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On λ-invariants attached to cyclic cubic number fields

Daniel Delbourgo and Qin Chao

Abstract

We describe an algorithm for finding the coefficients of F (X) modulo powers of p, where p 6= 2
is a prime number and F (X) is the power series associated to the zeta function of Kubota
and Leopoldt. We next calculate the 5-adic and 7-adic λ-invariants attached to those cubic
extensions K/Q with cyclic Galois group A3 (up to field discriminant <107), and also tabulate

the class number of K(e2πi/p) for p = 5 and p = 7. If the λ-invariant is greater than zero, we
then determine all the zeros for the corresponding branches of the p-adic L-function and deduce
Λ-monogeneity for the class group tower over the cyclotomic Zp-extension of K.

Supplementary materials are available with this article.

1. Introduction

The connection between arithmetic invariants of number fields and special values of L-functions
has proven to be a rich theme in algebraic number theory. The first hint that this link may
have a p-adic formulation can be found in the work of Kummer in the 19th century, and this
connection was subsequently greatly developed by Kenkichi Iwasawa in the mid-20th century.
In more recent times Coates, Wiles, Mazur, Greenberg, Perrin-Riou and many others, have
extended Iwasawa’s fundamental ideas to a general motivic setting. It is now widely seen that
there should be a precise correlation between certain Iwasawa-theoretic invariants µ, λ > 0,
attached to the arithmetic object over the cyclotomic Zp-extension and the nature of the finite
number of zeros (and the leading term) in its associated p-adic L-function.

This paper reports on a modest computational project to find the zeros of the p-adic
L-functions attached to cubic number fields. The calculation of the zeros over Q was initiated
by Wagstaff [16, 17] in the late nineteen-seventies, and developed by Childress and Gold [1];
the various methods were extended to quadratic fields in the work of Ernvall and Metsänkylä
[5, 6] a decade or so later. Of course, the Iwasawa Main Conjecture (proved by Mazur and Wiles
[13, 19]) relates these zeros to the Λ-module structure of certain towers of ideal class groups.
Recently Ellenberg, Jain and Venkatesh [4] have studied the connection between the way in
which the number of zeros varies over a family of quadratic fields and the statistics predicted by
the corresponding p-adic random matrices. One therefore expects that the techniques developed
here can be used to study an analogous problem for a family of cubic twists instead.

Let K be a cyclic cubic field of discriminant DK . We shall undertake the following tasks at
both the primes 5 and 7:

(I) calculate the λ-invariant for all cyclic cubic fields K up to discriminant DK < 107; and
(II) determine the zeros of each p-adic L-function, again for all K with DK < 107.
The reason why we chose 107 as the cut-off value for the discriminant is that the tables of

Llorente and Quer [11] terminate at this point; that leaves 501 such cyclic fields K to consider.
Since the relevant p-adic L-function exhibits two non-trivial branches when p = 5, and three
non-trivial branches when p = 7, this amounts to (2 + 3)× 501 = 2505 different branches for
which we potentially need to locate zeros.
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Here is a short plan of the paper. In § 2 we give a method to approximate the Taylor series
expansion of the power series associated to the p-adic L-function, modulo a topologically
nilpotent ideal JN in the Iwasawa algebra Λ. Then, in § 3, we focus exclusively on cyclic cubic
fields K, and supply two separate methods to work out the λ-invariant for each branch. We next
describe how to locate any p-adic zeros whenever the λ-invariant is strictly positive and give an
irreducible polynomial with splitting field K(µp). Then we compute its class number. Finally,
in § 4, we interpret the full tables of p-adic zeros compiled within the Appendix (available as
online supplementary material from the publisher’s website) in terms of the Iwasawa module,
X∞,K , built out of a certain tower of p-primary class groups. We deduce that the latter has a
monogenic Λ-structure.

The techniques we exploit here are quite different from those employed in [1, 4, 6, 16, 17].
The key ingredient is to utilise the p-adic approximations developed by the first author in
[2, 3], which seem well suited to resolving problems of type (I) and (II) (see previous page),
relatively quickly. In total, the computations in this paper took approximately five months to
run on PARI/GP. Although we could have computed the zeros of the p-adic L-functions to a
larger p-adic accuracy, we chose an accuracy sufficient to show (in each case) that X∞,K was
Λ-monogenic. Likewise, in this paper, we only consider p = 5 and p = 7, but the method works
for any odd prime p with appropriate modifications.

