR6 land regions (Figure 10.15b). 
For each of these AR6 regions, the time evolution of the percentage 
area with robust annual mean precipitation change is estimated 
for both the CMIP6 multi-model ensemble and the three coupled 
SMILEs used throughout Chapter  10. Similarity in percentage area 
time evolution between CMIP6 and the three coupled SMILEs 
suggests that internal variability can substantially influence the 
timing of emergence. For example, internal variability could explain 
the mid-21st  century emergence (percentage area greater than 
50%) of the drying and wetting signal over the Mediterranean and 
South Asia (see also Section  10.6.3) regions, respectively. Internal 
variability can also contribute to the late and moderate emergence 
over South-Eastern South America (see also Section 10.4.2) and West 
South Africa (see also Section 10.6.2). In contrast, it cannot explain 
the lack of robust changes (percentage area less than 30%) over 
Western Africa at the end of the 21st century, suggesting that model 
differences are also contributing to the lack of emergence (Monerie 
et al., 2017a, b). In addition to different forced signals, the differences 
of time evolution between the three SMILEs, in particular for African 
regions, point to the issue of global model performance in accurately 
representing internal variability and its future changes. While 
overestimation and underestimation of internal variability in current 
models have been reported (Eade et al., 2014; Laepple and Huybers, 
2014), methodological challenges to assess the magnitude and 
spatial pattern of model biases in simulating internal variability, still 
remain (Section 10.3.4.3). Therefore, the existence of model biases 
and the limited knowledge of their characteristics lead to limitations 
about a  precise quantification of internal variability influence on 
delayed regional-scale emergence.

There is high confidence that consistency in definitions of signal and 
noise, choice of the reference period and signal-to-noise threshold, is 
important to robustly assess the future emergence of anthropogenic 
signals across different types or generations of models, as well 
as comparing past emergence results between observations and 
models. There is high confidence that internal variability can delay the 
emergence of the regional-scale mean precipitation anthropogenic 
signal in many regions, mainly located in the tropics, subtropics and 
mid-latitudes. An accurate estimation of the delay in regional-scale 
emergence caused by internal variability remains challenging due to 
global model biases in their representation of internal variability as 

well as methodological difficulties to precisely estimate these biases 
(high confidence).

10.5 Combining Approaches to Constructing 
Regional Climate Information

This section assesses approaches and challenges for producing 
climate information for climate risk assessments as well as for 
adaptation and policy decisions at regional scales (Section 10.1.2.1). 
An overview of the different sources used for developing regional 
climate information is given in Section 10.5.1. The role of the user 
context in the construction of climate information is assessed in 
Section 10.5.2. The distillation to combine multiple lines of evidence 
is assessed in Section 10.5.3. Finally, climate services in the context 
of regional climate information are assessed in Section 10.5.4. The 
role of storylines in constructing climate information is assessed in 
Box  10.2. The assessment of how regional climate information is 
distilled in the report is treated in Cross-Chapter Box 10.3, whereas 
the assessment of information on regional, physical climate processes 
that impact society or ecosystems, termed climatic impact-drivers 
(Section 10.1), appears in Chapter 12, as well as more information 
on climate services in Cross-Chapter Box 12.2.

The rise in demand for relevant regional climate information 
(Hewitt et  al., 2012, 2020; Lourenço et  al., 2016) has resulted in 
diverse approaches to produce it. Historically, the construction of 
climate information has been embedded in a  linear supply chain: 
extracting the source data, processing into maps or derived data 
products, preparing the material for communication, and delivering 
to users (Section  10.1.4). Typical products are open-access, 
web-portal delivery services of data (Hewitson et al., 2017), which 
may also be implemented as commercialized climate services 
(Webber and  Donner, 2017). Such a  chain, although it is intended 
to meet a demand for regional climate information, contains many 
assumptions that are not obvious to the recipients and that may 
introduce possible misunderstandings in the handover from one 
community to the next (Meinke et al., 2006; Lemos et al., 2012). In 
recognition that data is not necessarily relevant information, a new 
pathway towards a  tailored distillation of climate information has 
emerged. The construction of information assessed in this section 
draws on multiple sources (Figure  10.16), whereby the context 
framing for an application is addressed through co-design with 
users. The constructed information is then translated into the context 
of the user taking into account the values of all actors involved 
(Sections 10.5.2 and 10.5.3, and Figure 10.1).

10.5.1 Sources of Regional Climate Information

Regional climate information may be constructed from a  diverse 
range of sources, each depending on different assumptions and 
affected by different methodological limitations (Sections 10.2, 10.3 
and 10.4). The construction of information may lead to products for 
direct adoption by users, or intermediate products for further analysis 
by users and climate services agencies in collaboration with climate 
scientists. Widely used sources include:
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• Extrapolation of observed historical trends into the future 
(e.g., Livezey et al., 2007; Laaha et al., 2016). Given that internal 
variability can affect regional trends significantly on decadal to 
multi-decadal time scales (Section  10.4), this approach could 
be potentially misleading without other supporting evidence 
(Westra et al., 2010), or finding congruence with other changes 
(e.g., Langodan et al., 2020).

• The output from global models (Section 10.3.1), including high-
resolution GCMs and ESMs, for which performance has been 
assessed and documented (Section  10.3.3). Model data can be 
used in its raw form or may be bias adjusted (Section 10.3.1 and 
Cross-Chapter Box 10.2) or weighted (Section 10.3.4 and Box 4.1).

• The output from dynamically (Section  10.3.1.2) or statistically 
(Section  10.3.1.3) downscaled global model simulations for 
which performance has been assessed and documented as 
trustworthy (Section 10.3.3). Model data can be used in its raw 
form or may be bias adjusted, in the case of regional climate 
models (RCMs, Section 10.3.1).

• Process understanding about climate and the drivers of regional 
climate variability and change, grounded in theory about 
dynamics, thermodynamics and other physics of the climate 
system as a  basis for process-based evaluation. For instance, 
teleconnections are useful to understand the links between 
large and regional scales at both near and long-term depending 
on the application. (Sections 10.1.3, 10.3.3, 10.4.1, 10.4.3 and 
Annex IV).

• Idealized scenarios of possible future climates as narratives to 
explore the implications and consequences of such scenarios in 
the presence of uncertainty (Jack et al., 2021). This approach has 
been used to explore the response to geoengineering (Cao et al., 
2016a), as well as alternative scenarios where model projections 
are highly uncertain (Brown et al., 2016; Jack et al., 2021).

• Information directly from research reported in the peer-reviewed 
scientific literature (e.g., Sanderson et al., 2017) or related research 
reports such as communications to the UN Framework Convention 
on Climate Change (UNFCCC) about national adaptation.
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Figure  10.16 | Illustration of how using different sources can result in different and potentially conflicting information. Change in daily precipitation 
(2071–2100 RCP8.5 relative to 1981–2010) over Western Africa as simulated by an ensemble of regional climate models (RCMs) driven by global climate models (GCMs). 
(a) Change in daily precipitation (mm) for April to September, as mean of 17 CORDEX models (Dosio et al., 2020) (b–e) Time-latitude diagram of daily precipitation change for 
four selected RCM-GCM combinations. For each month and latitude, model results are zonally averaged between 10°W–10°E (blue box in a). Different GCM–RCM combinations 
can produce substantially different and contrasting results, when the same RCM is used to downscale different GCMs (b, d), or the same GCM is downscaled by different 
RCMs (d, e). GCM1=IPSL-IPSL-CM5A, GCM2=ICHEC-EC-EARTH, RCM1=RCA4, RCM2=REMO2009. Adapted from Dosio et al. (2020), CCBY4.0 https://creativecommons.org/
licenses/by/4.0/.  Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1429

Linking Global to Regional Climate Change Chapter 10

10

• Engaging with climate scientists and local communities who may 
provide indigenous information (Rosenzweig and Neofotis, 2013; 
Makondo and Thomas, 2018).

• Relevant information may also be drawn from paleoclimate 
studies (e.g., McGregor, 2018; Armstrong et al., 2020; Kiem et al., 
2020) to support and contextualize other sources about more 
recent and projected changes.

Different sources of information may be more appropriate for 
some purposes than others, as they may provide information better 
aligned to the spatial and temporal scales of interest, in different 
formats, and tailored to different types of application. In some cases, 
a  purpose may be best served using several types of information 
together. For example, when model data is the primary source, it can 
be advantageous to employ data from multiple models or even from 
a range of different experiment types (Section 10.3.2) supported by 
assessing how the models reflect changes in driving processes. In this 
manner a purpose may be best served by seeking the congruence of 
several types of information together, though one needs to recognize 
how well the attributes of each source align with the specific need 
for information. Depending on resources, one may even design model 
experiments specifically for a given use, such as constructing physical 
climate storylines of individual events (Section 10.3.2 and Box 10.2). 
Such analyses may be complemented by event attribution studies 
(Section 11.1.4).

Users of climate information may face the so-called practitioner’s 
dilemma: a  plethora of different and potentially contrasting 
sources (Figure  10.16) may be available without a  comprehensive 
and user-relevant evaluation, and these datasets may also lack 
a  transparent and easily understandable explanation of underlying 
assumptions, strengths and limitations (Barsugli et  al., 2013; 
Hewitson et  al., 2017). Often, the choice of information source is 
therefore not determined by what is most relevant and informative 
for the question at hand, but rather by practical constraints such as 
accessibility and ease of use and may be limited to the availability of 
just one source in extreme cases (Rössler et al., 2019a).

10.5.2 Framing Elements for Constructing 
User-Relevant Information

10.5.2.1 Consideration of Different Contexts

Without considering the specific context, the distillation of climate 
information relevant to users may poorly serve the goal of informing 
adaptation and policy (Cash et al., 2003; Lemos et al., 2012; Baztan 
et al., 2017). Section 10.1.4 identifies three implicit framing issues 
of constructing and delivering user-relevant climate information: 
practical issues arising from the climate information sources, issues 
with including the context in constructing the information, and 
difficulties presented by complex networks of practitioners. The social 
context strongly influences decisions about constructing information 
and requires a  nuanced and holistic approach to recognize the 
complexity of a  coupled social and physical system (Daron et  al., 
2014). For example, urban water managers must recognize the 
dependency of the city on different water resources and the interplay 

of both local and national government legislation that can involve 
a range of different constituencies and decision makers (Scott et al., 
2018; Savelli et al., 2021).

Context plays a role in determining the risks that may affect human 
systems and ecosystems and consequently the climate information 
needs. The context may also limit access to such information. Hence, 
the context imposes inherent constraints on how climate information 
can be constructed and optimally aligned with its intended 
application. Although contexts are unlimited in variety, some key 
contextual elements include:

• Whether the problem formulation needs to be constructed 
through consultative activities that, for instance, help identify 
thresholds of vulnerability in complex urban or rural systems 
(Baztan et al., 2017; Willyard et al., 2018) or is more a matter of 
addressing a generic vulnerability already identified, such as the 
frequency of flood events or recurrence intervals of multi-year 
droughts (Hallegatte et al., 2013).

• Societal capacity, such as cultural or institutional flexibility 
and willingness to respond to different scientific information 
(e.g., Hart and Nisbet, 2012; Kahan, 2012, 2013).

• The technical capability and expertise of the different actors, 
including users, producers, and communicators (e.g.,  Sarewitz, 
2004; Gorddard et al., 2016).

• Potential contrasts in value systems such as the different views of 
the Global North compared to those of economies in transition or 
under development (Henrich et al., 2010a, b; Sapiains et al., 2021).

• The relative importance of climate change in relation to 
non-climate stressors on the temporal and spatial scales of 
interest to the user, which at times are not the ones initially 
assumed by the producers (Otto et al., 2015).

• Availability, timing and accessibility of the required climate 
information, including the availability of sources such as 
observations, model simulations, literature and experts of the 
relevant regional climate (Mulwa et  al., 2017). In developing 
countries, the availability of all or some of these sources may be 
limited (Dinku et al., 2014).

These and other contextual elements can frame subsequent 
decisions about the construction of regional climate information for 
applications. For example, an engineer typically seeks quantitative 
information, while the policy community may be more responsive to 
storylines and how information is positioned within a causal network 
describing regional climate risk (Section 1.4.4 and Box 10.2). Multiple 
contexts can coexist and potentially result in competing approaches 
(for example, when urban governance contends with regional 
water-resource management in the same area).

10.5.2.2 Developing Climate Information Conditioned 
by Values of Different Actors and Communities

Developing climate information relevant to user needs can be 
influenced by the explicit and implicit values of all parties: those 
constructing the information, those communicating the information, 
those receiving the information, and, critically, those who construct 
the problem statement being addressed. A  discussion of how 

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1430

Chapter 10 Linking Global to Regional Climate Change

10

values in the scientifi c community shape climate research appears 
in Section 1.2.3.2. The infl uence of values need not be a source of 
bias or distortion; it is sometimes appropriate and benefi cial: critical 
scrutiny from a diverse range of value-governing perspectives may 
uncover and challenge biases and omissions in the information that 
might otherwise go unrecognized (Longino, 2004). Dialogue among 
all parties in a culturally, socially, and economically heterogeneous 
society is therefore important for recognizing and reconciling value 
differences to best yield information that is salient, relevant and 
avoids ambiguity, most notably when informing the complexity of 
risks and resilience for human systems and ecosystems in developing 
nations (e.g., Baztan et al., 2017).

Thus, a  challenge with constructing climate information for users, 
especially about impactful change, is that producing the information 
may need to involve people with a  variety of backgrounds, who 
have different sets of experiences, capabilities, and values. The 
information thus would need to accommodate and be relevant to 
a  range of different ways of viewing the problem (Sarewitz, 2004; 
Rosenzweig and Neofotis, 2013; Gorddard et  al., 2016). Failure to 
recognize the variety of people using the climate information can 
make it ineffective, even if the source data on which it is based is of 
the highest quality, and may create a danger of maladaptation.

A substantial body of evidence shows that the receptivity of 
individuals to climate information is strongly conditioned by 
motivated reasoning (Hart and Nisbet, 2012; Kahan, 2012, 2013), 
wherein a  person’s reception of climate information is infl uenced 
by the values of the community with which the person identifi es. 
Adherence to a  community’s values forms part of an individual’s 
social identity (Hart and Nisbet, 2012). Individuals thus frame their 
analysis and understanding of climate information in the context 
of cultural values espoused by their community (Hart and Nisbet, 
2012; Kahan, 2012, 2013; Campbell and Kay, 2014; Bessette et al., 
2017; Tschakert et al., 2017; Vezér et al., 2018). Successful framing of 
climate information products thus seeks to identify common ground 
with users, taking account of their values and interests.

Given the relevance of both context and values, the effectiveness of 
climate information can increase if developed in partnership with the 
target communities (Figure  10.17; Tschakert et  al., 2016). Such an 
approach can inspire trust among all parties and at the same time 
promote a  co-production process (Cash et  al., 2003). Recipients 
of information have the greatest trust when the communicator is 
perceived as understanding their context and sharing their values 
and identity (Corner et  al., 2014). As a  consequence, developing 
mental models informed by user values can help with understanding 
complex climate models and their outcomes (Bessette et al., 2017).

The importance of a  co-production process does not preclude the 
climate-research community from taking steps to develop and convey 
relevant information on its own. Indeed, communicating expert 
consensus about contested scientifi c issues is benefi cial (Goldberg 
et  al., 2019). Climate services (Section  10.5.4), in particular, can 
become an effective means for using sources from the climate 
community and crafting these to be consistent with the needs, 
interests and values of stakeholder communities. However, simply 
presenting more information without recognizing user values and 
the contextual elements listed in Section 10.5.2.1 may be ineffective 
(Kahan, 2013). An aversion to climate information discordant with 
one’s pre-existing beliefs can actually become stronger for people 
who are more scientifi cally literate: they feel more confi dent sifting 
through all sources of information to fi nd support for their positions 
(Kahan, 2012). A  challenge is that if climate information is not 
framed carefully, recognizing context and user values, it may make 
the sceptical person less receptive to further information about 
climate change (Corner et al., 2012; Hart and Nisbet, 2012; Shalev, 
2015). A  further complication is that audiences may view climate 
change as a problem distant in time and space (Spence et al., 2012), 
too threatening to acknowledge (Brügger et  al., 2015; McDonald 
et  al.,  2015), or too economically challenging to accept (Bessette 
et al., 2017). Identifying positive outcomes that align with user values, 
instead of adaptation and mitigation efforts, appears to promote the 
interest in and the success of climate information (Bain et al., 2012).

10.5.2.3 The Roles of Spatial and Temporal 
Resolution in Relation to Decision Scale

Climate processes occur on a range of spatial and temporal scales, from 
global to local, from centuries and longer to days or less (Section 10.1.2 
and Figure 10.3). Similarly, decisions by stakeholders cover a range of 

Regional climate 
infoinfoinf rmation

● Met. services
● Climate services
● Operational 
    private sector
● ...

Providing Context and
Sharing Climate-Relevant
Information

Co-producing  
Regional Climate
Information

            
● Governments / IGOs
● Civic organizations / NGOs
● Concerned industries
● ...

● Research 
    institutes
● Universities
● Research
    consultancies
● ...

Scientists
Producers

Users

Figure  10.17 | Effective regional climate information requires shared 
development of actionable information that engages all parties involved 
and the values that guide their engagement. Participants in the development of 
climate information come from varying perspectives, based in part on their professions 
and  communities. Each of the three broad categories shown in the Venn diagram 
(Users, Producers, Scientists) is not a homogenous group, and often has a diversity 
of perspectives, values and interests among its members. The subheadings in each 
category are illustrative and not all-inclusive. The arrows connecting those categories 
represent the distillation process of providing context and sharing climate relevant 
information. The arrows that point toward the centre represent the distillation of 
climate information that involves all three categories.
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spatial and temporal scales that can vary with the size of their region 
of interest and scope of activity. However, the link between decision 
scales and the spatial and temporal resolution of climate and related 
non-climatic, natural-system information is not straightforward, and 
failure to recognize mismatches between the two can undermine the 
effectiveness and relevance of the information (Cumming et al., 2006; 
Sayles, 2018).

Nevertheless, the scale of regional climate information does not 
have to be the same as the decision scale. Physical-climate storylines 
(Box 10.2) valid at large scales can be used to develop understanding 
that is relevant to local decisions. For example, global climate change 
affecting Antarctic ice-mass loss is relevant to formulating Dutch 
responses to sea level rise (Haasnoot et  al., 2020). On the other 
hand, extreme precipitation processes can occur on scales of tens 
of kilometres and smaller and thus require high resolution climate 
information when projecting future changes (e.g., Xie et al., 2015). 
An important factor for developing effective climate information 
using the distillation process is aligning the vulnerabilities of the 
social and economic systems under consideration ranging from, for 
example, those important to a farmer to those important to a national 
agricultural ministry (Andreassen et al., 2018; O’Higgins et al., 2019). 
Thus, more sophisticated matching of spatial and temporal resolution 
of climate information with decision scales requires engagement 
across a hierarchy of governance structures at national, regional and 
local level (e.g., Lagabrielle et al., 2018).

10.5.3 Distillation of Climate Information

The preceding sections laid out the diversity of sources of climate 
information (Section  10.5.1) and important elements for its use 
in a  decision context (Section  10.5.2). Here, it is assessed how 
context-relevant climate information can be distilled from these 
sources of information. Although the term distillation lacks a clear 
definition in the literature, it has, in principle, two aspects: the 
construction of (potentially user-targeted) information that is 
defensible and evidence-based (Giorgi, 2020), and the translation 
of this information into a  specific context, targeting a  specific 
purpose and set of values. The former typically involves data from 
multiple sources, including expert knowledge, and comprehensively 
considers relevant uncertainties to give physically plausible climate 
information. The latter translates the information explicitly into the 
user context, such as by linking it to experience, by formulating 
a  narrative, by highlighting the relevance for the user context, or 
by putting the climate information into the context of the relevant 
non-climatic stressors.