2. An algorithm to compute the Taylor series

Let p > 3 be a prime number, and let χ be a Dirichlet character of conductor fχ coprime to p.
Kubota and Leopoldt [10] constructed a p-adic zeta function Lp(s, χ) interpolating the values

Lp(1− n, χ) = ιp((1− χω−n(p)pn−1) · ζ(1− n, χω−n)) (1)

at every positive integer n, where ιp : Q ↪→ Cp is a fixed embedding of the algebraic numbers
into the Tate field, and ω denotes the Teichmüller character modulo p.

Remark. If χ(−1) = −1, these values above are identically zero. Throughout this paper
we shall only consider the non-trivial branches Lp(s, χω

1+β) for which χω1+β(−1) = +1. One
may therefore index these branches using exactly half the congruence classes β mod p− 1.

Let O be a finite extension of the p-adic integers containing the values of the character χ.
By assuming that either β 6≡ −1 ( mod p−1) or, instead, that β ≡ −1 ( mod p−1) and χ 6= 1,
Iwasawa established the existence of a power series Fχ,β(X) ∈ O[[X]] satisfying the property

Fχ,β((1 + p)−s − 1) = Lp(s, χω
1+β) at every s ∈ Cp with |s|p < p(p−2)/(p−1).

If β ≡ −1 (mod p − 1) and χ = 1, the corresponding power series has a simple pole at
X = 1/(1 + p)− 1 and is analytic elsewhere: in fact (X + p/(1 + p)) · Fχ,−1(X) ∈ O[[X]] (see
[18, § 7.2]). Applying the Weierstrass preparation theorem, for χ 6= 1 there is a factorisation

Fχ,β(X) = pµ × U(X)× (Xλ + bλ−1X
λ−1 + . . .+ b0),

where |bj |p < 1 for indices j < λ, the integer µ is greater than or equal to zero and U(X) is
an invertible power series. Moreover the invariant µ is equal to zero by a fundamental result
of Ferrero and Washington [7].

In order to compute the zeros of Fχ,β(X) it is enough to find the distinguished polynomial
Xλ + bλ−1X

λ−1 + . . .+ b0 to a reasonable accuracy, which in turn requires us to compute the
initial coefficients occurring in the Taylor series for Fχ,β(X) about X = 0 (see [4, Proposition
5.3]). To date, the methods employed to work out these Taylor series coefficients have either
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involved expanding Lp(s, χω
1+β) as a series in s − 1 and then using some protracted linear

algebra [1, 6], or have involved computing the algebraic values ζ(1 − n, χ) then applying
interpolation [4]. Here we propose an alternative approach. For an integer N greater than or
equal to one, consider the O[[X]]-ideals

JN =

N∏
j=1

(Xpj−1

, p) = (X, p) · (Xp, p) . . . (XpN−1

, p).

As N →∞ the sequence of JN tends to zero and, under the substitution X 7→ (1 + p)−s − 1
(with s ∈ Zp), each specialisation [JN ]X=(1+p)−s−1 = pNO.

Aim. We give an algorithm to compute the Taylor series expansion for Fχ,β(X) modulo JN .

More precisely, we first replace Fχ,β by another power series Fχ,β . If β 6≡ −1, then the two
differ by a unit of O[[X]]; if β ≡ −1, then Fχ,−1(X) = (X + p/(1 + p)) ·Fχ,−1(X) up to a unit
again. The key step in the proof uses the new expansions for Fχ,β((1 + p)−s− 1) developed in
[2, 3].

Notation.
– The symbol δa<b will represent the value 1 if a < b, and represent 0 otherwise.
– For a prime p, the function logp(−) is Iwasawa’s logarithm normalised so that logp(p) = 0.
– Writing 〈u〉 means projecting u ∈ Z×p to the principal local units 1+pZp, so u = ω(u)〈u〉.

To describe our algorithm, we shall introduce two arithmetic functions θN and LN below.
Firstly let $ ∈ {1, . . . , 2fχ − 1} denote the multiplicative inverse of p modulo 2fχ.

Definition 1. (a) For each pair x,m ∈ N with p - m, we define θN (x,m) ∈ {0, . . . ,
2fχp

N − 1} to be the unique element for which

θN (x,m) ≡ m+ (p$)N (x−m) mod 2fχp
N .