Distilling climate information for a  specific purpose benefits from 
a  co-production process that includes non-climate-scientists in the 
research design, analysis and the exploration and interpretation of 
the  results to best place it in context of the intended application 
(Collins and Ison, 2009; Berkhout et  al., 2013; Wildschut, 2017; 
Bhave et al., 2018; Dessai et al., 2018). Consideration of the specific 
contexts of information requirements by the provider as well as 
including the user values in connecting the science with users is 
increasingly recognized as paramount to construct information 

relevant for decisions at the regional scale (Section  10.5.2; Kruk 
et  al., 2017; Vizy and Cook, 2017; Djenontin and Meadow, 2018; 
Parker and Lusk, 2019; Norström et al., 2020; Turnhout et al., 2020). 
As a  response, regional climate change information is increasingly 
being developed through participatory and context-specific dialogues 
that bring together producers and users across disciplines and define 
climate impacts as one of the many stressors shaping user decisions 
(Brown and Wilby, 2012; Lemos et  al., 2012). Although there are 
multiple practical issues involving communication (Rössler et  al., 
2019a), such as providing data in a format that users can interpret, 
being mindful of the contextual issues raised in Section  10.5.2 
allows non-scientists to be involved in decisions about approaches 
and assumptions for the distillation and thus to take ownership of 
the resultant information and to make informed decisions based on 
the distilled information (Pettenger, 2016; Verrax, 2017). Importantly, 
the application of transdisciplinary engagement processes that 
emphasize the role of non-scientists in the learning and knowledge 
production process builds relationships and trust between information 
users and producers, which is arguably as important for the uptake 
of climate science into decision-making as the nature of the climate 
information itself (Section 10.5.2).

10.5.3.1 Information Construction

Data, either from observations or models, is in general not inherently 
information, but may contain relevant information if interpreted 
appropriately (Hewitson et  al., 2017). The same applies to other 
sources of climate information. Relevance is controlled by the given 
user context (Section 10.5.2.1) and relates to the required temporal 
and spatial scales (Section 10.5.2.3), the characteristics of required 
variables (often referred to as indicators), and the meteorological 
and climatic phenomena driving these variables (Section 10.1.3). For 
example, if climate information for driving impact models is sought 
(e.g., McSweeney et al., 2015), the impact modelling analysis in the 
target region is the specific user context.

Climate risk assessment considers all plausible outcomes (Weaver 
et al., 2017; Marchau et al., 2019; Sutton, 2019). Thus, a key element 
of information construction is the exploration and reconciliation of 
different sources of information (Barsugli et al., 2013; Hewitson et 
al., 2014b; Maraun and Widmann, 2018b) and involves mainly two 
issues: first, assessing the fitness of different sources in the given 
context and thereby potentially omitting (or down-weighting) 
selected sources (Sections 10.3.3), and, second, integrating different 
sources into a broader picture within a context (Sections 10.3.4). 

A non-comprehensive selection of approaches that may contribute 
to the construction of information includes:

• Overall assessment and intercomparison of different sources 
of information, including hierarchies of models and identification 
of potentially conflicting results (Figure  10.16), where 
observational availability plays a critical role (Section 10.2.3).

• Assessing the emergence of forced trends from internal 
variability (Section  10.4.3), and testing whether differences in 
simulations can be explained by internal variability, ideally using 
initial-condition large ensembles (Sections 10.3.4.3 and 10.4.3).
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• Assessing the interdependence of chosen models to identify the 
amount of independent information (Section 10.3.4.4).

• Process-based evaluation with focus on those processes that are 
relevant for the specific application (Sections 10.3.3.4–10.3.3.10).

• Weighting or sub-selecting ensembles based on a  priori 
knowledge or the outcome of a process-based evaluation, while 
sampling as much uncertainty as possible (Section 10.3.4.4).

• Tracing back differences in projections to the representation of 
fundamental processes, for example, by using physical climate 
storylines (Sections 10.3.4.2 and Box  10.2) or sensitivity 
simulations (Section 10.3.2.3).

• Producing physical-climate storylines (Box  10.2) to explore 
uncertainties not sampled by available model ensembles (Shepherd 
et al., 2018), for example in pseudo-global warming experiments 
(Section 10.3.2.2), or to simulate events that have never happened 
before but are nevertheless plausible (Lin and Emanuel, 2016).

• Attributing observed changes to different external forcings and 
internal drivers (Section 10.4.1).

• Comparing observed trends with past simulated trends in 
order to constrain projections with, for instance, the Allen–
Stott–Kettleborough method (Allen et  al., 2000; Stott and 
Kettleborough, 2002; Stott et al., 2013) to explain drivers of past 
observed trends (Section 10.4.2) for understanding future trends.

• Integrating present-day performance via emergent constraints to 
reduce projection uncertainty (Section 10.3.2).

• Complementing the observational and model-based sources 
with expert judgement (e.g., integrating knowledge from theory 
or experience that is available from experts or the literature; 
Section 10.5.1).

These approaches often can be used in combination to increase 
confidence in conclusions drawn (Hewitson et al., 2017).

10.5.3.2 Translating Climate Information Into the User Context

Awareness and understanding of the users’ decision-making context 
is a central and key aspect of developing tailored, context-appropriate 
information (Briley et al., 2015), as clearly evidenced by the climate 
services’ experiences (e.g.,  Vincent et  al., 2018). Understanding 
the context, however, is not trivial and requires understanding of 
both the user and provider (Guido et  al., 2020) if the information 
is to be robust, reliable and relevant (Giorgi, 2020). Translating the 
information into context requires consideration of terminology and 
expectations (Briley et al., 2015), issues of user interpretation (Daron 
et al., 2015), and hence necessitating engagement in co-production 
with all attendant challenges (Vincent et  al., 2021). The actual 
provision of climate information may be conducted at different levels 
of sophistication, ranging from generic data provision via web portals 
(Hewitson et al., 2017), potentially including impact-relevant climate 
indicators, region-specific factsheets and stakeholder reports, social 
media (Pearce et  al., 2019), to a  close engagement with specific 
stakeholders in co-exploring the research (Steynor et al., 2016).

Climate information products may often lack explanations of their 
potential use and misuse (Street, 2016; Lamb, 2017; Chimani et  al., 
2020). This is particularly important if the information is provided 
as a  generic, publicly accessible product without a  specific context 

(Hewitson et  al., 2017). Context-specific collaboration, especially if 
organized in workshop, enables a close transdisciplinary co-exploration 
of the results as in the form of climate risk narratives (Jack et al., 2020, 
Box  10.2). Such approaches explicitly account for the user context, 
values and non-climatic stressors (Steynor and Pasquini, 2019).

10.5.3.3 Transdisciplinary Approaches 
to Stakeholder Interaction

The transdisciplinary interaction with stakeholders has been 
categorized into top-down, bottom-up and interactive approaches 
(Berkhout et al., 2013). Traditional top-down approaches frame the 
research from the perspective of global climate change as a driver 
of regional climate risk. Bottom-up approaches, also referred to as 
scenario-neutral impact studies (Prudhomme et al., 2010; A. Brown 
et  al., 2012; C. Brown et  al., 2012; Culley et  al., 2016) begin with 
the user’s articulation of vulnerability in the context of climatic 
and non-climatic stressors, follow with the definition of key system 
thresholds of climatic variables, and only incorporate climate data 
to assess the likelihood of threshold exceedances. Bottom-up 
approaches are special cases of robust decision-making (Lempert 
et al., 2006; Lempert and Collins, 2007; Walker et al., 2013; Weaver 
et  al., 2013), which are designed to account for uncertainties not 
represented by climate models as well as non-climatic stressors. 
Interactive approaches combine aspects of top-down and bottom-up 
approaches. The choice of approach depends on the context. While 
bottom-up approaches might be optimal in a  local context, where 
case-specific risks are addressed, top-down approaches provide 
generic information that may serve a  range of different purposes, 
for example, at the national scale (Berkhout et al., 2013). All these 
approaches benefit from the integration of fully distilled climate 
information (Berkhout et al., 2013; Maraun and Widmann, 2018b).

10.5.3.4 Barriers to the Distillation of Climate Information

As implied by Section  10.5.2, meeting the needs of users can be 
a substantial challenge for climate scientists if they misunderstand 
or have limited understanding of user needs and context (Porter 
and Dessai, 2017). Several barriers in user communities can trigger 
and sustain this challenge. This can include an institutional aversion to 
incorporating new tools into decision-making (Callahan et al., 1999). 
Coincident with this factor, there may be limited staff capacity, lack 
of management support and lack of a mandate to plan for climate 
change (Lee and Whitely Binder, 2010).

Following from those challenges, constructing and communicating 
regional climate information often occurs under the overarching 
assumption that uncertainty is a  problem and reducing uncertainty 
is the priority (Eisenack et al., 2014; J. Otto et al., 2016). This is both 
a psychological (Morton et al., 2011) as well as a pragmatic barrier in 
cases where uncertainty appears to limit the ability to make decisions 
(Mukheibir and Ziervogel, 2007). However, where in-depth engagements 
with decision contexts are undertaken, these initial barriers are often 
dismantled to reveal a more complex, nuanced and potentially more 
productive intersection with climate information producers that can 
efficiently handle uncertainty (e.g., Rice et al., 2009; Lemos et al., 2012; 
Moss, 2016). Specifically, disclosure of all uncertainties in the climate 
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Box 10.2 | Storylines for Constructing and Communicating Regional Climate Information

Communicating the full extent of available information on future climate for a region, including an uncertainty quantification, can 
act as a barrier to the uptake and use of such information (Lemos et al., 2012; Daron et al., 2018). To address the need to simplify 
and increase the relevance of information for specific contexts, recent studies have adopted storyline and narrative approaches 
(Section 1.4.4.2; Hazeleger et  al., 2015; Shepherd et  al., 2018). As such, these approaches are an important tool for the climate 
information distillation (Section  10.5.3). Here we assess these in a  regional climate information context, namely for exploring 
uncertainties, embedding climate information into a given user context, and communicating climate change information.

Physical climate storylines are self-consistent and plausible unfolding of a physical trajectory of the climate system, or a weather or 
climate event, on time scales from hours to multiple decades (Section 1.4.4.2). Storylines that condition climatic features and processes 
on a set of plausible but distinct large-scale climatic changes enables the exploration of uncertainties in regional climate projections 
(Box 10.2, Figure 1 and Section 10.3.4.2). For instance, Zappa and Shepherd (2017) condition projected changes in European surface 
wind speeds on different plausible projections of tropical upper tropospheric warming and the polar vortex strength in the CMIP5 
multi-model ensemble. Storylines of specific events are generated to explore the unfolding and impacts of comparable events in 
counterfactual climates (Lackmann, 2015; Meredith et al., 2015b; Takayabu et al., 2015; Hegdahl et al., 2020; Sillmann et al., 2021). Those 
event storylines can be based on pseudo-global warming studies (Lackmann, 2015; Meredith et al., 2015b; Takayabu et al., 2015; see 
Section 10.3.2.2), selected and possibly downscaled events from long-term climate projections (Hegdahl et al., 2020; Huang et al., 2020a),

information, transparency about the sources of these uncertainties, 
and tailoring the uncertainty information to specific decision 
frameworks have the potential for reducing problems of distilling and 
communicating uncertain climate information (J. Otto et al., 2016).

10.5.3.5 Synthesis Assessment of Climate 
Information Distillation

There is high confidence that distilling climate information for 
a  specific purpose benefits from a  co-production process that 
involves users of the information, considers the specific user context 
and the values of relevant actors such as users and scientists, and 
translates the resultant information into the broader user context. 
This process allows users to take ownership of the information, builds 
relationships and trust between information users and producers 
and helps to overcome barriers in the information construction. This 
process enhances trust in the information as well its usefulness, 
relevance, and uptake, especially when the communication involves 
complex, contextual details (high confidence). The optimal approach 
for the transdisciplinary collaboration with users depends on the 
specific context conditioned by the sources available and the actors 
involved, which together are dependent on the regions considered 
and the framing by the question being addressed.

Drawing upon multiple lines of evidence in the construction of 
climate information increases the fitness of this information and 
creates a  stronger foundation (high confidence). The lines of 
evidence can include multiple observational datasets, ensembles 
of different model types, process understanding, expert judgement, 
and indigenous knowledge, among others. Attribution studies, the 
characterization of possible outcomes associated with internal 
variability and a comprehensive assessment of observational, model 
and forcing uncertainties and possible contradictions using different 
analysis methods are important elements of distillation. To make the 
most appropriate decisions and responses to changing climate it is 

necessary to consider all physically plausible outcomes from multiple 
lines of evidence, especially in the case when they are contrasting 
such as in the examples of Cross-Chapter Box 10.1 and Section 10.6.2.

10.5.4 Climate Services and the Construction 
of Regional Climate Information

Climate services have been defined as the provision of climate 
information to assist decision-making (Sections 1.2.3, and 12.6, 
and Cross-Chapter Box 12.2). Services are expected to be based on 
scientifically credible information and expertise, have appropriate 
engagement from users and providers, have an effective access 
mechanism and aim at meeting the users’ needs (Hewitt et  al., 
2020). To achieve this, climate services synthesize context-relevant 
climate information addressing questions for a wide range of climate 
time scales. From this point of view, climate services are instruments 
for the production, translation and transfer of climate information 
and knowledge for their use in climate-informed decision-making 
and climate-smart policy and planning (Hewitt et  al., 2012). The 
appropriate provision of climate services considers the diagnosis of 
climate information needs, the service itself and a number of good 
practices still under development (Vaughan et al., 2018).

The preceding subsections assess research on the distillation of 
climate information, which is directly relevant for the development 
of climate services. Distillation, when implemented appropriately and 
interpreted with all due caveats, leads to credible climate information 
with a broader foundation of evidence to be used in climate services 
practice according to the recommendations of the Global Framework 
for Climate Services (Hewitt et al., 2012). As stated in Chapter 12, 
climate services set new scientific challenges to research. Examples 
of some of the challenges have been given in Chapters 1 and 12, 
which are complemented by the barriers to the distillation assessed 
in Section 10.5.3.3.
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Box 10.2 (continued)

or based on expert judgment of plausible changes to observed events (Pisaric et al., 2011; Dessai et al., 2018). They can be used for 
attributing events to different causal factors (Lackmann, 2015; Meredith et al., 2015b; Takayabu et al., 2015; Trenberth et al., 2015; 
Shepherd, 2016a; Section 11.2.4) as well as for exploring the unfolding of events in future climates.

Physical climate storylines are complementary to probabilistic or unconditional risk-based approaches, and are particularly suitable to 
explore low-likelihood changes or events, which are often associated with the highest impacts (Shepherd et al., 2018; Sillmann et al., 
2020; Section 4.8). They also facilitate providing local context to large-scale trends and changes, by conditioning the projections on 
locally relevant circumstances (Hazeleger et al., 2015). Storylines are also developed based on expert elicitation and include plausible 
changes beyond those simulated by existing model projections in order to explore deep uncertainties (Dessai et al., 2018).

Storylines can be combined with impact modelling (Strasser et al., 2019; Hegdahl et al., 2020) and can be embedded in a user’s 
risk landscape (Shepherd, 2019; Box 10.2, Figure 1). In particular, this holds for event storylines, where confounding factors such as 
regional characteristics like land-use changes and non-climatic drivers of the event are an element of the storyline (Pisaric et al., 2011; 
Dessai et al., 2018; Lloyd and Shepherd, 2020; Sillmann et al., 2021). In a co-production process, multidisciplinary expert knowledge 
as well as the values and interests of the intended audiences and stakeholders can be explicitly considered (Kok et al., 2014; Bhave 
et al., 2018; Dessai et al., 2018; Scott et al., 2018; Hegdahl et al., 2020).

Storylines can also be used to communicate climate information by narrative elements describing the main climatological features and 
the relevant consequences in the user context (Fløttum and Gjerstad, 2017; Moezzi et al., 2017; Dessai et al., 2018; Scott et al., 2018; 
Jack et al., 2020). Co-produced narratives have been demonstrated to enhance knowledge integration in decision-making contexts 
(e.g., de Bruijn et al., 2016). Narrative elements have also been employed to convey information from climate models (Corballis, 2019). 
Jack et al. (2020) introduced the concept of climate risk narratives and developed a set of principles, such as using present tense in 
their presentation to avoid the effects of future discounting and writing individual narratives without uncertainty language to assume 
an imagined observer perspective. From this point of view, event storylines are particularly useful for communication purposes as they 
link to the experience and episodic memory of stakeholders (Schacter et al., 2007; Steynor et al., 2016; Shepherd et al., 2018).

Box 10.2, Figure 1 | Schematic of two types of physical climate storylines with a particular climate impact of concern (red). The storylines are 
defined by specified elements (dark blue). Variable elements (light blue) are simulated conditional on the specified elements. The white elements are ‘blocked’ since 
their state does not need to be known to determine the light blue elements. Other types of storylines could be defined by specifying other elements (e.g., storylines 
of different climate sensitivities or different representative concentration pathways). (a) Event storyline, where the particular dynamical conditions during the event 
as well as the regional warming are specified and control the hazard arising from the event. (b) Dynamical storyline, where the global warming level and remote 
drivers are specified and control the long-term changes in atmospheric dynamics and regional warming. In both storylines, the impact is also conditioned on specified 
exposure and vulnerability. Figure adapted from Shepherd (2019).
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Cross-Chapter Box 10.3 | Assessment of Climate Change Information at the Regional Scale

Coordinators: Erika Coppola (Italy), Alessandro Dosio (Italy), Friederike Otto (United Kingdom/Germany)

Contributors: Claudine Dereczynski (Brazil), Melissa I. Gomis (France/Switzerland), Richard G. Jones (United Kingdom), Roshanka Ranasinghe 
(The Netherlands/Sri Lanka, Australia), Alex C. Ruane (The United States of America), Sonia I. Seneviratne (Switzerland), Anna A. Sörensson 
(Argentina), Bart van den Hurk (The Netherlands), Robert Vautard (France), Sergio M. Vicente-Serrano (Spain)

This Cross-Chapter Box illustrates how assessments of past, present and future regional climate changes (e.g., change in an extreme 
event index or climatic impact-driver, CID) are derived in the WGI report. Robust assessments can be derived when changes are 
supported by multiple lines of evidence.

Multiple, sometimes contrasting, lines of evidence are derived from the various data sources, methodologies and approaches 
that can be used to construct climate information (Section 10.5 and Figure 10.1). Such data sources and methodologies include 
theoretical understanding of relevant processes, drivers and feedbacks of climate at regional scale, observed data from multiple 
datasets (e.g., ground station networks, satellite products, reanalysis, etc.), simulations from different model types (including general 
circulation models (GCMs), regional climate models (RCMs), statistical downscaling methods, etc.) and experiments (e.g., Coupled 
Model Intercomparison Project Phases 5 and 6 (CMIP5 and 6), Coordinated Regional Climate Downscaling Experiment (CORDEX), and 
single-model initial-condition large ensembles), methodologies to attribute observed changes or events to large- and regional-scale 
anthropogenic and natural drivers and forcings as well as other relevant local knowledge (e.g., indigenous knowledge).
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Cross-Chapter Box 10.3, Figure 1 | Schematic illustration of the process to derive the assessment of regional climate change information based 
on a distillation process of multiple lines of evidence taken from observed trends, attribution of trends or events, climate model projections, 
and physical understanding.
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Cross-Chapter Box 10.3 (continued)

The assessment is derived following the IPCC uncertainty guidance through a distillation process of multiple lines of evidence on 
observed trends, attribution of trends or events, climate model projections and physical understanding, covered in several chapters 
of the WGI Report.

In particular, this Cross-Chapter Box explains the methodology used to derive the regional assessments summarized in the Technical 
Summary (TS) table that are, in turn, used as a basis for the synthesis assessment in the Summary for Policymakers (SPM).

The process consists of three discrete steps, listed below and schematically illustrated in Cross-Chapter Box 10.3, Figure 1:

1. Collection and assessment of the fitness-for-purpose of available information
Any specific climate change that is regionally relevant is assessed looking at lines of evidence, potentially across multiple indices. For 
example, several definitions of ‘drought’ exist that refer to a variety of the underlying processes, temporal and spatial scales, as well as 
sectoral applications and associated impacts (Sections 11.6 and 12.3). Such diverse definitions need to be gathered from the relevant 
literature, compared, and individually assessed if appropriate.

Once the indices of change are properly defined, the relevant climate information is collated from the available sources.

The information is then evaluated against its fitness-for-purpose, for example, whether it is adequate to provide robust evidence to 
derive an assessment. In the case of observed data, issues to be considered include (but are not limited to): spatial and temporal 
resolution, accuracy, gaps in the recorded data, homogeneity in the station network, uncertainty treatment, etc. (Sections 10.2, 11.2, 
11.9, 12.4; Atlas.1.4). In the case of modelled data, an assessment of the fitness-for-purpose typically includes an evaluation of 
numerical or statistical methods adopted, adequate representation of the physical processes, forcings and feedbacks relevant for the 
region and the change under consideration, the availability of adequate ensembles to assess the interplay between forced response 
and internal variability and the uncertainty in future projections (Sections 10.3, 10.4, 11.2, 11.9, 12.4 and Chapter Atlas). Attribution 
assessments are usually based on models and observations for which the fitness-for-purpose is assessed with similar criteria as 
those described above (Cross-Working Group Box: Attribution in Chapter 1). The assessment is made either directly or indirectly by 
scrutinizing the data and methods of the relevant literature against the criteria listed above.