(b) If u ∈ Z×p is a p-adic unit, then LN (u) ∈ {0, . . . , pN − 1} denotes the unique integer such

that LN (u) ≡ logp(u)/logp(1 + p) mod pNZp.

Now, to a fixed exponent N greater than or equal to one, we can associate the integer
γN,t = bptφ(2fχ)/2fχpNc at every t ∈ N. For each index j greater than or equal to zero, we
define O-valued coefficients

c
(N)
j (Fχ,β) :=

pN∑
m=1,p-m

(
LN (m)

j

)
ωβ(m)×

2fχ∑
x=1

ax(χ) · δθN (x,m)<pT φ(2fχ)−2fχpNγN,T , (2)

where the positive integer T = TN := bN/φ(2fχ)c+ 1 and

ax(χ) = ζ(0, χ) +

x−1∑
j=1

χ(j)− 2

b(x−1)/2c∑
j=1

χ(j).

Theorem 1. If Fχ,β(X) ∈ O[[X]] is the power series corresponding to the Iwasawa function

(2ωβ(2)〈2〉−s − 1) · Lp(s, χω1+β)
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and assuming p - 2fχφ(fχ), then there are congruences

Fχ,β(X) ≡
pN∑
j=0

c
(N)
j (Fχ,β) ·Xj mod JN for each N > 1. (3)

The numbers ax(χ) for x = 1, . . . , 2fχ can be stored in an array, while pT φ(2fχ)− 2fχp
NγN,T

is constant (for fixed N). Moreover, since (p$)N is fixed, each calculation of θN (x,m) requires
exactly three arithmetic operations. The only potentially time consuming quantity to work
out is LN (m) and this amounts to calculating the value of logp(m) modulo pN+1Zp, which
itself takes O((N + 1) log p)-steps to work out.

Corollary 1. Computing each c
(N)
j (Fχ,β) is of arithmetic complexity O(fχ+N log p ·pN ).

We should also remark that the ideals JN form decreasing neighbourhoods of zero under

the Λ-adic topology, and hence the polynomial sequence {
∑pN

j=0 c
(N)
j (Fχ,β) · Xj}N>1 must

be Cauchy. Consequently, the coefficients c
(N)
j (Fχ,β) are themselves Cauchy in N and their

limit is precisely the Xj-coefficient of Fχ,β . It follows that Theorem 1 produces an easily
programmable, purely p-adic method to find the power series associated to Kubota–Leopoldt
zeta functions.

It is worthwhile comparing the efficiency of the above method with those in [1, 5, 6, 16, 17].
Focusing on the work of Ernvall–Metsänkylä (which is a synthesis of the preceding articles),
in [6, §§ 5–8] they expand Lp(s, χω

1+β) as a power series
∑∞
i=0 uis

i for s ∈ Zp, and then
approximate each ui mod pM+1 (here M is essentially equivalent to N in our earlier notation).
The method given in [6, § 11] requires the calculation of auxiliary terms ‘Rνi’, which are O(pM )
to work out; therefore our approach and their approach should produce comparable run-times.

(Of course, if one possessed an oracle which could instantly produce the complex L-values
ζ(1−n, χω1+β) for a complete set of representatives n ∈ Z/pMZ, the calculation of the Taylor
series coefficients for Fχ,β would be speeded up dramatically.)

Proof. We will write Ω(s) as a shorthand for the function (2ωβ(2)〈2〉−s−1)×Lp(s, χω1+β).
Since gcd(p, 2fχφ(fχ)) = 1, from [3, Theorem 2.4],

Ω(s) ≡
ptφ(2fχ)∑
m=1, p-m

am(χ)ωβ(m)〈m〉−s mod ptφ(2fχ) at every t > 1,

where 〈u〉s = expp(s logp(u)) for any u ∈ Z×p and s ∈ OCp . Let us further assume pN 6 ptφ(2fχ).
Now the am(χ) are periodic with modulus 2fχ so that

Ω(s) ≡
2fχ∑
x=1

ax(χ)

ptφ(2fχ)∑
m=1, p-m

m≡x (mod 2fχ)

ωβ(m)〈m〉−s ≡
2fχ∑
x=1

ax(χ)

pN∑
m′=1, p-m′

ptφ(2fχ)∑
m=1, p-m

m≡x (mod 2fχ)

m≡m′ (mod pN )