2. Assessment of confidence of the multiple lines of evidence
Once the relevant information has been collated for a given regional change, an assessment of the confidence is first made for each 
line of evidence separately. The assessment of confidence is the result of expert judgment drawing around a set of questions such as:

• Do we have a physical explanation of the processes responsible for past and future changes in the region? 
• Do observed trends agree amongst different observational products/datasets? Are they statistically significant? Do the observations 

cover the same temporal period and/or spatial area? Are the observations homogeneous in time?
• Can past trends be attributed to human activities (greenhouse gases, short-lived climate forcers or land-use/management 

changes)? Are attributed trends and events consistent? What is the interplay between internal variability and forced response? 
• Do model projections agree on the magnitude and sign of the projected signal? Are we able to understand the reasons underlying 

any discrepancies? Can we quantify the uncertainty in the projected signal? Are the projections based on similar SSP-RCP/time 
horizon or global warming level (GWL; Cross-Chapter Box 11.1)? If not, are they comparable? 

• Has the signal already emerged? Are there studies indicating the time of emergence of the signal?

The assessment is then tested for overall coherence across the available lines of evidence, for example:

• Are observed historical changes consistent with future projections?
• Are attributed events similar to the types of changes projected for the future?
• Is there a physical explanation for changes that are projected but have not yet been clearly observed or attributed?
• Are assessments of confidence and likelihood performed in a similar way across regions?

3. Distillation of regional information and synthesis of the independent assessments
To ensure transparency, a traceback matrix is constructed (refer to 10.SM) that, for each region and index, identifies where in the 
chapters the relevant information can be found, together with a summary of the relevant information in the Technical Summary.
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Cross-Chapter Box 10.3 (continued)

Based on assessments mainly in Chapters 8, 9 11, 12 and Atlas, the table in Technical Summary (TS.4.3.1) collates, by means of colours 
and symbols, the assessment of the confidence in past trend, attribution and direction of future change. This distillation process is 
illustrated below with two examples: (i) a relatively simple case for the assessment of extreme heat over South-Eastern South America, 
where most of the lines of evidence agree, and (ii) ecological, agricultural and hydrological drought in the Mediterranean, which is 
more complex due to the different definitions of ‘drought’ and the sometimes conflicting information arising from different lines 
of evidence and the example shown here is preceded by the decision to focus on these types of drought rather than, for example, 
meteorological drought.

(a) Extreme heat in South-Eastern South America (SES)
Observed past trends
Mean temperature and extreme maximum and minimum temperatures have shown an increasing trend (high confidence). An increase 
in the intensity and in the frequency of heatwave events between 1961 and 2014 is also observed. However, there is medium 
confidence that warm extremes have decreased in the last decades over the central region of SES during austral summer (Section 11.9 
and Atlas.7.2.2).

There is evidence of increasing heat stress during summer in much of SES for the period 1973–2012 (Section 12.4.4.1).

Attribution
Based on trend detection and attribution studies of maximum and minimum temperatures and event attribution of heatwaves in 
the region, there is high confidence in a human contribution to the observed increase in the intensity and frequency of hot extremes 
(Section 11.9).

The increasing heat stress over summer in much of SES has been attributed to human influence on the climate system (Section 12.4.4.1).

Projections
There is high confidence that by the end of century most regions in South America will undergo extreme heat stress conditions much 
more often than in the recent past, with about 50–100 more days per year under SSP1-2.6 and more than 200 additional days per year 
under SSP5-8.5 (high confidence) (Section 12.4.4.1).

Based on different lines of evidence (GCMs, RCMs) an increase in the intensity and frequency of hot extremes is extremely likely for 
SES at all assessed warming levels (compared with pre-industrial) (Section 11.9).

Synthesized assessment in the Technical Summary from multiple lines of evidence
There is high confidence that extreme temperatures have increased over SES over the last decades and that human influence likely 
contributed to the observed changes in extreme temperatures. An increase in the frequency and intensity of heatwave events has been 
observed. Most land regions will frequently undergo extreme heat stress conditions by the end of the 21st century, with an increase 
in the frequency of heatwaves and heat stress conditions (Technical Summary TS.4.3.2).

(b) Mediterranean ecological, agricultural and hydrological droughts
Observed past trends
Hydrological modelling suggests that the recent decline in soil moisture in the Mediterranean is unprecedented in the last 250 years. 
Paleoclimate evidence extends this view, additionally indicating that dryness in the Mediterranean is approaching an extreme 
condition compared to the last millennium (Section 8.3.1.6).

There is an increase in probability and intensity of agricultural and ecological droughts (medium confidence) and there is an increase 
in frequency and severity of hydrological droughts (high confidence) (Section 11.9).

Attribution
Global warming has contributed to drying in dry summer climates including the Mediterranean (high confidence). Records of soil 
moisture indicate that higher temperatures and increased atmospheric demand have played a strong role in driving Mediterranean 
aridity. Multiple lines of evidence suggest that anthropogenic forcings are causing increased aridity and drought severity in the 
Mediterranean region (high confidence) (Section 8.3.1.6).
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10.6 Comprehensive Examples of Steps 
Toward Constructing Regional 
Climate Information

10.6.1 Introduction

This section presents three comprehensive examples of steps for 
distilling regional climate information from the multiple sources 
of regional climate information presented in this chapter. These 
examples build on the general framework presented in Section 10.5, 
examining in particular the strengths and challenges in linking the 
different sources, while also exposing the assumptions behind and 
consequences of decisions made in the process. The examples are 
framed taking into account societal perspectives that provide context 
for their regional climate statements. Although the nature of an 
IPCC Working Group I assessment precludes engaging with users of 
climate information (Section 10.5), we do cite relevant national and 
regional reports that give user perspectives to set a foundation from 
which one could distil climate information for users. We have chosen 
the recent Cape Town drought, Indian summer-monsoon trends 
and the Mediterranean summer warming because they provide 
a geographically diverse set of locations and relevant processes and 

because most of the components for constructing regional climate 
information outlined in Chapter 10 are directly relevant to each case.

The three comprehensive examples follow a similar structure:
1. Motivation and regional context.
2. The region’s climate. 
3. Observational issues.
4. Relevant anthropogenic and natural drivers.
5. Model simulation and attribution over the historical period. 
6. Future climate information from global simulations.
7. Future climate information from regional downscaling.
8. Storylines.
9. Climate information distilled from multiple lines of evidence.

Following this structure, construction of the regional climate 
information presented in these examples depends on an assessment 
of observational uncertainty relative to the magnitude of a  climate 
change signal (Section 10.2), the evaluations of model performance 
to judge the fitness-for-purpose of a  given model (Section  10.3), 
and expert judgement.  These factors contribute to attribution of 
historical climate change signals (Section  10.4), recognizing that 
attribution must account for the interplay between externally forced 

Cross-Chapter Box 10.3 (continued)

An increasing trend towards agricultural and ecological droughts has been attributed to human-induced climate change in the 
Mediterranean (medium confidence). Model-based assessment shows with medium confidence a human fingerprint on increased 
hydrological drought, related to rising temperature and atmospheric demand, and frequency and intensity of recent drought events. 
There is medium confidence that change in land-use and terrestrial water management contribute to trends in hydrological drought 
(Section 11.9).

Projections
There is high confidence that drought severity and intensity will increase in the Mediterranean. Increased evapotranspiration due 
to growing atmospheric water demand will decrease soil moisture (high confidence). The seasonality of runoff and streamflow (the 
annual difference between the wettest and driest months of the year) is expected to increase with global warming (high confidence). 
Annual runoff is very likely to decrease. Under middle or high-emissions scenarios, the likelihood of extreme droughts increases by 
200–300% in the Mediterranean. The paleoclimate record provides context for these future expected changes: climate change will shift 
soil moisture outside the range of observed and reconstructed values spanning the last millennium (high confidence) (Sections 8.4.1.5 
and 8.4.1.6).

There is medium confidence in the increase of agricultural and ecological drought at +1.5°C, high confidence at +2°C and very likely 
at +4°C, with large decreases in soil water availability during drought events and increase in drought magnitude. There is medium 
confidence in the increase in hydrological drought at +1.5°C, high confidence at +2°C and very likely at +4°C with very strong decrease 
(40–60%) of total runoff in the spring-summer half-year and a 50–60% increase in frequency of days under low flow (Section 11.9).

There is high confidence that agricultural, ecological and hydrological droughts will increase in the Mediterranean region by mid- and 
end-of-century under all RCPs (except RCP2.6/SSP1-2.6), or for GWLs equal to or higher than 2°C (Section 12.4.5.2).

Synthesized assessment in the Technical Summary from multiple lines of evidence
There is high confidence that hydrological droughts have increased in the Mediterranean since the 1960s related to rising temperature 
and atmospheric demand, and medium confidence of a human fingerprint on this increase. There is medium confidence in the increase 
of ecological and agricultural droughts and in their attribution to human-induced climate change. There is high confidence of an 
increase in ecological, agricultural and hydrological droughts for warming levels exceeding 2°C, and medium confidence of an increase 
for lower warming levels (Technical Summary TS4.3.2).
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signals and unforced internal variability. This interplay is explored 
using multiple model ensembles, including, when appropriate and 
feasible, single-model initial-condition large ensembles (SMILEs). The 
multiple lines of evidence for the climate information may conflict, 
thus requiring distillation of the evidence (Section  10.5) to arrive 
at climate-change statements. When moving from global climate 
information to climate information at the regional scale, following the 
structure above provides a basis for arriving at relevant and credible 
climate information. The comprehensive examples of distilling climate 
information thus show the value of working with multiple lines of 
evidence to develop robust climate change information for a region.

In addition to the three comprehensive examples, this section 
contains two additional examples analysing multiple sources of 
regional climate information. Box  10.3 on urban climate assesses 
information that provides a  foundation for understanding climatic 
behaviour in urban areas and its projected change. Cross-Chapter 
Box 10.4 on climate change over the Hindu Kush Himalaya assembles 
information rooted in several chapters and previous assessment 
reports to assess understanding of several climate elements 
(temperature, precipitation, snow and glaciers, and extreme events) 
for the region and their projected changes.

As these examples will show, the distillation process of regional climate 
information from multiple lines of evidence can vary substantially 
from one case to another. Confidence in the distilled regional climate 
information is enhanced when there is agreement across multiple lines 
of evidence, but the outcome of distilling regional climate information 
can be limited by inconsistent or contradictory sources.

10.6.2 Cape Town Drought

10.6.2.1 Motivation and Regional Context

Cape Town’s ‘Day Zero’ water crisis in 2018 threatened a shut-down 
of water supply to 3.4 million inhabitants of the city and resulted in 
domestic water use restriction of 50 litres per person per day lasting for 
nine months (pre-drought unconstrained water use was about 170 litres 
per person per day, DWA, 2013), punitive water tariffs, and temporary 
closure of irrigation systems. Problems with water supply in many 
large cities in developing countries are endemic and rarely reported 
internationally. The water crisis in Cape Town attracted considerable 
international attention to a city with functional government structures, 
well-developed services (compared to other urban centres in Africa), 
a centre of international tourism, and an economic hub with GDP of 
22 billion USD (about 7,500 USD per capita, Gallie et al., 2018). Economic 
and social impacts of the crisis were significant. Loss of revenue for 
companies of all sizes resulted not only from the scaling down of water-
dependent activities, but also from the need to invest in water-efficient 
technologies and processes. Tourism was affected through reduced 
arrivals and  bookings, although only temporarily (CTT, 2018). In the 
agricultural sector, 30,000 people were laid-off and production dropped 
by 20% (Piennaar and Boonzaaier, 2018). The crisis initially polarized 
society, with conflict emerging between various water users and erosion 
of trust in the government, but eventually social cohesion and an acute 
awareness of limited water resources emerged (Robins, 2019).

Cape Town’s crisis resulted from a  combination of a  strong, rare 
multi-year meteorological drought (Figure  10.18), estimated at 1 in 
300 years (Wolski, 2018), and factors related to the nature of the water 
supply system, operational water management and water resource 
policies. Cape Town was very successful in implementing water-saving 
actions after the previous drought of 2000–2003, reducing water losses 
from over 22% to 15% (Frame and Killick, 2007; DWA, 2013), breaking 
the previous coupling of growth in water demand with growth in 
population. As a  consequence, Cape Town won a Water Smart City 
award from the C40 Cities program only three years prior to the crisis. 
However, the water-saving actions, together with changing priorities 
in water resource provision from infrastructure-oriented towards 
resource and demand management, may well have led to delays 
in implementation of the expansion of water supply infrastructure 
(Muller, 2018). The expansion plan, formulated a decade prior to the 
crisis, included an expectation of long-term climate-change drying in 
the region (DWAF, 2007). The crisis also exposed structural deficiencies 
of water management and inadequacy of a policy process in which 
decisions about local water resources are taken at a  national level, 
particularly in a situation of political tension (Visser, 2018). The crisis 
was widely seen as a harbinger of future problems to be faced by the 
city, and a highlight of vulnerability of many cities in the world resulting 
from the interplay of three factors: (i) the fast urban-population growth, 
(ii) the economic, policy, infrastructural and water resource paradigms 
and constraints, and (iii) anthropogenic climate change.

10.6.2.2 The Region’s Climate

An evaluation of the relative role of rainfall and temperature signal 
in the 2015–2017 hydrological drought gives a  strong indication 
that lack of rainfall was the primary driver (Otto et al., 2018) leading 
to the 2018 water crisis. Thus, the remainder of this section focuses 
on rainfall. Section 11.6 offers a discussion of African drought over 
broader areas, including mechanisms relevant to them.

Cape Town is located at the south-western tip of Africa, within an 
approximately 100 km × 300 km region that receives 80% of its 
rainfall during the austral winter (March to October), with the largest 
portion in June to August. In the vicinity of Cape Town, rainfall is 
strongly heterogeneous, ranging from about 300 mm/year on coastal 
plains to >2,000 mm/year in mountain ranges. The Cape Town water 
supply relies on surface water reservoirs located in a  few small 
mountain catchments (about 800 km2 in total). The Cape Town region 
receives 85% of its rainfall from a series of cold fronts forming within 
mid-latitude cyclones. The remainder is brought in by infrequent 
cut-off lows that occur throughout the year (Favre et al., 2013). This 
creates a very strong water resource dependency on a single rainfall 
delivery mechanism that may be strongly affected by anthropogenic 
climate change (Chapter 4 and Section 10.6.2.6).

The 2015–2017 drought had strong low-rainfall anomalies in shoulder 
seasons (March to May and September to November, though weaker 
in the latter), and average rainfall in June and July (Sousa et al., 2018a; 
Mahlalela et al., 2019). The anomaly resulted from fewer rainfall events 
and lower average intensity of events. The anomaly was strongest in 
the mountainous region where the water supply system’s catchments 
are located (Wolski et al., 2021).
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Figure 10.18 | Historical and projected rainfall and Southern Annular Mode (SAM) over the Cape Town region. (a) Yearly accumulation of rainfall (in mm) 
obtained by summing monthly totals between January and December, with the drought years 2015 (orange), 2016 (red), and 2017 (purple) highlighted in colour. (b) Monthly 
rainfall for the drought years (in colour) compared with the 1981–2014 climatology (grey line). Rainfall in (a) and (b) is the average of 20 quality controlled and gap-fi lled 
series from stations within the Cape Town region (31°S–35°S, 18°W–20.5°W). (c) Time series of the SAM index and of historical and projected rainfall anomalies (%, baseline 
1980–2010) over the Cape Town region. Observed data presented as 30-year running means of relative total annual rainfall over the Cape Town region for station-based 
data (black line, average of 20 stations as in (a) and (b), and gridded data (average of all gridcells falling within 31°S–35°S, 18°W–20.5°W), GPCC (green line) and CRU TS 
(olive line). Model ensemble results presented as the 90th-percentile range of relative 30-year running means of rainfall and the SAM index from 35 CMIP5 (blue shading) and 
35 CMIP6 (red shading) simulations, 6 CORDEX simulations driven by 1 to 10 GCMs (cyan shading), 6 CCAM (purple shading) simulations from individual ensemble members, 
and 50 members from the MIROC6 SMILE simulations (orange shading). The light blue, dark red and yellow lines correspond to NCEP/NCAR, ERA20C and 20CR, respectively. 
The SAM index is calculated from sea level pressure reanalysis and GCM data as per Gong and Wang (1999) and averaged over the aforementioned bounding box. CMIP5, 
CORDEX and CCAM projections use RCP8.5, and CMIP6 and MIROC6 SMILE projections use SSP5-8.5. (d) Historical and projected trends in rainfall over the Cape Town region 
and in the SAM index. Observations and gridded data processed as in (c). Trends calculated as Theil-Sen trend with block-bootstrap confi dence interval estimate. Markers show 
median trend, bars 95% confi dence interval. Global models in each CMIP group were ordered according to the magnitude of trend in rainfall, and the same order is maintained 
in panels showing trends in the SAM. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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Although the 2015–2017 drought was unprecedented in the historical 
record, the Cape Town region has experienced other droughts of 
substantial magnitude, notably in the 1930s, 1970s and more recently 
in 2000–2003. Long-term (>90 years) rainfall trends are mixed in sign, 
location-dependent, and weak (Kruger and Nxumalo, 2017; Wolski 
et al., 2021); mid-term (about 50 years) trends are similarly mixed in 
sign (MacKellar et al., 2014). In the south-western part of the region, 
rainfall is mostly decreasing in the post 1981 period, particularly in 
December–January–February and March–April–May, although there 
is no trend or a weak wetting in June–July–August (Sousa et al., 2018a; 
Wolski et al., 2021). Rainfall trends of similar magnitude and duration 
to the post-1981 trend accompanied previous strong droughts in the 
region (Wolski et al., 2021).

10.6.2.3 Observational Issues

South Africa and the Cape Town region have good instrumental 
weather data. Records start in the late 1800s, with in excess of 
10 gauges reporting since the 1920s, expanding to about 80 gauges 
in the 1980s, but the number of stations has declined since. The 
mountains have only a  few stations, which receive more than 
1000 mm per year. In view of the strong heterogeneity of rainfall, 
changes in the number of stations contributing to datasets such as 
Climatic Research Unit (CRU) and Global Precipitation Climatology 
Project results in a  lack of consistency between them, which limits 
their reliability in the region (Section 10.2; Wolski et al., 2021).

10.6.2.4 Relevant Anthropogenic and Natural Drivers

Because the primary rainfall mechanism is frontal rain, the most 
relevant large-scale drivers are those that affect cyclogenesis, 
frontogenesis and the mid-latitude westerlies’ latitudinal position 
and moisture supply. These drivers and, thus, the region’s rainfall 
are linked to the Antarctic Oscillation (AAO; Reason and Rouault, 
2005) or Southern Annular Mode (SAM), the dominant monthly and 
interannual mode of Southern Hemisphere atmospheric variability, 
and a  measure of the pressure gradient between mid- and high 
latitudes. (See Sections 3.3, 3.7, 4.3 and Annex IV.2.2 for more general 
discussion of the SAM.) While in the post-1930 period, the SAM 
displays a long-term positive trend, the Cape Town region’s rainfall 
does not, and only the post-1979 trends of rainfall and SAM  are 
conceptually consistent. For example, a  positive trend in the SAM 
is associated with a negative trend in rainfall (Section 10.6.2.5 and 
Figure 10.18). There is also good agreement between the seasonality 
of the SAM and rainfall trends in the post-1979 period: a drying trend 
appears strongly in December to February and March to May, but not 
in June to August and September to November (Wolski et al., 2021), 
and trends in the SAM have similar seasonal dependence (E.-P. Lim 
et al., 2016; Section 3.7.2). Additionally, there is a similar seasonal 
pattern in the post-1979 trends in indices capturing the southern 
edge of the Hadley circulation (Grise et al., 2018).