ωβ(m′)〈m′〉−s

modulo pN , since ωβ(m)〈m〉−s ≡ ωβ(m′)〈m′〉−s mod pN .
The twin congruences m ≡ x mod 2fχ and m ≡ m′ mod pN can be combined together into

a single congruence m ≡ m′ + (p$)N (x−m′) mod 2fχp
N , and hence

Ω(s) ≡
pN∑

m′=1, p-m′
ωβ(m′)〈m′〉−s ×

2fχ∑
x=1

ax(χ) ·#S(x,m
′) mod pN , (4)

where S(x,m′) = {m ∈ Z | 1 6 m 6 ptφ(2fχ) and m ≡ m′ + (p$)N (x−m′) mod 2fχp
N}.
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Remarks. (i) In general, for any ϑ ∈ {1, . . . , 2fχpN −1} with p - ϑ, one can consider the set

S(ϑ) = {m ∈ Z | 1 6 m 6 ptφ(2fχ) and m ≡ ϑ mod 2fχp
N}.

If we divide the interval [1, ptφ(2fχ)]∩N into γN,t = bptφ(2fχ)/2fχpNc uniform chunks of length
2fχp

N , then each full-length chunk contains exactly one solution; therefore #S(ϑ) = γN,t +
#S†(ϑ), where S†(ϑ) = {m ∈ Z | 2fχpNγN,t 6 m 6 ptφ(2fχ) and m ≡ ϑ mod 2fχp

N}.
(ii) To determine the size of S†(ϑ), we need only observe that #S†(ϑ) will be one or zero,

depending upon whether or not ϑ + 2fχp
N × γN,t is strictly less than the end point ptφ(2fχ).

One therefore concludes that

#S(ϑ) = γN,t +

{
1 if ϑ < ptφ(2fχ) − 2fχp

NγN,t,

0 otherwise,
= γN,t + δϑ<ptφ(2fχ)−2fχpNγN,t .

(iii) As a special case, #S(x,m′) = γN,t + δθN (x,m′)<ptφ(2fχ)−2fχpNγN,t (see Definition 1(a)).

Substituting our expression for #S(x,m′) back into equation (4), one obtains

Ω(s) ≡
pN∑

m′=1, p-m′
ωβ(m′)〈m′〉−s ×

2fχ∑
x=1

ax(χ) · (γN,t + δθN (x,m′)<ptφ(2fχ)−2fχpNγN,t) mod pN

and as the sum of the ax(χ) always equals zero, this simplifies further to become

Ω(s) ≡
pN∑

m=1,p-m

ωβ(m)〈m〉−s ×
2fχ∑
x=1

ax(χ) · δθN (x,m)<ptφ(2fχ)−2fχpNγN,t mod pN . (5)

Before completing the proof of Theorem 1, observe that, under the transformation
X 7→ (1 + p)−s − 1, the power series representing 〈m〉−s is given by expanding (1 +
X)logp(m)/logp(1+p) in terms of X. Using Definition 1(b) one finds that (1+X)logp(m)/logp(1+p) ≡
(1 +X)LN (m) mod ((1 +X)p

N − 1) · O[[X]]. Furthermore,

(1 +X)p
N

− 1 = X ·
N∏
j=1

(1 +X)p
j − 1

(1 +X)pj−1 − 1
= (Xp +O(pX)) ·

N∏
j=2

(Xpj−1

+O(Xpj−1+1) +O(p)),

which lies in the ideal J̃N = (Xp, pX) · (Xp, p) · (Xp2 , p) . . . (XpN−1

, p) of the Iwasawa algebra;

the inclusion (Xp, pX) ⊂ (X, p) then implies this latter ideal J̃N ⊂ JN .

Notation. To ease congestion, we now abbreviate δθN (x,m)<ptφ(2fχ)−2fχpNγN,t simply to δθN .

Recalling that Ω(s) = Fχ,β((1 + p)−s − 1), the congruence (5) yields the weaker version

Fχ,β(X) ≡
pN∑

m=1, p-m

ωβ(m)(1 +X)LN (m) ×
2fχ∑
x=1

ax(χ) · δθN mod JN .

The binomial theorem tells us that (1 +X)LN (m) =
∑pN

j=0 δj6LN (m)

(LN (m)
j

)
Xj , and hence

Fχ,β(X) ≡
pN∑

m=1, p-m

ωβ(m)×
2fχ∑
x=1

ax(χ) · δθN
pN∑
j=0

δj6LN (m)

(
LN (m)

j

)
Xj

≡
pN∑
j=0

Xj ×
( pN∑
m=1, p-m

δj6LN (m)

(
LN (m)

j

)
ωβ(m)×

2fχ∑
x=1

ax(χ) · δθN
)

mod JN .
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Lastly we make an optimal choice of t under the constraint N 6 tφ(2fχ): that is, t =
bN/φ(2fχ)c + 1. The coefficient of Xj in the above coincides with that in equation (2), so
the proof is complete.

3. An application to cubic fields

From now on, suppose K is a cyclic cubic field of conductor f, with ring of integers RK and
discriminant DK = f2. Then K is necessarily totally real, and we write θ, θ′ and θ′′ for Gaussian
periods associated to a generating cubic character χ : Gal(K/Q)

∼−→ µ3, where µn denotes
the nth roots of unity. In fact χ can be identified with an even Dirichlet character modulo f,
and in Hasse’s notation

f =
a2 + 3b2

4
,

where the twin parameters a, b ∈ Z satisfy{
a ≡ 2 mod 3, b ≡ 0 mod 3, b > 0 if 3 - f,
a ≡ 6 mod 9, b ≡ 3 or 6 mod 9, b > 0 if 3 | f.

We begin by describing how to construct the values of each cubic character χ of conductor f.

3.1. Generating the cubic character

First, note that every cubic conductor has the special form f = 32e3 ×
∏
l≡1 mod 3 l

el , where the
exponent el ∈ {0, 1} for each prime l (since any cubic character trivialises on Gal(Q(µl∞)/Q)
if l ≡ 2 mod 3, and similarly trivialises on Gal(Q(µl∞)/Q(µl)) if the prime l 6= 3).

Let θl : F×l → µl−1 denote the Teichmüller character modulo l, and write θ9 for a non-trivial
character modulo 9 such that θ9|F×3 = 1. Then the function

χ′(n) :=

{
θ9(n)e3 ×

∏
l θl(n)(l−1)el/3 if gcd(n, f) = 1,

0 otherwise,

yields an even cubic character of conductor f taking values in the Eisenstein integers Z[e2πi/3].
It follows that the field cut out by this character, K ′ say, is a totally real cyclic extension of
Q with discriminant DK′ = f2.

Remarks. (i) Exactly 217 out of the 501 cyclic fields of discriminant <107 have no other
associated non-conjugate cubic field so, for these specimens, we deduce that χ′ ∈ {χ, χ−1}.

(ii) In the remaining 284 examples, there are eight groups (each containing four non-
conjugate fields) sharing the same field discriminant per group, while the leftover 252 fields
pair into precisely two non-conjugate cubic fields for a particular discriminant (see [11, Tables
2 and 4]).

(iii) To generate χ when there is more than one non-conjugate cubic fields, we can, instead,
take a product of the Hilbert symbols (n/(c+ de2πi/3))3 over choices of prime ideal 〈c +
de2πi/3〉 ∈ Spec Z[e2πi/3] with c2 − cd + d2 = l ≡ 1 mod 3, although the code itself can be
somewhat laborious to run.

3.2. Computing the cyclotomic λ-invariant of K

Since the Iwasawa Main Conjecture holds over the totally real field K by Wiles [19, Theorem
1.2], both the analytic and algebraic λ-invariants coincide. The former is the easiest to calculate.
Recall that under the mapping s 7→ −logp(1 +X)/logp(1 + p), the χ-twisted p-adic L-function
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transforms into an element Fχ,β(X) ∈ O[[X]], where, for any such cubic character χ, the
coefficient ring O = Zp[µ3] is a complete discrete valuation ring (d.v.r.) with residue field Fq,
and order

q =

{
p if p ≡ 1 mod 3,

p2 if p ≡ 2 mod 3.

As discussed previously, there is a Weierstrass decomposition

Fχ,β(X) = U(X)× (Xλ + bλ−1X
λ−1 + . . .+ b0),

where U(X) ∈ O[[X]]× is an invertible power series and each |bj |p < 1 is in the range 0 6 j < λ.
By its very nature, the invariant λ counts (with multiplicity) the number of zeros of Fχ,β(X)
on the open p-adic unit disk.