In the longer-term, Cape Town regional rainfall is characterized by 
a multi-decadal scale quasi-periodicity (Figure 10.18; Dieppois et al., 
2019; Wolski et al., 2021), with the 2015–2017 drought and previous 
strong droughts (1930s and 1970s) occurring during the rainfall’s 
periodic low phases. However, the studies linking the Cape Town 

2015–2017 drought to the hemispheric processes expressed by the 
SAM (Sousa et al., 2018a; Burls et al., 2019; Mahlalela et al., 2019) 
focused almost exclusively on the post-1979 period, when global 
reanalyses are available. Detailed understanding of the drivers of 
previous (1930s and 1970s) Cape Town region droughts and the 
role of hemispheric processes expressed by the SAM in the pre-1979 
period is missing.

The Cape Town regional rainfall is also potentially linked to other 
hemispheric phenomena, such as the expansion of the tropics and, 
specifically, the South Atlantic high-pressure system and the position 
of the subtropical jet, which share some variability with the SAM. 
The relationships between these phenomena and Cape Town rainfall 
have not been thoroughly investigated outside of the context of 
the 2015–2017 drought, but the drought itself was associated 
with poleward expansion of the subtropical anticyclones in the 
South Atlantic and South Indian oceans and (a resulting) poleward 
displacement of the moisture corridor across the South Atlantic 
(Sousa et al., 2018a), as well as a weaker subtropical jet (Mahlalela 
et al., 2019). Burls et al. (2019) also link the decline in the number of 
rainy days to the increase in sea level pressure along the poleward 
flank of the South Atlantic high-pressure system and the intensity 
of the post-frontal ridging high. Additionally, there is a  possible 
linkage between Cape Town rainfall and near-shore cold sea surface 
temperature (SST) anomalies arising from Ekman upwelling due to 
reduced westerly and increased south-easterly winds. These might 
lead to suppression of convection and reduction of rainfall over 
land (Rouault et  al., 2010). All these phenomena are conceptually 
consistent with the poleward migration of the westerlies and 
expansion of the tropics.

Rainfall in the Cape Town region also responds to SST anomalies in 
the south-east Atlantic, including the Agulhas Current retroflection 
region, which may drive intensification of low-pressure systems, 
leading to the trailing front strengthening as it makes landfall over 
the Cape Town region (Reason and Jagadheesha, 2005). There are 
also linkages at the seasonal time scale between the Cape Town 
regional rainfall and Antarctic sea ice (Blamey and Reason, 2007).

In addition to mid-latitude controls, subtropical processes also play 
a role in the Cape Town region’s rainfall variability. The 10°S–30°S 
region of the subtropical Atlantic, parts of the South American 
continent and even parts of the African continent north of Cape Town 
are sources of moisture for atmospheric river events contributing 
to frontal rainfall (Blamey et  al., 2018; Ramos et  al., 2019), with 
implications for the 2015–2017 drought (Sousa et  al., 2018a). 
Also, the second major rainfall contributing system, cut-off-lows, is 
conditional on moisture supply from the subtropics (Abba Omar and 
Abiodun, 2020).

Although El Niño–Southern Oscillation (ENSO) influences climate in 
southern Africa, any relationship between ENSO and Cape Town’s 
rainfall is weak and inconsistent, showing the strongest impact in 
May to June (Philippon et al., 2012). ENSO, however, does influence 
large-scale processes and phenomena relevant to the drought, 
though the relationship between ENSO and the SAM is complex, with 
each ENSO event influencing the SAM differently in different seasons 
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(Ding et al., 2012). Similarly, ENSO affects meridional circulation and 
thus the subtropical anticyclone as well as the polar and subtropical 
jets (Seager et al., 2019), but only modifying, not controlling, their 
role in Cape Town’s rainfall.

Paleoclimate studies reveal that long-term variability in the winter 
rainfall region of South Africa (including Cape Town) is consistent with 
a general framework of warming/cooling-induced latitudinal migration 
of the westerlies and transformation of the subtropical high-pressure 
belt and associated hemispherical processes (see  section  10.2.3.2 
for assessment of paleoclimate analysis). The synchronicity of winter 
rainfall with Antarctic ice-core-derived polar temperature anomalies is 
consistently revealed in studies using different paleoclimate proxies and 
time scales of 1400 years (Stager et al., 2012), about 3000 years (Hahn 
et al., 2016) and 12,000 years (Weldeab et al., 2013). Changes in rainfall 
regimes at shorter (decadal) time scales appear to reflect influence 
of local processes such as the Agulhas current’s interaction with the 
Atlantic, resulting in changes in SST and coastal upwelling, as well as 
modification of the wind tracks by topography (Stager et al., 2012).

10.6.2.5 Model Simulation and Attribution 
Over the Historical Period

Due to the small scale of the Cape Town region, robust comparison 
of CMIP simulations to observations is difficult. However, in general, 
CMIP5 models capture the seasonality well, such as the dominance 
of austral winter rains, although they overestimate the peak and 
underestimate the shoulder season rainfall (Mahlalela et  al., 
2019). Trends in rainfall are particularly difficult to assess as they 
are generally weak and depend strongly on the time period and 
dataset adopted for the analyses (Section 10.6.2.3). A multi-method 
attribution study (Otto et al., 2018) estimates the probability of the 
2015–2017 drought to have increased by a  factor of three since 
pre-industrial times (with a wide 95% confidence interval of 1.5 to 6). 
However, throughout the 20th century, a substantial portion of the 
global models (about 36% of CMIP5 and 44% of CMIP6 models, as 
well as many of the MIROC SMILE members) simulate a statistically 
significant (95% level) decline in total annual rainfall, while there is 
no robust long-term trend in observations (Figure 10.18). Section 10.4 
offers a more detailed assessment of attribution challenges.

Global models capture the overall behaviour of the observed main 
hemispherical processes, such as the expansion of the tropics, 
a positive trend in SAM and the poleward shift of the westerly jet. 
However, they fail to capture details of their observed climatology 
and variability (Simpson and Polvani, 2016), and the magnitudes of 
simulated trends vary, though the models typically underestimate 
observed trends in these processes (Purich et al., 2013; Staten et al., 
2018). In general, CMIP5 models do capture the SAM-regional 
rainfall association, although not consistently across all seasons 
(Purich et al., 2013; E.-P. Lim et al., 2016).

10.6.2.6 Future Climate Information from Global Simulations

Global models show strong consistency in a drying signal for the Cape 
Town region, with the reduction in total annual rainfall of up to 20% 
by the end of the 21st century in CMIP5 RCP8.5 and CMIP6 SSP5-8.5 

simulations (Figure  10.18; Almazroui et  al., 2020c). The consistency 
across the models is a robust signal compared to the rest of southern 
Africa, where the climate change signal varies spatially: stronger drying 
in the west and moderate drying or weak wetting in the east (DEA, 
2013, 2018; see Atlas.4.4 for further discussion of southern Africa 
precipitation projections). Rainfall changes projected for the Cape 
Town region are consistent with projected changes in hemispheric-
scale processes and regional-scale dynamics that point toward reduced 
frequency of frontal systems affecting that  region. These changes 
include robust signals in CMIP5 models for the Southern Hemisphere 
for a poleward expansion of the tropics (Hu et al., 2013b), poleward 
displacement of mid-latitude storm tracks (Chang et al., 2012), increased 
strength and poleward shift of the westerly winds (Bracegirdle et al., 
2018) and subtropical jet-streams (Chenoli et  al., 2017), and a  shift 
toward a  more positive phase of the SAM (E.-P. Lim et  al., 2016). 
However, despite the consistency in circulation changes, the emergence 
of anthropogenic rainfall change above unforced variability in West 
Southern Africa remains uncertain for annual rainfall throughout most 
of the 21st century, even under SSP5-8.5 (Figure 10.15).

There is also a  substantial increase in the frequency of conditions 
supporting atmospheric rivers and water vapour transport towards 
the south-west coast of southern Africa in the projected climate 
(Espinoza et  al., 2018). This behaviour has strong implications for 
the region, as most topographically high locations receive rainfall 
from persistent atmospheric rivers (Blamey et al., 2018). A thorough 
understanding of the role of atmospheric rivers in the Cape Town 
region under a changing climate is missing.

10.6.2.7 Future Climate Information from 
Regional Downscaling

Dynamical downscaling studies implemented with a  stretched-grid 
model (Engelbrecht et al., 2009) revealed a signal compatible with 
the driving CMIP5 ensemble, that is, consistent drying throughout 
the region, amplifying in time, irrespective of the considered 
emissions scenario and the generation of global models (DEA, 2013, 
2018). A  multi-model CORDEX ensemble indicates a  robust signal 
of reduction of total annual rainfall in the future, although there is 
less agreement on how changes in rainfall occurrence may evolve 
in the region, such as through fewer consecutive rain days or longer 
dry spells (Abiodun et al., 2017; Maúre et al., 2018). For the end of 
the century under RCP8.5, Dosio et  al. (2019) also found drying. 
Moreover, in their analysis, the drying is associated with an increase 
in the number of consecutive dry days and a reduction in number of 
rainy days. Their results are consistent with the driving global models 
for all the precipitation indices, and they are robust independent of 
the choice of the regional climate model (RCM) or global model. 
However, collectively, these analyses indicate that uncertainty 
remains in the characteristics of the precipitation decrease.

10.6.2.8 Storyline Approaches

There is a  consistency in rainfall projections with the projections of 
rainfall drivers and with the general understanding of the influence 
of global warming on the circulation dynamics and rainfall patterns 
in the region. Thus, the expansion of the South Atlantic high-pressure 
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system, related to widespread warming of the tropics and poleward 
shift of the subsiding limb of the Hadley cell, is associated with the 
southward displacement of the subtropical jet, and southward 
migration of mid-latitude westerlies and storm tracks, in addition to 
changes in the SAM (Section 10.6.2.4). These effects are also relatively 
consistent with recent (post-1980s) declines in rainfall in the Cape Town 
region. The storyline of an extended drought is thus a set of events that 
can yield reduced rainfall in the Cape Town region: a poleward shift 
of the downward branch of the Hadley cell that produces a sustained 
southward shift in mid-latitude westerlies and storm tracks. The 
behaviour is potentially reinforced by changes in the SAM.

10.6.2.9 Climate Information Distilled From 
Multiple Lines of Evidence

There is high agreement among observational data and reanalyses 
that the recent (post-1979) downward trend in the Cape Town 
region’s rainfall leading to the 2015–2017 drought is related to 
the hemispheric processes of poleward shift in the westerlies and 
expansion of the Hadley circulation. However, there is less support 
for the precipitation–circulation relationship in historical CMIP5 
and CMIP6 simulations. As a  consequence, there is only medium 
confidence that these process changes produced the 2015–2017 
drought leading to the 2018 water crisis.

For the water-resource planner who has to deal with potential 
drought like the 2015–2017 event, several lines of evidence 
indicate future drying: the projected precipitation by global models 
and RCMs of different spatial resolutions, and the observed and 
projected changes of circulation patterns consistent with drier 
conditions, the paleoclimatic evidence confirming a millennial-scale 
circulation–rainfall link. However, the distillation is limited by a lack 
of information about whether or not a  relationship between Cape 
Town precipitation and large-scale circulation processes adequately 
explains droughts in the twentieth century prior to 1979.

Thus, although a clear association appears in observations from 1979 
onward between increasing GHG concentrations, drying in the Cape 
Town region and behaviour of a  key circulation process, the  SAM, 
further analysis suggests caution. Not all global models show 
the historical post-1979 association among these factors, and when 
the observational record is extended back further to times when the 
anthropogenic greenhouse forcing was weaker, there is no strong 
association between the SAM and Cape Town drought. Thus, there is 
only medium confidence in the expectation of a future drier climate 
for Cape Town.

10.6.3 Indian Summer Monsoon

10.6.3.1 Motivation and Regional Context

The Indian summer monsoon provides 80% of the country’s annual 
rainfall from June to September, supplying the majority of water for 
agriculture, industry, drinking and sanitation to over a billion people. 
Any variations in the monsoon on time scales from days to decades can 
have large impacts (Challinor et al., 2006; Gadgil and Gadgil, 2006). 

Evidence from paleoclimate records (Sections 8.3.2.4.1) shows high 
confidence in a weakened Indian monsoon during cold epochs of the past 
such as the Younger Dryas (12,800–11,600 years ago) as measured by 
speleothem oxygen isotopes (Kathayat et al., 2016). There is a pressing 
need to understand if the monsoon will change in the future under 
anthropogenic forcing and to quantify such changes. Multiple datasets 
have shown robust negative trends since the 1950s until the turn of the 
century (Bollasina et al., 2011) followed by a recovery (Jin and Wang, 
2017), yet repeated assessments project the monsoon to increase in 
strength under enhanced GHG forcing (Christensen et al., 2007, 2013; 
Sections 8.3.2.4.1 and 8.4.2.4.1). The apparent contradiction between 
future projections and observed historical trends makes the region an 
ideal choice for an in-depth assessment. The reader is also referred to 
the South Asia (SAS) regional assessment of precipitation extremes 
(Section 11.9), which is not discussed here for brevity.

10.6.3.2 The Regional Climate of India

Local geography gives rise to distinct differences in societal experience 
of the summer monsoon. The south-westerly monsoon winds are 
incident upon the Western Ghats mountains on the west coast, leading 
to orographic enhancement and heavy rains (Shige et al., 2017), which 
supply rivers with water for much of the southern peninsula, often the 
subject of inter-regional water disputes. The northern plains contain 
the Ganges river and also India’s most intensive agriculture, both rainfed 
and irrigated. Synoptic systems known as monsoon depressions cross 
the northern east coast, supplying much of the rain in central India 
(Hunt and Fletcher, 2019). Further north, the eastern Himalayas  are 
dominated by the summer monsoon, while the western Himalayas 
receive most rainfall from western disturbances during winter (Palazzi 
et al., 2013). Meanwhile, south-eastern India sits under a rain shadow 
(the only region to receive more rainfall during the winter monsoon).

10.6.3.3 Observational Issues for India

India has one of the oldest rain-gauge networks in the world, leading 
to the production of numerous observational products (reviewed 
in Khouider et  al., 2020). Gridded gauge-based products dating 
back to the 19th  century reveal pronounced decadal variability 
(Sontakke et al., 2008). Trends for India over the whole 20th century 
are inconclusive (Knutson and Zeng, 2018), although declining over 
central and northern areas (Roxy et al., 2015). Assessment of multiple 
observational datasets covering the Indian summer monsoon reveals 
significant declining rainfall over the second half of the 20th century 
(Section 8.3.2.4.1 and Figure 10.19c,d). A subsequent recovery has 
been noted since the early 2000s (Jin and Wang, 2017).

Observational products containing critical inhomogeneities in gauge 
distribution and reporting over time are acknowledged as suitable for 
mesoscale analysis (Rajeevan and Bhate, 2009), while use for climate 
trends requires consistent reporting over time from quality-controlled 
gauges (e.g., about 2000 gauges since the 1950s in Rajeevan et al., 
2006). A  newer 0.25°-gridded product covering 1901 onwards 
(Pai et  al., 2014, 2015), based on Shepard’s interpolation method 
for irregularly-spaced stations (Shepard, 1968), shows increased 
intensity of daily rainfall and extremes over some regions, especially 
in the late-20th century. However, changes to the inputted gauges 
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may have introduced an artificial jump in extreme rainfall since 1975 
over central India (Section  10.2.2.3; Lin and Huybers, 2019). They 
suggest that this method may have masked declines in mean rainfall 
and highlight the need for availability of raw gauge data to allow 
transparent assessments. Khouider et  al. (2020) have successfully 
tested a  probabilistic interpolation method for India to overcome 
problems inherent in algorithms based on inverse-distance weighting 
when applied to data-sparse regions. An example snapshot of the 
uneven distribution of rain gauges in a  common observational 
product is shown in Figure 10.19a.

The uncertainty among local and international observational products 
for India can pose challenges when evaluating climate models 
(as in Section 10.2.2.6; Prakash et al., 2015). For the seasonal mean 
summer monsoon rainfall, Collins et al. (2013a) found large biases 
separating many CMIP5 models from the available observational 
products. However, for seasonal mean variability, the spread across 
observational products was larger than across the CMIP5 ensemble.

10.6.3.4 Relevant Anthropogenic and Natural 
Drivers for Long-term Change

The relevant drivers for long-term change in the mean Indian summer 
monsoon are summarized briefly:

• Increased greenhouse gas (GHG) concentrations (chiefly CO2) 
are a  strong contributor to changes in the monsoon, with 
repercussions for the meridional temperature contrast driving 
the monsoon circulation (Ueda et al., 2006; Roxy et al., 2015), 
for the monsoon winds in the lower troposphere (Cherchi et al., 
2011; Krishnan et al., 2013), or for the availability of moisture 
from the Indian Ocean (May, 2011).

• Industrial emissions of sulphate aerosol predominantly in the 
Northern Hemisphere could change inter-hemispheric energy 
transports and weaken the monsoon (Polson et al., 2014; Undorf 
et al., 2018). The effect of local anthropogenic emissions of black 
carbon (chiefly from cooking fires) is uncertain (Lau and Kim, 
2006; Nigam and Bollasina, 2010).

• India’s green revolution over the late-20th  century led to 
considerable land-use change, with massive expansion of 
agriculture at the expense of forest and shrublands. As a result, 
India’s northern plains feature widespread irrigation, suggested 
to be a cause of drying (Mathur and AchutaRao, 2020).

• Decadal modes of variability such as the Pacific Decadal Variability 
(PDV, Annex IV) and Atlantic Multi-decadal Variability (AMV, 
Annex IV), which may be partly forced (Section 3.7.7), are known 
to cause decadal modulation of the monsoon (Krishnamurthy 
and Krishnamurthy, 2014; Naidu et al., 2020). 

The interplay of these external and internal drivers is key to 
understanding past and future monsoon change.

10.6.3.5 Model Simulation and Attribution of Drying 
Over the Historical Period

The robust decline of Indian summer monsoon rainfall averaged 
over India in the second half of the 20th century (Section 10.6.3.3) 

is not in line with expectations arising from thermodynamic 
constraints on the water cycle in a  warming world (Section  8.2.2) 
and has been regarded as a puzzle (Goswami et al., 2006). Assessing 
the attribution of 20th-century changes to Indian rainfall is the 
subject of coordinated modelling under the Global Monsoon MIP 
(GMMIP; Zhou et al., 2016), but is complicated by long-standing dry 
biases in coupled CMIP3, CMIP5 (Sperber et al., 2013) and CMIP6 
(Figure  10.19b) global models. These dry biases are connected to 
a lower tropospheric circulation that is too weak (Sperber et al., 2013) 
and wet biases in the equatorial Indian Ocean (Bollasina and Ming, 
2013). Section  8.3.2.4.1 finds high confidence that anthropogenic 
aerosol emissions have dominated the observed declining trends 
of countrywide Indian summer monsoon rainfall, consistent with 
findings at the global-monsoon scale (Section 3.3.3.2).

Stronger Northern Hemisphere aerosol emissions cool it relative to 
the Southern Hemisphere, increasing northward energy transport 
at the expense of moisture transport towards India (Bollasina et al., 
2011). The attribution to anthropogenic aerosols is supported in CMIP5 
single-forcing experiments, including some testing the sensitivity to 
local and remote emissions (Guo et al., 2015, 2016; Shawki et al., 2018), 
comparing CMIP5 GCMs forced by both aerosol and GHG to GHG 
only (Salzmann et al., 2014) and reducing emissions to pre-industrial 
levels (Takahashi et al., 2018). The large spread between individual 
model realisations of comparable magnitude to the aerosol-induced 
signal suggested to Salzmann et  al. (2014) that internal variability 
may also play a  role over regions such as northern-central India. 
Further uncertainty surrounds the level of radiative forcing. Dittus 
et al. (2020) forced a GCM with historical aerosol emissions scaled 
between 0.2  and 1.5 times their observed values, representing the 
spread in CMIP5 effective radiative forcing. The strongest forcing led 
to around 0.5 mm day–1 less late-20th century Indian monsoon rainfall 
than the weakest (Shonk et  al., 2020). Meanwhile, the uncertainty 
surrounding aerosol–cloud interactions could change the sign of 
long-term precipitation trends (Takahashi et al., 2018).

There is some evidence that declining Indian monsoon rainfall 
is due to regional SST warming patterns, themselves arising due 
to radiative forcing from GHG (e.g.,  in the Indian Ocean, Guemas 
et  al., 2013). Roxy et  al. (2015) artificially raised SST in a GCM in 
the equatorial Indian Ocean (the region of strongest observed SST 
warming), leading to a weakened monsoon. Annamalai et al. (2013) 
used a  GCM to suggest instead that preferential warming of the 
western North Pacific may force a Rossby-wave response to its west 
that weakens the monsoon through dry advection and subsidence. 
These hypotheses are not borne out in GHG-forced future projections 
(Section 10.6.3.6).

A small anthropogenic contribution may be expected from local 
land-use/land-cover changes and land management. India is the 
world’s most irrigated region with around 0.5  mm/day in places, 
although peaking higher in summer (Cook et al., 2015b; McDermid 
et  al., 2017). Including irrigation in GCMs and RCMs slows the 
monsoon circulation and diminishes rainfall (Lucas-Picher et al., 2011; 
Guimberteau et al., 2012; Shukla et al., 2014; Tuinenburg et al., 2014; 
Cook et al., 2015b) due to reduced surface temperature (Thiery et al., 
2017), reducing the monsoon wind and moisture fluxes towards 
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India (Mathur and AchutaRao, 2020). However, implementation 
methodologies for irrigation in climate models are simplified and 
often do not account for spatial heterogeneity while overestimating 
demand and supply (Section  10.3.3.6; Nazemi and Wheater, 2015; 
Pokhrel et  al., 2016). Changing forest cover to agricultural land in 
an RCM (Paul et al., 2016) finds weakened summer monsoon rainfall 
especially in central and eastern India, due to decreased local 
evapotranspiration. Decreased evapotranspiration from a  warmer 
surface since the 1950s in the CMIP5 ensemble may also feedback 
on the supply of moisture (Ramarao et al., 2015). Based on an AGCM 
study and literature review, Krishnan et al. (2016) support the role 
of land-use/land-cover change in adding to the effects of aerosol 
in weakening the monsoon, in addition to dynamic effects on the 
circulation caused by rapid warming of the Indian Ocean.

In addition to anthropogenic forcing, there is evidence that internal 
variability in the Pacific is a significant driver. Huang et al. (2020b) 
compared a  large perturbed-physics ensemble (HadCM3C) with 
a SMILE for the historical period. Ensemble members replicating the 
negative Indian rainfall trend were accompanied by a strong phase 
change in the PDV from negative to positive, consistent with SST 
observations. Jin and Wang (2017) have demonstrated increasing 
Indian monsoon rainfall since 2002 in a variety of observed datasets, 
suggesting the increase is due either to a  change in dominance 
of a  particular forcing (for example from aerosol to GHG) or to 
a change in phase of internal variability such as the PDV. Huang et al. 
(2020b) partially attribute the rainfall recovery to a  phase change 
in the PDV, supported by a SMILE study combined with reanalyses 
(Ha et al., 2020).

The drying trend of Indian summer monsoon rainfall since the 
mid-20th century can be attributed with high confidence to aerosol 
as the dominant anthropogenic forcing with a  further contribution 
from internal variability, supported by the review of B. Wang et al. 
(2021) including CMIP6 results. Understanding the interplay 
between anthropogenic and internal drivers will be important for 
understanding future change.

10.6.3.6 Future Climate Projections from Global Simulations

The AR5 (Christensen et  al., 2013) concluded that Indian summer 
monsoon rainfall will strengthen under all RCP future climate 
scenarios, while the circulation will weaken (medium confidence). 
SR1.5 (Hoegh-Guldberg et al., 2018) found only low confidence in 
projections of monsoon change at 1.5°C and 2°C, or any difference 
between them. The AR6 assessment of Chapter 8 (Section 8.4.2.4.1) 
finds more precipitation in future projections (also depicted in 
Figure  10.19c,d,e), supported by reviews of CMIP3, CMIP5 and 
CMIP6 models (Turner and Annamalai, 2012; Kitoh, 2017; Z. Chen 
et al., 2020; B. Wang et al., 2021).

Given the assessment for a  future wetter monsoon dominated by 
GHG emissions and attribution of the late-20th  century decline to 
aerosol (Sections 8.3.2.4.1 and 10.6.3.5), the change between 
dominant forcings will lead, at some point, to a positive trend. For 
example, RCP4.5 experiments in an AGCM forced by coupled model-
derived future SSTs showed continuation of 20th-century drying, 

before a rainfall recovery (Krishnan et al., 2016). By holding aerosol 
emissions at 2005 levels, lower monsoon rainfall is found throughout 
the 21st  century than in a  standard RCP8.5 scenario (Zhao et  al., 
2019), suggesting that the timing of the recovery will be partially 
controlled by the rate at which aerosol emissions decline. The spread 
in spatial distribution of aerosol emissions in SSPs may also play 
a role in near-term projections (Samset et al., 2019). Under divergent 
air-quality policies, SSP3 features a  dipole of declining sulphate 
emissions for China but increases over India, leading to suppression 
of GHG-related precipitation increases there (Wilcox et  al., 2020). 
For the near-term future around the mid-21st century, the interplay 
between internal variability and external forcing must be considered 
(Singh and AchutaRao, 2019). Huang et al. (2020a) used two SMILEs 
to show that internal variability related to PDV could potentially 
overcome the GHG-forced upward trend in Indian monsoon rainfall, 
consistent with assessments of the global monsoon for the near 
term (Section  4.4.1.4). Emergence of the anthropogenic signal for 
South Asian precipitation is shown from the 2050s onwards in CMIP6 
(Figure 10.15b).

In long-term projections, robust signals consist of a  weakened 
upper-tropospheric meridional temperature gradient, either due to 
upper-level heating over the tropical Pacific (Sooraj et al., 2015) or 
Indian oceans (Sabeerali and Ajayamohan, 2018) in CMIP5, and 
increased seasonal mean rainfall, including in CMIP6 (Almazroui 
et  al., 2020b; B. Wang et  al., 2021). The weakened temperature 
gradient combines with increased atmospheric stability to weaken 
the monsoon overturning circulation, with some findings showing 
northward movement of the lower-tropospheric monsoon winds 
in response to a stronger land–sea temperature contrast in CMIP3 
and CMIP5 (Sandeep and Ajayamohan, 2015; Endo et al., 2018). The 
northward shift was also found in the genesis of synoptic systems 
(monsoon depressions) in a  single high-resolution AGCM forced 
by an ensemble of SSTs derived from four GCMs under the RCP8.5 
scenario (Sandeep et al., 2018).

Projections can also be expressed in terms of global-mean warming 
levels (GWLs) rather than time horizons (Cross-Chapter Box  11.1). 
Advancing on SR1.5, amplification of mean and extreme monsoon 
rainfall at 2.0°C compared to 1.5°C has been found both by an 
AGCM forced by future SST patterns (Chevuturi et al., 2018) and by 
using time slices in CMIP5 GCMs (Yaduvanshi et al., 2019; J. Zhang 
et al., 2020). These findings are consistent with the general scaling 
of Indian monsoon precipitation per degree of warming in CMIP5 
(Zhang et  al., 2019) and CMIP6 (B. Wang et  al., 2021). Increasing 
GWLs also lead to emergence of the anthropogenic signal over larger 
proportions of the South Asian region (Figure 10.15a).

Decomposition of the increased rainfall signal showed that while the 
dynamic component led to a drying tendency, this was overcome by 
the thermodynamic contribution (Sooraj et al., 2015; Z. Chen et al., 
2020). Alternative decomposition experiments using AGCMs and 
their coupled counterparts found increases in the lower-tropospheric 
temperature gradient and monsoon rainfall to be dominated by the 
fast radiative response to GHG increase rather than SST changes 
(Li and Ting, 2017; Endo et al., 2018). The response to SST forcing 
featured a large model spread, particularly arising from the dynamic 
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Figure 10.19 | Changes in the Indian summer monsoon in the historical and future periods. 
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component (Li and Ting, 2017). Chen and Zhou (2015) found that 
the Indo-Pacific SST warming pattern dominated the uncertainty in 
Indian monsoon rainfall change. Finally, in assessing the relative 
impact of CO2 radiative forcing and plant physiological changes in 
quadrupled CO2 experiments in four Earth system models, Cui et al. 
(2020) showed little impact of plant physiology on annual rainfall for 
the Indian region.

While several of the above studies selected model subsets to 
constrain future projections based on standard performance metrics 
of the historical period, such as pattern correlation and root-mean-
square error, Latif et al. (2018) included a performance measure based 
on agreement with historical rainfall trends. This is an unproven 
constraint for regional projections (Section  10.3.3.9), since the 
20th-century rainfall trend over India is assessed to have been driven 
chiefly by aerosol and other factors such as PDV (Sections 8.3.2.4.1 
and 10.6.3.5), while the dominant late-21st century forcing is GHG 
emissions. Modern emergent-constraint techniques (Section 10.3.4.2) 
are being applied to the Indian monsoon such as G. Li et al. (2017), 
who found that models with excessive tropical western Pacific rainfall 
tend to project a greater Indian monsoon rainfall change in future, 
due to an exaggerated cloud-radiation feedback. Correcting for this 
bias reduces the future change.

In summary, long-term future scenarios dominated by GHG increases 
(such as the RCPs) suggest increases in Indian summer monsoon 
rainfall (high confidence), dominated by thermodynamic mechanisms 
leading to increases in the available moisture. In the near-term, 
there is high confidence (medium agreement, robust evidence) that 
increased rainfall trends due to GHGs could be overcome by aerosol 
forcing or internal variability.

10.6.3.7 Future Climate Projections from Regional Downscaling

Coordinated monsoon-relevant dynamical downscaling efforts 
such as CORDEX South Asia (Gutowski Jr. et  al., 2016; Choudhary 
et al., 2018) are relevant to the Indian summer monsoon, first with 
assessment of their added value (Section 10.3.3.2 and Atlas.5.3.3). 
Singh et  al. (2017) compared nine CORDEX-South Asia RCMs 
against their driving CMIP5 GCMs, for present-day rainfall patterns 
and processes related to intra-seasonal variability. They found no 

consistent improvement other than for spatial patterns (e.g., rainfall 
close to better-resolved orography); some characteristics were made 
worse. Both the rainfall pattern and its bias were worsened in CORDEX 
compared to CMIP5 in Mishra et al. (2018). In contrast, Varikoden 
et  al. (2018) found improved representation of historical rainfall 
patterns, such as over the Western Ghats mountains (consistent with 
Singh et  al., 2017), reducing the dry bias; improvements were not 
found over the northern plains, which are dominated by synoptic 
variability known as monsoon depressions. Similarly, Sabin et  al. 
(2013) compared a  uniform 1° resolution model ensemble with 
another zoomed to about 35 km over South Asia. Local zooming 
improved simulation of orographic precipitation and the monsoon 
trough. For the future, a  surrogate approach (like pseudo-global 
warming, see Section  10.3.2.2) was used in an RCM to test the 
impacts of warming or moistening on monsoon depressions (Sørland 
and Sorteberg, 2016; Sørland et  al., 2016). The depressions  are 
found to give more rainfall in future, dominated by strengthened 
synoptic circulation from the warming perturbation. By forcing an 
RCM with a  perturbed parameter ensemble of a  GCM, Bal et  al. 
(2016) made projections under SRES A1B for the 2020s, 2050s and 
2080s. They noted increases in rainfall of 15–24% for India. Finally, 
evidence from a  single CORDEX South Asia RCM showed a mixed 
signal for changes in peak season rainfall under RCP2.6 and RCP8.5 
(Ashfaq et al., 2021).

Statistical downscaling and other post-processing require calibration 
in historical conditions (e.g., Akhter et  al., 2019) and assessment 
of fitness-for-purpose (Section  10.3.3.9) before use for future 
projections. Given the noted biases in GCM monsoon simulation 
(Section  10.6.3.5), Vigaud et  al. (2013) used a  variant of quantile 
mapping to bias adjust (Section  10.3.1.3.2 and Cross-Chapter 
Box 10.2) GCM outputs. For the historical period, the pattern, mean 
and seasonal cycle of rainfall versus the input GCMs were improved. 
Increased future monsoon rain, albeit in older SRES A2 projections, 
was found for southern India. Salvi et  al. (2013) used regression-
based perfect prognosis (Section 10.3.1.3.1) for the whole country at 
0.5° resolution based on five ensemble members of a GCM in SRES 
scenarios. They noted increases over rainy regions of west coast and 
north-east India, but decreases in the north, west and south-east. 
Madhusoodhanan et  al. (2018) statistically downscaled 20 CMIP5 
models to 0.05° resolution. While the global models projected 

Figure 10.19 (continued): (a) Observational uncertainty demonstrated by a snapshot of rain-gauge density (% of 0.05° subgrid boxes containing at least one gauge) 
in the APHRO-MA 0.5° daily precipitation dataset for June to September 1956. (b) Multi-model ensemble (MME) mean bias of 34 CMIP6 models for June to September 
precipitation (mm day–1) compared to CRU TS observations for the 1985–2010 period. (c) Maps of rainfall trends (mm day–1 per decade) in CRU TS observations (1950–2000), 
the CMIP6 MME-mean of SSP5-8.5 future projections for 2015–2100 (34 models), the CMIP6 hist-GHG and hist-aer runs, both measured over 1950 to 2000. (d) Low-pass 
filtered time series of June to September precipitation anomalies (%, relative to 1995–2014 baseline) averaged over the central India box shown in panel (b). The averaging 
region (20°N–28°N, 76°E–87°E) follows other works (Bollasina et al., 2011; Jin and Wang, 2017; Huang et al., 2020b). Time series are shown for CRU TS (brown), GPCC (dark 
blue), REGEN (green), APHRO-MA (light brown) observational estimates and the IITM all-India rainfall product (light blue) in comparison with the CMIP6 mean of 13 models 
for the all-forcings historical (pink) the aerosol-only (hist-aer, grey) and greenhouse gas-only (hist-GHG, blue). Dark red and blue lines show low-pass filtered MME-mean 
change in the CMIP6 historical/SSP5-8.5 (34 models) and CMIP5 historical/RCP8.5 (41 models) experiments for future projections to 2100. The filter is the same as that 
used in Figure 10.11 (d). To the right, box-and-whisker plots show the 2081–2100 change averaged over the CMIP5 (blue) and CMIP6 (dark red) ensembles. Note that some 
models exceed the plotting range (CMIP5: GISS-E2-R-CC, GISS-E2-R, IPSL-CM5B-LRl and CMIP6: CanESM5-CanOE, CanESM5 and GISS-E2-1-G). (e) Precipitation linear trend 
(% per decade) over Central India for historical 1950–2000 (left) and future 2015–2100 (right) periods in Indian Monsoon rainfall in observed estimates (black crosses), the 
CMIP5 historical-RCP8.5 simulations (blue), the CMIP6 ensemble (dark red) for historical all-forcings experiment and SSP5-8.5 future projection, the CMIP6 hist-GHG (light blue 
triangles), hist-aer (grey triangles) and historical all-forcings (same sample as for hist-aer and hist-GHG, pink circles). Ensemble means are also shown. Box-and-whisker plots 
show the trend distribution of the three coupled and the d4PDF atmosphere-only (for past period only) SMILEs used throughout Chapter 10 and follow the methodology used 
in Figure 10.6. (f) Example spread of trends (mm day–1 per decade) for the period 2016–2045 in RCP8.5 SMILE experiments of the MPI-ESM model, showing the difference 
between the three driest and three wettest trends among ensemble members over central India. All trends are estimated using ordinary least-squares regression. Further details 
on data sources and processing are available in the chapter data table (Table 10.SM.11).
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increased rainfall, the downscaled ensemble depicted both increasing 
and decreasing trends, indicating uncertainty. However, key physical 
processes operating at below-GCM scale cannot be resolved nor 
calibrated for, such as aspects of the flow around topography. 
This is notably an issue given the resolution disparity between the 
driving global models and output, and the regional challenges in 
observational data used for calibration (Section 10.6.3.3).

There are mixed messages as to whether downscaling adds value to 
climate projections of the Indian summer monsoon; however, there is 
high confidence in projections of precipitation changes in orographic 
regions given the consistent improved representation in these regions 
among several dynamical downscaling studies.

10.6.3.8 Storyline Approaches for India

Formal storyline approaches (see Box  10.2) have been used 
infrequently for the Indian summer monsoon, representing 
a  knowledge gap. In an expert-elicitation approach (Dessai et  al., 
2018), physically plausible futures substantiated by climate processes 
were constructed, focusing on a river basin in southern India. Possible 
outcomes were framed based on changes in two drivers: availability 
of moisture from the Arabian Sea and strength of the low-level flow. 
The narratives identified were able to explain 70% of the variance in 
monsoon rainfall over 1979–2013, the implication being that climate 
uncertainties could be easily communicated to stakeholders in the 
context of present-day variability.

The storylines terminology could be used to loosely describe 
the interplay between internal variability and forced change 
(see Section 10.6.3.6), such as considering the difference between 
groups of wettest and driest ensemble members of a SMILE for the 
near-term future in Figure  10.19f. However, given the interest in 
low-likelihood high-impact scenarios (Sutton, 2018), we can also 
consider possible storylines for the Indian monsoon constructed 
from evidence in paleoclimate records and modelling. For example, 
a  future AMOC collapse could cause reduced monsoon rainfall 
(Section  8.6.1; Liu et  al., 2017), offsetting increases expected 
due to GHG. Large tropical volcanic eruptions are also known to 
weaken the Asian summer monsoon, in observations and model 
simulations over the last millennium (Section 8.5.2.3; Zambri et al., 
2017), although a hemispheric dependence is found, with Southern 
Hemisphere eruptions even strengthening the monsoon around 
India (Zuo et al., 2019). Typically, future climate projections do not 
consider plausible eruption scenarios and their mitigating effects 
on greenhouse warming (see also Cross-Chapter Box 4.1). A single-
model ensemble (Bethke et al., 2017) demonstrates a  future drier 
Indian monsoon relative to conditions in which volcanic eruptions 
are not considered, although the effects of GHG warming dominate 
beyond the mid-term.

The few studies on low-likelihood high-impact scenarios, often in 
single models, together with findings in SR1.5 (Hoegh-Guldberg et al., 
2018), noting the small radiative forcing in 1.5°C or 2°C scenarios, or 
the absence of large aerosol emissions at the end of the 21st century 
in RCPs, give us low confidence in abrupt changes to the monsoon 
on this time scale.

10.6.3.9 Regional Climate Information Distilled 
from Multiple Lines of Evidence

Above, we presented assessments from observational and model 
attribution studies of the historical period, followed by future climate 
projections in global and regional models, and storylines approaches 
including low-likelihood high impact events. Miscellaneous lines of 
evidence are considered here.

Our assessment could also be informed by attempting to constrain 
future projections of the Indian summer monsoon using paleoclimate 
evidence. In modelling work of the mid-Holocene (D’Agostino et al., 
2019), the increased obliquity (axial tilt) and altered orbital precession 
lead to an enhanced monsoon with a stronger dynamic component 
(strengthening the mean monsoon overturning) controlling the 
increase in monsoon rainfall. In future climates however, the dynamic 
contribution decreases (Section  10.6.3.6), yet the increased 
thermodynamic component (greater moisture availability) overcomes 
this to cause a wetter monsoon. Monsoon changes under different 
epochs may not be governed by the same mechanisms (D’Agostino 
et  al., 2019; Hill, 2019), making the mid-Holocene, in particular, 
unsuitable as a period to compare with.

Finally, the recent national climate-change assessment for India 
(Krishnan et  al., 2020) has distilled multiple lines of evidence to 
show declining summer monsoon rainfall over the second half 
of the 20th  century, attributable to emissions of anthropogenic 
aerosols, while future projections informed by CMIP5 modelling and 
dominated by GHG forcing show increased mean rainfall by the end 
of the 21st century.

There is very high confidence (robust evidence, high agreement) of 
a negative trend of summer monsoon rainfall over the second half 
of the 20th  century averaged over all of India. There is medium 
agreement over trends at the regional level owing to uncertainty 
among observational products, which hinders model evaluation, 
downscaling and assessment of changes to extremes. There is high 
confidence (robust evidence, medium agreement) that anthropogenic 
aerosol emissions over the Northern Hemisphere and internal 
variability have contributed to the negative trend, while there is 
high confidence (robust evidence, medium agreement) that Indian 
summer monsoon rainfall will increase at the end of the 21st century 
in response to increased GHG forcing, due to the dominance of 
thermodynamic mechanisms. No contradictory evidence is found from 
downscaling methods. The contrast between declining rainfall in the 
observational record and long-term future increases can be explained 
using multiple lines of evidence. They are not contradictory since they 
are attributable to different mechanisms (primarily aerosols and 
greenhouse gases, respectively). The long-term future changes are 
generally consistent across global (including at high resolution) and 
regional climate models, and supported by theoretical arguments. 
Furthermore, while there are subtle differences found in past periods 
with a  climate similar to the future climate (the mid-Holocene), 
different physical mechanisms at play suggest that paleoclimate 
evidence does not reduce confidence in the future projections. 
In the near term, there is high confidence that internal variability 
will dominate.
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10.6.4 Mediterranean Summer Warming

10.6.4.1 Motivation and Regional Context

The Mediterranean region is loosely denoted as the region that 
surrounds the Mediterranean Sea, and it is characterized by complex 
orography and strong land–sea contrasts. The region contains a dense 
and growing human population, with large regional differences: 
whereas the population of the European Mediterranean countries has 
been relatively stable or even declining during the past decades, the 
population of countries in Mediterranean areas of the Middle East and 
North Africa has quadrupled between 1960 and 2015, and the degree 
of urbanization has risen from 35 to 64% during the same period 
(Cramer et al., 2018) and during the more recent period 2000–2020 
the urban expansion rate has exceeded 5% (Kuang et al., 2021).

The Mediterranean region has experienced significant climate variability 
over recent decades and has been affected in particular by severe 
heatwaves and droughts (Sections 8.3, 11.3, 11.6 and 12.4; Hoegh-
Guldberg et al., 2018). Increasing summer temperatures will enhance 
the frequency and intensity of such extreme events and will cause 
additional environmental and socio-economic pressure on the region.

10.6.4.2 The Region’s Climate

The Mediterranean has a heterogeneous climate that is partly semi-arid, 
especially along the southern coast of the Mediterranean Sea (Lionello 
et al., 2012). It is characterized by mild humid winters and dry warm or 
hot summers, which are associated with large scale subsidence that is 
partly related to the downward branch of the Hadley circulation. Other 
factors affecting the Mediterranean circulation include the monsoon 
heating over Asia (Rodwell and Hoskins, 1996; Cherchi et al., 2014; Ossó 
et al., 2019) and circulation anomalies induced by topography (Simpson 
et al., 2015). Seasonal and interannual variability is strongly linked to 
natural modes of variability (Section  10.6.4.4). The Mediterranean 
Sea acts as an evaporation source that dominates the  regional 
hydrological cycle, which is characterized by local cyclogenesis and 
a separate branch of the mid-latitude storm track (Lionello et al., 2016). 
It also affects remote locations such as the Sahel (Park et al., 2016; 
Section 10.4.2.1). Strong storms can develop over the Mediterranean. 
Among these, Medicanes are particularly destructive and exhibit 
several similarities with tropical cyclones (Cavicchia et  al., 2014; 
Kouroutzoglou et al., 2015; Gaertner et al., 2018). The Mediterranean 
region is also characterized by strong land-atmosphere coupling and 
feedbacks (Seneviratne et  al., 2006) generating prolonged droughts 
and intense heatwaves, which can also affect continental Europe 
(Zampieri et al., 2009). Other aspects of Mediterranean climate include 
regional winds, which can be very strong due to the channelling effect 
(Obermann et al., 2018) and extreme rainfall during autumn (Ducrocq 
et al., 2014; Ribes et al., 2019).

10.6.4.3 Observational Issues

The Mediterranean region spans a  wide variety of countries 
and economies. This has led to large differences in the existence and 
availability of observational records, with the southern part of the area 
being sparsely covered by meteorological stations (Figure 10.20b). 

Consequently, basin-wide, homogeneous, quality controlled 
observational datasets are lacking, especially before the advent 
of substantial satellite observations in the 1970s. Observational 
uncertainties exist also for those regions that are covered by high 
quality networks such as European Climate Assessment & Dataset 
(ECA&D; Flaounas et al., 2012).

Large differences of up to 7°C between the CRU and UDEL datasets 
have been found especially over mountainous areas, such as the Atlas 
in Morocco (Zittis and Hadjinicolaou, 2017; Strobach and Bel, 2019). 
Bucchignani et al. (2016a, b) compared three different datasets (CRU, 
UDEL, and MERRA) with the available ground observations and found 
that although the geographical distribution of the bias is qualitatively 
similar for the three datasets, differences exist, with the absolute 
bias being generally lower in Modern-Era Retrospective Analysis 
for Research and Applications (MERRA) especially over North Africa 
during the summer and winter season. There is high confidence that 
the sparse monitoring network in parts of the Mediterranean region 
strongly increases the uncertainty across different gridded datasets 
(Section 10.2.2.3, Figure 10.20b,c).

10.6.4.4 Relevant Anthropogenic and Natural Drivers

The Mediterranean summer climate is affected by large-scale modes 
of natural variability, the most dominant being the NAO (Annex IV) 
in winter and the summer NAO in summer (Folland et al., 2009; Bladé 
et al., 2012), although regional differences exist. The influence of those 
modes of variability over the eastern Mediterranean is recognized by 
some studies (Chronis et al., 2011; Kahya, 2011; Black, 2012; Bladé 
et al., 2012), but disputed by others (Ben-Gai et al., 2001; Ziv et al., 2006; 
Donat et al., 2014; Turki et al., 2016; Zamrane et al., 2016; Han et al., 
2019). During positive summer NAO phase, associated with an upper-
level trough over the Balkans, the Mediterranean is anomalously wet 
(Bladé et al., 2012). Drivers of Mediterranean climate variability include 
modes of variability such as the AMV (Sutton and Dong, 2012) and the 
Asian monsoon (Rodwell and Hoskins, 1996; Logothetis et al., 2020). 
In addition, the increase of GHGs (e.g., Zittis et al., 2019), the decrease 
of anthropogenic aerosols over Europe and the Mediterranean since 
the 1980s resulting from air pollution policies (Turnock et al., 2016), 
and anthropogenic land-use change (Millán, 2014; MedECC 2020) 
have been shown to be linked to the regional warming. The role of the 
zonal averaged circulation as a driver for the Mediterranean climate 
has been stressed by (Garfinkel et al., 2020).

The attribution of observed Mediterranean summer warming to 
above drivers and implications for future projections will be discussed 
in Sections 10.6.4.5 and 10.6.4.6.

10.6.4.5 Model Simulation and Attribution 
Over the Historical Period

Observational datasets show large agreement on the historical 
(1960–2014) temperature evolution at basin-wide scale (Figure 10.20e), 
with an enhanced warming since the 1990s, and the early decades 
of the 21st century being on average approximately more than 1°C 
warmer than late 19th  century levels (van der Schrier et  al., 2013; 
Cramer et  al., 2018; Lionello and Scarascia, 2018; Figure  10.20e). 
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Over recent decades, the surface air temperature of the Mediterranean 
including the Mediterranean Sea has warmed by around 0.4°C per 
decade (Macias et al., 2013). Observed trends over land show large 
geographical heterogeneity (Figure  10.20d) and notable differences 
exist amongst different datasets at grid point scale (Figure  10.20c; 
Qasmi et al., 2021).

Several mechanisms have been proposed for the enhanced 
Mediterranean warming, although their relative importance and the 
possible interplay between them are not fully understood. Circulation 
changes might have contributed to this enhanced warming 
(Figure  10.20a). Sutton and Dong (2012) argued that the AMV 
induced a shift around the 1990s towards warmer southern European 
summers. This mechanism is associated with a  linear baroclinic 
atmospheric response to the AMV-related surface heat flux. Also 
O’Reilly et al. (2017) related warm summer decades to the AMV, but 
the connection was shown to be mainly thermodynamic. Qasmi et al. 
(2021) estimate an increase in Mediterranean summer temperature of 
0.2°C–0.8°C during a positive AMV.

Increased warming over land compared to the sea is expected due to 
the lapse-rate changes associated with tropospheric moisture contrasts 
(Kröner et al., 2017; Byrne and O’Gorman, 2018; Brogli et al., 2019b; 
Figure  10.20a). Enhanced land–sea temperature contrast leads to 
relative humidity and soil moisture feedbacks (Rowell and Jones, 2006), 
the latter also depending on weather regimes (Quesada et al., 2012). 
The globally enhanced land–sea contrast in near surface temperature 
is also a robust result in CMIP5 and CMIP6 models (Section 4.5.1.1).

Due to its semi-arid climate, strong atmosphere–land coupling has 
contributed to the larger increase of mean summer temperature 
compared to the increase of annual mean temperature (Seneviratne 
et al., 2006). In particular, during drought spells, limits to evaporation 
due to low soil moisture provide a positive feedback and enhances the 
intensity of heatwaves (Lorenz et al., 2016; Box 11.1). By comparing 
reanalysis-driven RCM simulations with observations, Knist et  al. 
(2017) found that RCMs are able to reproduce soil moisture interannual 
variability, spatial patterns, and annual cycles of surface fluxes over 
the period 1990–2008, revealing a strong land–atmosphere coupling 
especially in southern Europe in summer. In addition cloud feedbacks 
can modulate the Mediterranean summer temperature (Mariotti and 
Dell’Aquila, 2012).

The observed trends over 1901–2010 are outside the range of internal 
variability shown in CMIP5 pre-industrial control experiments and 
consistent with, or greater than those simulated by experiments 
including both anthropogenic and natural forcings (Knutson et  al., 
2013) and therefore partly attributable to anthropogenic forcing. 
The decrease of anthropogenic aerosols over Europe including the 
Mediterranean resulting from European de-industrialisation and 
air pollution policies (Turnock et  al., 2016) has been highlighted 
as an important contributor to the observed warming (Ruckstuhl 
et al., 2008; Philipona et al., 2009; de Laat and Crok, 2013; Nabat 
et al., 2014; Besselaar et al., 2015; Dong et al., 2017; Boé et al., 2020a). 
Pfeifroth et al. (2018) argue that this brightening is mainly due to 
cloud changes caused by the indirect aerosol effect with a minor role 
for the direct aerosol effect, in contrast to Nabat et al. (2014) and 

Boers et al. (2017) who attribute it to the direct aerosol effect. Using 
model sensitivity experiments, Nabat et al. (2014) also associated the 
increase in Mediterranean SST since 1980–2012 with the decrease in 
aerosol concentrations (Atlas.8.2, Atlas.8.3 and Atlas.8.5).

Over the period 1960–2014, observed trends over land are consistent 
with those of most of the multi-model or SMILEs ensembles 
(Figure 10.20f), although large differences exist for individual models 
and ensemble members. The modelled ensemble-mean trends show 
large geographical variations. Generally, both global and regional 
models often underestimate the observed trend especially over parts 
of North Africa, Italy, the Balkans and Turkey. The cold bias in global 
models is related to simulated SLP trends that are anti-correlated 
to the observed trend, which is probably due to systematic model 
errors (Boé et al., 2020b). Biases in the simulation of soil-moisture 
and cloud-cover might also have contributed to the underestimation 
of the warming trend in GCMs (van Oldenborgh et  al., 2009). 
The CORDEX results (at both 0.44° and 0.11° resolution) show 
consistently smaller values than those in global models and the 
available datasets (Figure 10.20g; Vautard et al., 2021). This is partly 
due to the overestimation in the temperature evolution before 1990 
(Figure 10.20e), possibly because of differences in the aerosol forcing 
(Boé et  al., 2020a), although the driving global models also have 
a cold bias (Vautard et al., 2021). Cold biases for recent decades are 
also found in Med-CORDEX simulations (Dell’Aquila et al., 2018) and 
by RCM simulations over the southern part of the Mediterranean, 
Middle East and North Africa region (Almazroui, 2016; Almazroui 
et al., 2016a, b; Zittis and Hadjinicolaou, 2017; Ozturk et al., 2018), 
although higher resolution, new bare soil albedo and modified aerosol 
parametrization significantly improve the results (Bucchignani et al., 
2016a, b, 2018). Despite large differences in the multi-model mean 
trend (Figure  10.20g), in most of the land points the observed 
trend lies within the model range in all ensembles. For the SST bias 
exhibited by coupled RCMs the choice of driving global model has 
the largest impact (Darmaraki et al., 2019; Soto-Navarro et al., 2020).

10.6.4.6 Future Climate Information From Global Simulations

The Mediterranean is expected to be one of the most prominent 
and vulnerable climate change hotspots (Diffenbaugh and Giorgi, 
2012). CMIP5, CMIP6, HighResMIP and CORDEX (Section 10.6.4.7) 
simulations all project a  future warming for the 21st  century that 
ranges between 3.5°C and 8.75°C for RCP8.5 at the end of this 
century for those ending at 2100 (Figure 10.21a, b). CMIP6 results 
project more pronounced warming than CMIP5 for a given emissions 
scenario and time period (Figure  10.21c; Coppola et  al., 2020). 
However, when analysing the Mediterranean warming in terms 
of mean global warming levels, the two ensembles largely agree, 
showing that summer warming is projected to reach values up to 
40–50% larger than the global annual warming, largely independent 
of models and emissions scenarios (Figure 10.21d). Large regional 
differences exist, with enhanced warming projected over Turkey, 
the Balkans, the Iberian Peninsula and North African regions 
(Figures 10.14a, 10.21c; Almazroui et al., 2020a) and reaching, locally, 
values of up to double the global mean (Lionello and Scarascia, 
2018). The enhanced summer warming also increases the amplitude 
of the seasonal cycle (Yettella and England, 2018).
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As noted in Section 10.6.4.4, the Mediterranean summer climate is 
affected by large-scale circulation patterns, of which the summer 
NAO is the most important (Folland et al., 2009; Bladé et al., 2012). 
Barcikowska et  al. (2020) highlight the importance of correctly 
simulating the summer NAO impact on the Mediterranean climate, 
as it partly offsets the anthropogenic warming signal in the western 
and central Mediterranean.

Climate models project a reduction in precipitation in all seasons, and 
a northward and eastward expansion of the Mediterranean climate, 
with the affected areas becoming more arid with an increased 
summer drying (Atlas.8.5; Alessandri et al., 2015; Mariotti et al., 2015; 
Rajczak and Schär, 2017; Waha et  al., 2017; Barredo et  al., 2018; 
Lionello and Scarascia, 2018; Spinoni et al., 2018, 2020). The drying 

can contribute to the enhanced warming by land surface feedbacks 
(Whan et al., 2015; Lorenz et al., 2016; Russo et al., 2019). A negative 
feedback to this dryness-induced warming might be provided by an 
enhanced moisture transport into the dry area associated with the 
dynamical response of the atmosphere (Zhou et al., 2021). Due to 
the arid climate, no positive soil moisture-temperature feedback is 
found over the North African regions of the Mediterranean, where 
the surface energy budget is mostly governed by radiative cooling 
(Lelieveld et al., 2016), implying that soil moisture feedbacks are not 
contributing to enhanced warming over those regions.

Over the Mediterranean region, daily maximum temperature is 
projected to increase more than the daily minimum. Consequently, 
the difference between daytime maxima and nighttime minima is 
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Figure 10.20 | Aspects of Mediterranean summer warming. (a) Mechanisms and feedbacks involved in enhanced Mediterranean summer warming. (b) Locations of 
observing stations in E-OBS and Donat et al. (2014). (c) Differences in temperature observational datasets (NOAA Global Temp, Berkeley Earth, CRUTEM4 and GISTEMP) with respect 
to E-OBS for the land points between the Mediterranean Sea and 46°N and west of 30°E. (d) Observed summer (June to August) surface air temperature linear trends (°C decade–1) 
over the 1960–2014 period from Berkeley Earth. (e) Time series of area averaged Mediterranean (25°N–50°N, 10°W–40°E) land point summer temperature anomalies (°C, baseline 
1995–2014). Dark blue, brown and turquoise lines show low-pass fi ltered temperature of Berkeley Earth, CRU TS and HadCRUT5, respectively. Orange, light blue and green lines 
show low-pass fi ltered ensemble means of HighResMIP (4 members), CORDEX EUR-44 (20 members) and CORDEX EUR-11 (37 members). Blue and red lines and shadings show 
low-pass fi ltered ensemble means and standard deviations of CMIP5 (41 members) and CMIP6 (36 members). The fi lter is the same as the one used in Figure 10.10. (f) Distribution 
of 1960–2014 Mediterranean summer temperature linear trends (°C decade–1) for observations (black crosses), CORDEX EUR-11 (green circles), CORDEX EUR-44 (light blue circles), 
HighResMIP (orange circles), CMIP6 (red circles), CMIP5 (blue circles) and selected SMILEs (grey box-and-whisker plots, MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF). Ensemble 
means are also shown. CMIP6 models showing a very high ECS (Box. 4.1) have been marked with a black cross. All trends are estimated using ordinary least-squares and box-and-
whisker plots follow the methodology used in Figure 10.6. (g) Ensemble mean differences with respect to the Berkeley Earth linear trend for 1960–2014 (°C decade–1) of CMIP5, 
CMIP6, HighResMIP, CORDEX EUR-44 and CORDEX EUR-11. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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expected to increase, particularly in summer (Lionello and Scarascia, 
2018). Temperature extremes will be affected as well, with a dramatic 
increase in the number of warm days and reduction of cold nights 
(Section  11.9; Lionello and Scarascia, 2020). The Mediterranean 
summer warming will also increase the frequency and intensity of 
heatwaves (Section 11.9).

10.6.4.7 Future Climate Information 
From Regional Downscaling

To unravel the complex interactions and feedbacks over the region on 
a range of spatial and temporal scales, regional downscaling projects 
are being developed to provide more comprehensive and detailed 
information on the future of the Mediterranean. The importance 
of regional downscaling for investigating the subregional details 
caused by the complex morphology of the Mediterranean region 
is a well-known issue in the literature (Planton et al., 2012), which 

has been addressed in many studies since AR5. Recent examples 
of dynamical downscaling are EURO-CORDEX (Jacob et  al., 2014) 
and Med-CORDEX (Ruti et al., 2016; Somot et al., 2018), but earlier 
activities have included ENSEMBLES (Déqué et al., 2012; Fernández 
et  al., 2019), PRUDENCE (Christensen et  al., 2002), CIRCE (Gualdi 
et al., 2013) and ESCENA (Jiménez-Guerrero et al., 2013).

From an analysis of CORDEX results, studies showed that southern 
Europe is projected to face a  robust non-linear increase in 
temperature larger than the global mean (Zittis et al., 2019), EURO-
CORDEX projections, that are driven by CMIP5 global models, 
project a  less pronounced warming than that of CMIP6 (Coppola 
et al., 2021; see Figure 10.21c). The non-linear increase is especially 
evident for both hot and cold extremes  (Section 11.9; Maule et al., 
2017; Jacob et al., 2018; Kjellström et al., 2018). In particular, Dosio 
and Fischer (2018) showed that in many places in southern Europe 
and the Mediterranean, the increase in the number of nights 
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Figure 10.21 | Projected Mediterranean summer warming. (a) Time series of area averaged Mediterranean (25°N–50°N, 10°W–40°E) land point summer surface 
air temperature anomalies (°C, baseline period is 1995–2014). Orange, light blue and green lines show low-pass fi ltered ensemble means of HighResMIP (highres-future, 
four members), CORDEX EUR-44 (RCP8.5, 20 members) and CORDEX EUR-11 (RCP8.5, 37 members). Blue and dark red lines and shadings show low-pass fi ltered ensemble 
means and standard deviations of CMIP5 (RCP8.5, 41 members) and CMIP6 (SSP5-8.5, 36 members). The fi lter is the same as the one used in Figure 10.10. The box-and-
whisker plots show long-term (until 2081–2100) temperature changes of different CMIP6 scenarios with respect to the baseline period (SSP1-2.6 in dark blue, SSP2-4.5 in 
yellow, SSP3-7.0 in red, SSP5-8.5 in dark red). (b) Distribution of 2015–2050 Mediterranean summer temperature linear trends (°C per decade) for CORDEX EUR-11 (RCP8.5, 
green circles), CORDEX EUR-44 (RCP8.5, light blue circles), HighResMIP (highres-future, orange circles), CMIP6 (SSP5-8.5, dark red circles), CMIP5 (RCP8.5, blue circles) and 
selected SMILEs (grey box-and-whisker plots, MIROC6, CSIRO-Mk3-6-0 and MPI-ESM). Ensemble means are also shown. CMIP6 models showing a very high ECS (Box 4.1) have 
been marked with a black cross. All trends are estimated using ordinary least-squares and box-and-whisker plots follow the methodology used in Figure 10.6. (c) Projections 
of ensemble mean 2015–2050 linear trends (°C per decade) of CMIP5 (RCP8.5), CORDEX EUR-44 (RCP8.5), CORDEX EUR-11 (RCP8.5), CMIP6 (SSP5-8.5) and HighResMIP 
(highres-future). All trends are estimated using ordinary least-squares. (d) Projected Mediterranean summer warming in comparison to global annual mean warming of CMIP5 
(dashed lines, RCP2.6 in dark blue, RCP4.5 in light blue, RCP6.0 in orange and RCP8.5 in red) and CMIP6 (solid lines, SSP1-2.6 in dark blue, SSP2-4.5 in yellow, SSP3-7.0 in red 
and SSP5-8.5 in dark red) ensemble means. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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with temperature above 20°C is more than 60% larger under 
2°C warming compared to 1.5°C. Over the region, the projected 
temperature increase, including a  higher probability of severe 
heatwaves (Russo et al., 2015), is accompanied by a  reduction in 
precipitation (Jacob et  al., 2014; Dosio, 2016; Rajczak and Schär, 
2017), resulting in projected increases of drought frequency and 
severity (Spinoni et al., 2018, 2020; Raymond et al., 2019). Also, the 
frequency and severity of marine heatwaves of the Mediterranean 
Sea are projected to increase (Darmaraki et  al., 2019; see 
Section 12.4 and Atlas.8.4).

Only a  limited number of RCM simulations for the MENA domain 
are currently available. For the southern and eastern Mediterranean, 
they project a mean warming ranging from 3°C for RCP4.5 to 9°C 
for RCP8.5 at the end of this century compared to its beginning 
(Bucchignani et  al., 2018; Ozturk et  al., 2018). The frequency and 
duration of heatwaves and annual number of extremely hot days 
(i.e., those with maximum temperature >50°C) in the southern 
Mediterranean will increase substantially. For 2070–2099 with 
respect to 1971–2000 the latter might even reach 70 days for 
RCP8.5 (Lelieveld et al., 2016; Almazroui, 2019; Driouech et al., 2020; 
Varela et al., 2020).

Despite the large efforts of these regional downscaling projects, the 
global model–RCM matrix is still sparse and lacking a  systematic 
design to explore the uncertainty sources (e.g.,  global model, 
RCM, scenario, resolution) (Section 10.3). Focusing on the Iberian 
peninsula, Fernández et  al. (2019) argued that the driving global 
model is the main contributor to uncertainty in the ensemble. 
Physically consistent but implausible temperature changes in 
RCMs can occur. An example is a strong temperature increase over 
the Pyrenees due to excessive snow cover in the present climate 
(Fernández et al., 2019). Based on an older set of RCM simulations 
(ENSEMBLES), Déqué et al. (2012) also argued that the largest source 
of uncertainty in the temperature response over southern Europe 
is the choice of the driving global model (whereas for summer 
precipitation the choice of the RCM dominates the uncertainty). 
Finally, Boé et al. (2020a) found that over a  large area of Europe, 
including parts of the Mediterranean, RCMs project a  summer 
warming 1.5°C–2°C colder than in their driving global models for 
the end of the 21st  century. This is caused by differences in solar 
radiation related to the absence of time-varying anthropogenic 
aerosols in RCMs (Boé et al., 2020a; Gutiérrez et al., 2020), which 
also affects the noted differences in cloud cover between global 
models and RCMs (Bartók et al., 2017).

Statistical downscaling studies for the Mediterranean confirm the 
results from global model and RCM studies, with large agreement 
among future projections showing lower rates of warming in winter 
and spring, and, in most cases, higher ones in summer and autumn 
(Jacobeit et al., 2014).

10.6.4.8 Storyline Approaches

The atmospheric circulation is influenced by large-scale, often 
slowly varying components of the climate system, such as ocean, 
sea ice and soil moisture. Historical and future changes of the 

atmospheric circulation depend, among other factors, on how these 
drivers have changed and will change. Zappa and Shepherd (2017) 
have analysed this for the Mediterranean region and developed 
a set of storylines based on different plausible evolutions of those 
drivers and their impact on the Mediterranean winter climate. 
Important identified drivers during winter are tropical and polar 
amplification of global warming and the polar stratospheric vortex 
(Manzini et  al., 2014; Simpson et  al., 2018), with implications 
for precipitation. Zappa (2019) discusses the relative amplitude 
of tropical and Arctic warming, response of the AMOC, patterns of 
Pacific SST change, and changes in stratospheric vortex strength as 
possible drivers of the Mediterranean summer climate and stresses 
that given the present state of knowledge, alternative storylines 
based on these drivers should be considered as equally plausible 
future manifestations of regional climate change. Brogli et  al. 
(2019a, b) and Kröner et al. (2017) have revealed thermodynamic 
processes, lapse rate, and circulation as important drivers for 
Mediterranean summer climate.

Low-likelihood high-impact events might affect future Mediterranean 
climate. An example of such an event is the collapse of the AMOC 
(Weijer et al., 2019), that would bring widespread cooling over the 
Northern Hemisphere. For the Mediterranean this is estimated to be 
a few degrees Celsius during summer in the case of a total collapse 
(Jackson et al., 2015).

10.6.4.9 Climate Information Distilled From 
Multiple Lines of Evidence

There is very high confidence (high agreement, robust evidence) that 
the Mediterranean region has experienced a  summer temperature 
increase in recent decades that is faster than the increase for 
the Northern Hemisphere summer mean. There is also very high 
confidence (high agreement, robust evidence) that the projected 
Mediterranean summer temperature increase will be larger than the 
global warming level, with an increase in the frequency and intensity 
of heatwaves.

Traditionally, the distillation process to produce contextualized, 
policy relevant information has taken place at regional or national 
level. For example, the potential effects of climate change on 
public health are discussed in several national climate change 
and adaptation reports (Bruci et  al., 2016; MoARE, 2016; MoE, 
2016; MoEP, 2018; MoEU, 2018). Although these reports are 
extremely helpful and widely used for the development of national 
adaptation policies, they are often based on non-comprehensive 
and heterogeneous sources of climate information (e.g.,  MEEN, 
2018; MoE/UNDP/GEF, 2019). For instance, future climate change 
projections are based on a  limited number of socio-economic 
scenarios and climate model simulations, which are also often 
not evaluated comprehensively (e.g.,  Bruci et  al., 2016; MoARE, 
2016; MoEU, 2018). In addition, these reports are often not peer-
reviewed, not available in English, and mainly limited to the country 
level, thus making it difficult to compare the details of the climate 
information across them.
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Box 10.3 | Urban Climate: Processes and Trends

Urban areas have special interactions with the climate system that produce heat islands. This box presents information about these 
processes, how they are parametrized in climate modules, and on the role of urban monitoring networks. A discussion on the observed 
climate trends and climate change projections for urban areas follows.

Urban heat island
During nighttime, urban centres are often several degrees warmer than the surrounding rural area, a phenomenon known as the 
nighttime canopy urban heat island effect (Bader et al., 2018; Kuang, 2019; Li et al., 2019; Y. Li et al., 2020a). While green and blue 
infrastructures can mitigate the urban heat island effect, three main factors contribute to its development (Hamdi et al., 2020; Masson 
et al., 2020): (i) three-dimensional urban geometry including building density and plan area, street aspect ratio and building height; 
(ii) thermal characteristics of impervious surfaces; and (iii) anthropogenic heat release, either from building energy consumption, 
especially waste heat from air conditioning systems, or as direct emissions from industry, traffic, or human metabolism (Ichinose et al., 
1999; Sailor, 2011; de Munck et al., 2013; Bohnenstengel et al., 2014; Chow et al., 2014; Salamanca et al., 2014; Dou and Miao, 2017; 
Ma et al., 2017a; Chrysoulakis et al., 2018; Takane et al., 2019). Urban heat island magnitude is also affected by aerosols due to air 
pollution in urban areas (Cheng et al., 2020; Han et al., 2020) and by local background climate (Zhao et al., 2014; Ward et al., 2016).

Monitoring network
Long-term climate datasets (a year or more) at the small spatial scales required to resolve processes of interest for cities (<1 km) 
are scarce (Bader et al., 2018; Caluwaerts et al., 2020). Moreover, urban observation sites often represent only parts of the urban 
environment and are suboptimal for detecting urban effects (e.g., sites in city parks). Recently, city-scale climate monitoring networks 
as well as satellite and ground-based remote sensing are being used (though still missing in Global South cities; Technical Annex I), 
enhancing our understanding of the urban microclimate and its interaction with climate change, and providing key information 
for users (F. Chen et al., 2012; Barlow et al., 2017; Bader et al., 2018). It has been found that harmonization of collection practices, 
instrumentation, station locations, and quality control methodologies across urban environments needs improvement to facilitate 
collaborative research (Muller et al., 2013; Barlow et al., 2017). Real time crowdsourcing data is becoming available (Section 10.2.4). 
The urban climate community is making efforts to understand how these methods can complement traditional datasets (Meier et al., 
2017; Zheng et al., 2018; Langendijk et al., 2019b; Venter et al., 2020).

Urban modules in climate models
Exchanges of heat, water and momentum between the urban surface and its overlying atmosphere are calculated using specific surface-
atmosphere exchange schemes. Three different schemes, here in order of increasing complexity, can be distinguished (Masson, 2006; 
Grimmond et al., 2010, 2011; Chen et al., 2011; Best and Grimmond, 2015): (i) in the slab or bulk approach, the three-dimensional city 
structure is not resolved but cities are represented by modifying soil and vegetation parameters within land surface models, increasing 
roughness length and displacement height (e.g., Seaman et al., 1989; Dandou et al., 2005; Best et al., 2006; Liu et al., 2006). The energy 
balance is often modified to account for the radiation trapped by the urban canopy, heat storage, evaporation and anthropogenic 
heat fluxes. (ii) Single-layer urban canopy modules use a simplified geometry (urban canyon, with three surface types: roof, road and 
wall) that approximately capture the three-dimensional dynamical and thermal physical processes influencing radiative and energy 
fluxes (Masson, 2000; Kusaka et al., 2001). (iii) Multi-layer urban canopy modules compute urban effects vertically, allowing a direct 
interaction with the planetary boundary layer (Brown, 2000; Martilli et al., 2002; Hagishima et al., 2005; Dupont and Mestayer, 2006; 
Hamdi and Masson, 2008; Schubert et al., 2012). Building-energy models that estimate anthropogenic heat from a building for given 
atmospheric conditions can be incorporated. Recent model development has focused on improving the representation of urban 
vegetation (Lee et al., 2016; Redon et al., 2017; Mussetti et al., 2020).

Global (McCarthy et al., 2010; Oleson et al., 2011; Zhang et al., 2013; H. Chen et al., 2016; Katzfey et al., 2020; Sharma et al., 2020; 
Hertwig et al., 2021) and regional modelling groups (Oleson et al., 2011; Kusaka et al., 2012a; McCarthy et al., 2012; Hamdi et al., 
2014; Trusilova et al., 2016; Daniel et al., 2019; Halenka et al., 2019; Langendijk et al., 2019a) are beginning to implement these 
urban parametrizations within the land surface component of their models. There is very high confidence (robust evidence and 
high agreement) that while all types of urban parametrizations generally simulate radiation exchanges in a realistic way, they have 
strong biases when simulating latent heat fluxes, though recent research incorporating in-canyon vegetation processes improved their 
performance. There is medium confidence (medium evidence, high agreement) (Kusaka et al., 2012b; McCarthy et al., 2012; Hamdi 
et al., 2014; Trusilova et al., 2016; Jänicke et al., 2017; Daniel et al., 2019) that a simple single-layer parametrization, is sufficient for 
the correct simulation of the urban heat island magnitude and its interplay with regional climate change.
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Box 10.3 (continued)

Observed trends
There is medium evidence but high agreement (Parker, 2010; Zhang et al., 2013; H. Chen et al., 2016) that the global annual mean 
surface air temperature response to urbanization is negligible. There is very high confidence that the different observed warming trend 
in cities as compared to their surroundings can partly be attributed to urbanization (Box 10.3, Figure 1; Park et al., 2017).

Box 10.3, Figure 1 | Urban warming compared to global GHG-induced warming. (a) Change in the annual mean surface air temperature over the period 
1950–2018 based on the local linear trend retrieved from CRU TS (°C per 68 years). This background warming is compared to the local warming that has been 
reported during 1950–2018 in the literature from historical urbanization. The relative share of the total warming as percentage between the urban warming and 
the surrounding warming is plotted in a circle for each city. This map has been compiled from a review study (Hamdi et al., 2020). (b) Low-pass filtered time series 
of the annual mean temperature (°C) observed in the urban station of Tokyo (red line) and the rural reference station in Choshi (blue line) in Japan. The filter is the 
same as the one used in Figure 10.10. (c) Uncertainties in the relative share of urban warming with respect to the total warming (%) related to the use of different 
global observational datasets: CRU TS (brown circles), Berkeley Earth (dark blue downward triangle), HadCRUT5 (cyan upward triangle), Cowtan Way (orange plus) 
and GISTEMP (purple squares). Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).

There is very high confidence (robust evidence and high agreement) that the annual mean minimum temperature is more affected by 
urbanization than the maximum temperature (Ezber et al., 2007; Fujibe, 2009; Hamdi, 2010; Elagib, 2011; Camilloni and Barrucand, 
2012; Hausfather et al., 2013; Robaa, 2013; Argüeso et al., 2014; Alghamdi and Moore, 2015; Alizadeh-Choobari et al., 2016; Sachindra 
et al., 2016; Liao et al., 2017; Lokoshchenko, 2017; J. Wang et al., 2017; Arsiso et al., 2018). Beside temperature, urbanization can 
induce an urban dryness island, which refers to lower relative humidity in cities than in nearby rural locations (Lokoshchenko, 2017; 
Bian et al., 2020) and the urban wind island, where slower wind speeds are observed in cities (Wu et al., 2017; Bader et al., 2018; Peng 
et al., 2018). There is medium confidence (medium evidence and medium agreement) (Schlünzen et al., 2010; Ganeshan et al., 2013; 
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Cross-Chapter Box 10.4 | Climate Change over the Hindu Kush Himalaya

Coordinators: Izuru Takayabu (Japan), Andrew Turner (United Kingdom), Zhiyan Zuo (China)

Contributors: Bhupesh Adhikary (Nepal), Muhammad Adnan (Pakistan), Muhammad Amjad (Pakistan), Subimal Ghosh (India), 
Rafiq Hamdi (Belgium), Akm Saiful Islam (Bangladesh), Richard G. Jones (United Kingdom), Martin Jury (Austria), Asif Khan (Pakistan), 
Akio Kitoh (Japan), Krishnan Raghavan (India), Lucas Ruiz (Argentina), Laurent Terray (France)

The Hindu Kush Himalaya (HKH) constitutes the largest glacierized region outside the poles and provides the headwaters for several 
major rivers (Sharma et al., 2019). Since the 1960s, the HKH has experienced significant trends in the mean and extremes of temperature 
and precipitation, accompanied by glacier mass loss and retreat, snowmelt and permafrost degradation (Yao et al., 2012a, b; Azam 
et al., 2018; Bolch et al., 2019; Krishnan et al., 2019a, b; Chug et al., 2020; Sabin et al., 2020). Observational uncertainty and lack 
of consistent, high-quality datasets hamper reliable assessments of climate change and model evaluation over several mountain 
areas, including the HKH (Section 10.2.2). This box assesses observed and projected climate change in the extended HKH (outline in 
Cross-Chapter Box 10.4, Figure 1a), in which we include the Tibetan Plateau (TP) and Pamir mountains.

Temperature trends
Little evidence was presented in the AR5 (IPCC, 2014) other than increased minimum and maximum temperature trends in the western 
Himalaya (Hartmann et al., 2013). The SROCC assessed that HKH (named High Mountain Asia) surface-air temperature has warmed 
more rapidly than the global mean over recent decades (high confidence). Annual mean HKH surface air temperature increased 
significantly (about 0.1°C per decade) over 1901–2014 (Ren et al., 2017), although Cross-Chapter Box 10.4, Figure 1d shows an 
observational range of 0.20°C–0.25°C per decade over 1961–2014. There is a rising trend of extreme warm events and fewer extreme 
cold events over 1961–2015 (Krishnan et al., 2019b; Wester et al., 2019). However, summer cooling over the Karakoram (western 
HKH) was reported for 1960–2010 (Forsythe et al., 2017). A key relevant process is elevation-dependent warming (EDW; reviewed in

Box 10.3 (continued)

Ganeshan and Murtugudde, 2015; Haberlie et al., 2015; Daniels et al., 2016; Liang and Ding, 2017; McLeod et al., 2017; Y. Li et al., 2020b) 
that cities induce increases in mean and extreme precipitation over and downwind of the city especially in the afternoon and early evening.

Climate projections
Estimates of the urban heat island under further climate change are very uncertain because studies using different methods report 
contrasting results. However, there is very high confidence (robust evidence and high agreement) that the projected change of the urban 
heat island under climate change conditions is one order of magnitude less than the projected warming in both urban and rural areas under 
simulation constraints of no urban growth (McCarthy et al., 2010, 2012; Oleson et al., 2011; Früh et al., 2011; Adachi et al., 2012; Kusaka et 
al., 2012a; Oleson, 2012; Hamdi et al., 2014; Sachindra et al., 2016; Hatchett et al., 2016; Arsiso et al., 2018; Hoffmann et al., 2018).

Combining climate change conditions together with urban growth scenarios, there is very high confidence (robust evidence and 
high agreement) that future urbanization will amplify the projected air temperature warming irrespective of the background climate 
(Georgescu et al., 2013; Argüeso et al., 2014; Mahmood et al., 2014; Doan et al., 2016; Kim et al., 2016; Kusaka et al., 2016; Grossman-
Clarke et al., 2017; Kaplan et al., 2017; X. Li et al., 2018). Urbanization will have a strong influence on minimum temperatures that 
could be locally comparable in magnitude to the global GHG-induced warming (Berckmans et al., 2019). There is very high confidence 
(robust evidence and high agreement) for the combination of future urban development and more frequent occurrence of extreme 
climatic events, such as heatwaves (Hamdi et al., 2016; Bader et al., 2018; He et al., 2021).

The choice of urban planning scenarios and RCM projections shows a large sensitivity during nighttime, up to 0.6°C (Kusaka et al., 2016). 
The sensitivity is significantly less than the uncertainties arising from global emissions scenarios or global model projections. However, 
there is a large difference between RCM simulations with and without urban land use, indicating that this impact is comparable to 
the uncertainties related to the use of different global model projections (Hamdi et al., 2014; Kusaka et al., 2016; Daniel et al., 2019). 
Therefore, impact assessments and adaptation plans for urban areas require high spatial resolution climate projections along with 
models that represent urban processes, ensemble dynamical and statistical downscaling, and local-impact models (Masson et al., 
2014; Baklanov et al., 2018, 2020; Duchêne et al., 2020; Schoetter et al., 2020; Le Roy et al., 2021; Zhao et al., 2021).
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Cross-Chapter Box 10.4 (continued)

Pepin et al., 2015), leading to warming of 2°C–2.5°C at 5000 m over 1961–2006, but only 0.5°C at sea level (Xu et al., 2016). However, 
EDW behaviour appears to depend on region, time period and elevation (D. Guo et al., 2019; b. Li et al., 2020) and understanding is limited 
by the sparse observational network (You et al., 2020). Observational and model analyses have attributed EDW to GHG and black carbon 
emissions, accelerating warming by snow-albedo feedback (Ming et al., 2012; Gautam et al., 2013; Xu et al., 2016; Yan et al., 2016; Lau 
and Kim, 2018; Y. Zhang et al., 2018), or the more pronounced cooling effect of scattering aerosols at low elevations and stratospheric 
ozone depletion (Guo and Wang, 2012; Zeng et al., 2015). There is high confidence that the eastern and central HKH has exhibited rising 
temperatures (Cross-Chapter Box 10.4, Figure 1), with warming dependent on season and elevation. There is high confidence that much of 
the warming can be attributed to GHGs, but the effect of albedo has only medium confidence. There is high confidence in more frequent 
extreme warm events and fewer extreme cold events over the eastern Himalayas in the last five decades.
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Cross-chapter Box 10.4, Figure 1 | Historical annual-mean surface air temperature linear trend (°C per decade) and its attribution over the 
Hindu Kush Himalaya (HKH) region. (a) Observed trends from Berkeley Earth (also showing the HKH outline), CRU TS (also showing the AR6 Tibetan Plateau (TIB) 
outline, for ease of comparison to the Interactive Atlas), APHRO-MA and JRA-55 datasets over 1961–2014. (b) Models showing the coldest, median and warmest 
HKH temperature linear trends among the CMIP6 historical ensemble over 1961–2014. (c) Low-pass-filtered time series of annual-mean surface air temperature 
anomalies (°C, baseline 1961–1980) over the HKH region as outlined in panel (a), showing means of CMIP6 hist all-forcings (red), and the CMIP6 hist all-forcings 
sample corresponding to DAMIP experiments (pink), for hist-aer (grey) and hist-GHG (pale blue). Observed datasets are Berkeley Earth (dark blue), CRU (brown), 
APHRO-MA (light green) and JRA-55 (dark green). The filter is the same as that used in Figure 10.10. (d) Distribution of annual mean surface air temperature trends 
(°C per decade) over the HKH region from 1961 to 2014 for ensemble means, the aforementioned observed and reanalysis data (black crosses), individual members 
of CMIP6 hist all-forcings (red circles), CMIP6 hist-GHG (blue triangles), CMIP6 hist-aer (grey triangles), and box-and-whisker plots for the SMILEs used throughout 
Chapter 10 (grey shading). Ensemble means are also shown. All trends are estimated using ordinary least-squares regression and box-and-whisker plots follow the 
methodology used in Figure 10.6. Further details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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Cross-Chapter Box 10.4 (continued)

Precipitation trends
Annual and summer precipitation over the central-eastern HKH show decreasing trends over 1979–2010 in multiple observed datasets, 
attributable to a weakening South Asian monsoon (Yao et al., 2012a; Palazzi et al., 2013; Roxy et al., 2015). There are contradictory 
trends in the western HKH (Azmat et al., 2017; Yadav et al., 2017; H. Li et al., 2018; Meher et al., 2018), where most precipitation is 
associated with western disturbances on the subtropical westerly jet, but trends in western disturbance activity are unclear (Kumar 
et al., 2015; Hunt et al., 2019; Krishnan et al., 2019a). There has been an increased frequency and intensity of extreme precipitation 
over the central-western HKH but contrasting evidence in the east (Sheikh et al., 2015; Talchabhadel et al., 2018). The number of 
consecutive wet days has increased over 1961–2012, but with no uniform trend in consecutive dry days (Zhan et al., 2017). There is 
medium confidence that the eastern-central HKH has experienced decreased summer precipitation (Section 10.6.3). There is medium 
confidence in the increase of summer extreme precipitation over the western HKH.

Glacier trends
The SROCC assessed that snow cover has declined in duration, depth and accumulated mass at lower elevations in mountain regions, 
including the HKH (high confidence). Glaciers are losing mass (very high confidence) and permafrost is warming (high confidence) 
over high mountains in recent decades, and it is very likely that atmospheric warming is the main driver. A significant reduction in 
HKH glacier area has been observed since the 1970s, with smaller glaciers generally shrinking faster (e.g., Bolch et al., 2019). HKH 
glacier mass loss took place at the lowest rate among high mountain areas in the last 20 years, although with one of the largest 
total losses (Section 9.5.1.1 and Figure 9.20; Shean et al., 2020). The highest mass-loss rates occurred in the eastern and northern 
HKH, while gains occurred in the west (e.g., Shean et al., 2020). Glacier mass gain has been coined as the ‘Karakoram anomaly’ 
(Sections 8.3.1.7.1 and 9.5.1), explained by a combination of low temperature sensitivity of debris-covered glaciers, a decrease in 
summer air temperatures, and increased snowfall possibly linked to evapotranspiration from irrigated agriculture (You et al., 2017; 
Bolch et al., 2019; de Kok et al., 2020a; Farinotti et al., 2020). Meanwhile, increased air temperature and decreased snowfall explain 
the glacier mass decrease elsewhere (Bonekamp et al., 2019; de Kok et al., 2020b; Farinotti et al., 2020; Shean et al., 2020). There is 
high confidence that glaciers in most HKH regions have thinned, retreated and lost mass since the 1970s.

Projections
In AR5, the HKH was projected to continue warming over the 21st century, faster than the likely ranges for the global mean and 
South Asia. New CMIP5 results show temperature increases across mountainous HKH by about 1°C–2°C (in some places in summer 
4°C–5°C) during 2021–2050 compared to 1961–1990 (Shrestha et al., 2015). Projected warming differs by up to 1°C between east and 
west, with higher values in winter (Sanjay et al., 2017; see Interactive Atlas). Statistically significant mean warming (0.30°C–0.90°C 
per decade until the end of the 21st century) across all RCPs has been projected by CORDEX South Asia (Dimri et al., 2018). CMIP6 
models report that north-western South Asia, including the western Himalayas, is projected to experience temperature increases 
exceeding 6°C by the end of the 21st century under SSP5-8.5 relative to 1995–2014 (Almazroui et al., 2020b). Results from CMIP5, 
CMIP6 and CORDEX ensembles for different warming levels are shown in the Interactive Atlas and summarized in Figure Atlas.20. 
The HKH will likely continue warming in the coming decades.

The SR1.5 (IPCC, 2018b) stated that heavy precipitation risk in high-elevation regions is projected to be higher at 2°C compared to 
1.5°C of global warming (medium confidence). CMIP5 models project increased annual or summer monsoon precipitation over the 
HKH in the 21st century (Palazzi et al., 2015; Kitoh and Arakawa, 2016), intensifying by about 22% in the hilly south-eastern Himalaya 
and TP for the long term in RCP8.5, but with no trends in the western HKH (Rajbhandari et al., 2015; Krishnan et al., 2019a). CMIP6 
projects an increase of winter precipitation over the western Himalayas, with a corresponding decrease in the east (Almazroui et al., 
2020b). HKH projections are subject to large uncertainties in CMIP5 and CORDEX (Hasson et al., 2013, 2017; Mishra, 2015; Sanjay 
et al., 2017). CORDEX, in particular, has inherent limitations at reproducing the characteristics of summer monsoon rainfall variability 
(Singh et al., 2017). There is medium confidence that HKH precipitation will increase in the coming decades.

The SROCC assessed that glaciers will lose substantial mass (high confidence) and permafrost will undergo increasing thaw and 
degradation (very high confidence) over high mountain regions (including the HKH), with stronger changes for higher emissions 
scenarios. Regional differences in warming and precipitation projections and glacier properties cause considerable differences in 
glacier response within High Mountain Asia (Kraaijenbrink et al., 2017). Glacier mass loss will accelerate through the 21st century, 
increasing with RCP after 2030 (Section 9.5.1.3; Marzeion et al., 2014). Loss of between 40 ± 25% to 69 ± 21 % of 2015 glacier 
volume is expected by 2100 in RCP 2.6 and RCP 8.5, respectively (Section 9.5.1.3 and Figure 9.21). Glacier mass loss is expected due to 
decreased snowfall, increased snowline elevations and longer melt seasons. However, due to projection uncertainties, simplicity of the 
models, and limited observations, there is medium confidence in the magnitude and timing of glacier mass changes (Section 9.5.1.3). 
Glacier mass in HKH will decline through the 21st century (high confidence), more so under high-emissions scenarios.
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10.7 Final remarks

The assessments in this chapter are based on a  rapidly growing 
body of evidence from the peer-reviewed literature, most of which 
was not previously considered by IPCC reports. Several challenges 
in the construction of regional climate change information have 
been identified:

• Limited climate monitoring in some regions impedes the full 
understanding of the relevant climate processes, an appropriate 
validation of model simulations, and the formulation of 
trustworthy regional climate information. Beyond temperature 
and precipitation, there is a  shortage of observed variables 
needed for regional process understanding, attribution, and 
model development and validation, among others. Examples 
include surface evapotranspiration, soil moisture, radiation, wind 
and relative humidity, among many others identified by sectors 
sensitive to climate (Sections 10.2, 10.3 and 10.6).

• Compared to the increasing number of large-scale evaluations, 
there is a  shortage of process-based model evaluations at 
regional scales to assess the fitness of the chosen models for 
specific purposes (Sections 10.3 and 10.4).

• There is a  general lack of studies of the simulation of large-
scale, downscaling-relevant processes in global models to 
support the design of global/regional model matrices that both 
span a  sufficiently large range of projection uncertainty and 
realistically represent the regional climate of interest. The fitness 
of statistical methods for regional climate change studies has 
received limited attention by the scientific community, while 
as in the case of global models, process-based evaluation has 
proven useful (Soares et  al., 2019b). Studies of past changes 
and pseudo-reality studies to assess the predictors and model 
structures required for downscaling in a  future climate are 
promising avenues (Section 10.3).

• Internal variability is a  large contributor to climate uncertainty 
at regional scales, especially for extreme events. Further study of 
the processes governing regional internal variability, such as the 
modes of variability and the teleconnections that connect them 
to the regional variability, but also of the local processes and 
drivers involved, will help improve its understanding. The same 
applies to the validation of the simulated internal variability that 
underpins the trustworthiness of model-based climate information 
(Sections 10.3, 10.4 and 10.6, and Cross-Chapter Box 10.1).

• Methodologies on how to propagate climate uncertainties from 
global and regional scales down to the human settlement scale 
are still under development. In some cases, bias-adjustment 
methods are used with substantial neglect of the physical 
processes involved (Section 10.3 and Cross-Chapter Box 10.2).

• The production of regional climate information relies mainly 
on global and regional models that often do not incorporate 
human-controlled surface processes (urban parametrizations is 
one example) in their land surface components. This limits the 
representation of uncertainties for climate information at the urban 
scale (Section 10.3, Box 10.2, and Cross-Chapter Box 10.2).

• Literature plays a central role as a source for constructing regional 
climate change information. The amount of climate change 
literature available is unevenly distributed across the world, 
and large bodies of literature (e.g.,  local and regional reports) 
are often overlooked in the construction of climate information. 
Furthermore, research tends to focus on regions that attract the 
attention of the Global North so that climate aspects relevant to 
other regions may not receive sufficient attention for generating 
appropriate regional climate information (Sections 10.2, 10.3, 
10.5 and 10.6).

• Governmental institutions producing regional and local climate 
information often use diverging approaches that are not necessarily 
coherent with each other. Coherency could be improved by 
implementing a quality control system and a traceability solution 
for the sources of the information. Collective work with the 
social sciences and humanities will improve the communication, 
perception and response to regional climate information and help 
translate user requirements (Sections 10.5 and 10.6).

• There is a shortage of regional climate change studies distilling 
multiple lines of evidence. Most studies rely on either global 
models or downscaled global models, with an increasing number 
of studies focusing on the use of emulators and the selection 
and combination of models. However, there are limited studies 
distilling this information with a wider range of lines of evidence 
that includes observations, process understanding, attribution, 
and hierarchies of models (Sections 10.3, 10.5 and 10.6).

Addressing these challenges could facilitate the assessment of both 
sources and methodologies that lead to an increased fitness and 
usefulness of regional climate information for a wide range of purposes.

Acknowledgements

We acknowledge the E-OBS dataset and the data providers in the 
ECA&D project (https://www.ecad.eu) for their help and the Japan 
Aerospace Exploration Agency (JAXA) for delivering the  GSMaP 
(Global Satellite Mapping of Precipitation) data to us. The invaluable 
contributions from Lisa van Aardenne (South Africa), Peng Cai 
(China), Joseph Ching (China), Huili He (China), Kenshi  Hibino 
(Japan), Yukiko  Imada (Japan), Nazrul Islam (Saudi Arabia), 
Isadora Christel Jiménez (Spain) and Misako Kachi (Japan) are also 
greatly acknowledged. We acknowledge the World Climate Research 
Programme for coordinating the modelling intercomparison projects 
CMIP and CORDEX and thank the climate modelling groups for 
producing and making available their model output.

https://doi.org/10.1017/9781009157896.012
Downloaded from https://www.cambridge.org/core. IP address: 3.22.114.143, on 30 Apr 2024 at 04:18:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

(https://www.ecad.eu
https://doi.org/10.1017/9781009157896.012
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1460

Chapter 10 Linking Global to Regional Climate Change

10

Frequently Asked Questions

FAQ 10.1 | How Can We Provide Useful Climate Information for Regional Stakeholders?

The world is physically and culturally diverse, and the challenges posed by climate change vary by region and 
location. Because climate change affects so many aspects of people’s daily work and living, climate change 
information can help with decision-making, but only when the information is relevant for the people involved in 
making those decisions. Users of climate information may be highly diverse, ranging from professionals in areas 
such as human health, agriculture or water management to a broader community that experiences the impacts 
of changing climate. Providing information that supports response actions thus requires engaging all relevant 
stakeholders, their knowledge and their experiences, formulating appropriate information, and developing 
a mutual understanding of the usefulness and limitations of the information.

The development, delivery, and use of climate change information requires engaging all parties involved: 
those producing the climate data and related knowledge, those communicating it, and those who combine 
that information with their knowledge of the community, region or activity that climate change may impact. 
To be successful, these parties need to work together to explore the climate data and thus co-develop the 
climate information needed to make decisions or solve problems, distilling output from the various sources 
of climate knowledge into relevant climate information. Effective partnerships recognize and respond to the 
diversity of all parties involved (including their values, beliefs and interests), especially when they involve 
culturally diverse communities and their indigenous and local knowledge of weather, climate and their society. 
This is particularly true for climate change – a global issue posing challenges that vary by region. By recognizing 
this diversity, climate information can be relevant and credible, most notably when conveying the complexity of 
risks for human systems and ecosystems and for building resilience.

Constructing useful climate information requires considering all available sources in order to capture the fullest 
possible representation of projected changes and distilling the information in a way that meets the needs of the 
stakeholders and communities impacted by the changes. For example, climate scientists can provide information 
on future changes by using simulations of global and/or regional climate and inferring changes in the weather 
behaviour influencing a region. An effective distillation process (FAQ 10.1, Figure 1) engages with the intended 
recipients of the information, especially stakeholders whose work involves non-climatic factors, such as human 
health, agriculture or water resources. The distillation evaluates the accuracy of all information sources 
(observations, simulations, expert judgement), weighs the credibility of possible conflicting information, and 
arrives at climate information that includes estimating the confidence a user should have in it. Producers of 
climate data should further recognize that the geographic regions and time periods governing stakeholders’ 
interest (for example, the growing season of an agricultural zone) may not align well with the time and space 
resolution of available climate data; thus additional model development or data processing may be required to 
extract useful climate information.

One way to distil complex information for stakeholder applications is to connect this information to experiences 
stakeholders have already had through storylines as plausible unfoldings of weather and climate events related 
to stakeholders’ experiences. Dialogue between stakeholders and climate scientists can determine the most 
relevant experiences to evaluate for possible future behaviour. The development of storylines uses the experience 
and expertise of stakeholders, such as water-resource managers and health professionals, who seek to develop 
appropriate response measures. Storylines are thus a pathway through the distillation process that can make 
climate information more accessible and physically comprehensible. For example, a storyline may take a common 
experience like an extended drought, with depleted water availability and damaged crops, and show how 
droughts may change in the future, perhaps with even greater precipitation deficits or longer duration. With 
appropriate choices, storylines can engage nuances of the climate information in a meaningful way by building 
on common experiences, thus enhancing the information’s usefulness.

Forging partnerships among all involved with producing, exploring and distilling climate data into climate 
information is at the centre of creating stakeholder-relevant information. These partnerships can occur through 
direct interaction between climate scientists and stakeholders as well as through organizations that have 
emerged to facilitate this process, such as climate services, national and regional climate forums, and consulting 
firms providing specialized climate information. These so-called ‘boundary organizations’ can serve the varied 
needs of all who would fold climate information into their decision processes. All of these partnerships are vital 
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FAQ 10.1 (continued)

for arriving at climate information that responds to physical and cultural diversity and to challenges posed by 
climate change that can vary region-by-region around the world.
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FAQ 10.1: How can scientists provide useful regional climate information?     
In decision-making, climate information is more useful if the physical and cultural diversity across the world is considered.

FAQ 10.1, Figure 1 | Climate information for decision makers is more useful if the physical and cultural diversity across the world is 
considered. The fi gure illustrates schematically the broad range of knowledge that must be blended with the diversity of users to distil information that will 
have relevance and credibility. This blending or distillation should engage the values and knowledge of both the stakeholders and the scientists. The bottom 
row contains examples of stakeholders’ interests and is not all-inclusive. As part of the distillation, the outcomes can advance the United Nations’ Sustainable 
Development Goals, covered in part by these examples.
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Frequently Asked Questions

FAQ 10.2 | Why Are Cities Hotspots of Global Warming?

Urban areas experience air temperatures that can be several degrees Celsius warmer than surrounding areas, 
especially during the night. This ‘urban heat island’ effect results from several factors, including reduced 
ventilation and heat trapping due to the close proximity of tall buildings, heat generated directly from human 
activities, the heat-absorbing properties of concrete and other urban building materials, and the limited amount 
of vegetation. Continuing urbanization and increasingly severe heatwaves under climate change will further 
amplify this effect in the future.

Today, cities are home to 55% of the world’s population. This number is increasing, and every year cities welcome 
67 million new residents, 90% of whom are moving to cities in developing countries. By 2030, almost 60% of 
the world’s population is expected to live in urban areas. Cities and their inhabitants are highly vulnerable to 
weather and climate extremes, particularly heatwaves, because urban areas already are local hotspots. Cities are 
generally warmer – up to several degrees Celsius at night – than their surroundings. This warming effect, called 
the urban heat island, occurs because cities both receive and retain more heat than the surrounding countryside 
areas and because natural cooling processes are weakened in cities compared to rural areas.

Three main factors contribute to amplify the warming of urban areas (orange bars in FAQ 10.2, Figure 1). The 
strongest contribution comes from urban geometry, which depends on the number of buildings, their size and 
their proximity. Tall buildings close to each other absorb and store heat and also reduce natural ventilation. 
Human activities, which are very concentrated in cities, also directly warm the atmosphere locally, due to heat 
released from domestic and industrial heating or cooling systems, running engines, and other sources. Finally, 
urban warming also results directly from the heat-retaining properties of the materials that make up cities, 
including concrete buildings, asphalt roadways, and dark rooftops. These materials are very good at absorbing 
and retaining heat, and then re-emitting that heat at night.

The urban heat island effect is further amplified in cities that lack vegetation and water bodies, both of which can 
strongly contribute to local cooling (green bars in FAQ 10.2, Figure 1). This means that when enough vegetation 
and water are included in the urban fabric, they can counterbalance the urban heat island effect, to the point of 
even cancelling out the urban heat island effect in some neighbourhoods.

The urban heat island phenomenon is well-known and understood. For instance, temperature measurements 
from thermometers located in cities are corrected for this effect when global warming trends are calculated. 
Nevertheless, observations, including long-term measurements of the urban heat island effect are currently too 
limited to allow a full understanding of how the urban heat island varies across the world and across different 
types of cities and climatic zones, or how this effect will evolve in the future.

As a result, it is hard to assess how climate change will affect the urban heat island effect, and various studies 
disagree. Two things are, however, very clear. First, future urbanization will expand the urban heat island areas, 
thereby amplifying future warming in many places all over the world. In some places, the nighttime warming 
from the urban heat island effect could even be on the same order of magnitude as the warming expected from 
human-induced climate change. Second, more intense, longer and more frequent heatwaves caused by climate 
change will more strongly impact cities and their inhabitants, because the extra warming from the urban heat 
island effect will exacerbate the impacts of climate change.

In summary, cities are currently local hotspots because their structure, material and activities trap and release 
heat and reduce natural cooling processes. In the future, climate change will, on average, have a limited effect 
on the magnitude of the urban heat island itself, but ongoing urbanization together with more frequent, longer 
and warmer heatwaves will make cities more exposed to global warming.
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FAQ 10.2 (continued)
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FAQ 10.2: Why are cities the hotspots of global warming?
Cities are usually warmer than their surrounding areas due to factors that trap and release heat
and a lack of natural cooling influences, such as water and vegetation.

Cities often lack 
vegetation and water

Variations across 
different climates

FAQ 10.2, Figure 1 | Effi ciency of the various factors at warming up or cooling down neighbourhoods of urban areas. Overall, cities tend to be 
warmer than their surroundings. This is called the ‘urban heat island’ effect. The hatched areas on the bars show how the strength of the warming or cooling 
effects of each factor varies depending on the local climate. For example, vegetation has a stronger cooling effect in temperate and warm climates. Further 
details on data sources are available in the chapter data table (Table 10.SM.11).
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