We prefer to work with the power series Fχ,β(X), which is the transform of the 2-modified
p-adic L-function (2ωβ(2)〈2〉−s − 1)× Lp(s, χω1+β). Then, for some U†(X) ∈ O[[X]]×,

Fχ,β(X) = U†(X)× (Xλ + bλ−1X
λ−1 + . . .+ b0)×


(
X +

p

1 + p

)
if β ≡ −1 mod p− 1,

1 if β 6≡ −1 mod p− 1.

The set of zeros for both power series are identical, except when β ≡ −1 mod p− 1, in which
case there is one extra zero for Fχ,β(X) at X = −p/(1 + p).

Let λp(χω
1+β) denote the λ-invariant attached to the χω1+β-twisted p-adic zeta function.

There are two methods that we shall use to determine λ5 and λ7: the first is faster than
the second but it relies on p not dividing f × φ(f), while the second method is slow but
unconditional. Throughout, we have adopted the first method wherever possible, resorting to
the second option only when the former cannot be applied directly.

First method: One begins by determining the coefficients of the p-adic power series Fχ,β(X) for
a fixed branch β ∈ {1, 3, . . . , p− 2}. Henceforth, assume that p 6= 2 satisfies gcd(p, fφ(f)) = 1.
Recall one has the Taylor series expansion

Fχ,β(X) =

∞∑
j=0

cj(Fχ,β) ·Xj ,

with each coefficient cj(Fχ,β) = limN→∞ c
(N)
j (Fχ,β), where the Cauchy sequence

{c(N)
j (Fχ,β)}N>1 was given in equation (2) by the formula

c
(N)
j (Fχ,β) :=

pN∑
m=1, p-m

(
LN (m)

j

)
ωβ(m)×

2fχ∑
x=1

ax(χ) · δθN (x,m)<pT φ(2fχ)−2fχpNγN,T .

The values of the cubic character χ (generated via the method of the last section) then allow

us to calculate every ax(χ) = ζ(0, χ)+
∑x−1
j=1 χ(j)−2

∑b(x−1)/2c
j=1 χ(j) using O(fχ)-summations.

Proposition 1. If ordp(c
(2)
j (Fχ,β)) = 0 for some j 6 p, then

λp(χω
1+β) = min{j > 0 | ordp(c

(2)
j (Fχ,β)) = 0} −

{
1 if β ≡ −1 mod p− 1,

0 if β 6≡ −1 mod p− 1.
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Proof. Applying Theorem 1 with N = 2, there are congruences

Fχ,β(X) ≡
p2∑
j=0

c
(2)
j (Fχ,β) ·Xj mod (X, p)(Xp, p) · O[[X]]

≡
p∑
j=0

c
(2)
j (Fχ,β) ·Xj mod Xp+1 · Fq[[X]],

where the horizontal bar denotes the reduction modulo p map O[[X]]� (O/p)[[X]] ∼= Fq[[X]]. In

particular, if c
(2)
j (Fχ,β) is a p-adic unit for some j < p+ 1, then, as the µ-invariant of Fχ,β(X)

vanishes by [7], the smallest such j must be the λ-invariant of Fχ,β(X). Furthermore,

λ(Fχ,β) = λp(χω
1+β) + λ(2ωβ(2)〈2〉−s − 1) = λp(χω

1+β) +

{
1 if β ≡ −1 mod p− 1,

0 if β 6≡ −1 mod p− 1,

and hence the result follows.

There are two ways one can apply this proposition.
Firstly, suppose that we fix the character χ and allow p to vary over the set of prime numbers.

Assuming that the λ-invariant is less than or equal to p, by the previous result, one computes

c
(2)
j (Fχ,β) until one hits a value of j (namely, j = λp(χω

1+β)) for which c
(2)
j (Fχ,β) is a p-adic

unit; as each computation of c
(2)
j (Fχ,β) requires O(p2 log p) operations, by Corollary 1, the

total needed to find the λ-invariant is at worst O(p3 log p).
Secondly, suppose that we fix the prime number p and allow the character χ to vary. Here

the calculation of λp(χω
1+β) is dominated by the cost of producing the coefficients ax(χ) for

x = 1, . . . , 2fχ every time we switch to a new character χ; the latter calculation requires us to
compute the values of χ and hence ax(χ), which is an expensive process of type O(fχ). This

compares unfavourably with calculating the classical L-values ζ(−k, χ), which is O(f
1/2+ε
χ ), so,

in this scenario, it seems preferable to rely on existing transcendental methods.
(In her Waikato Masters thesis, Nof Alharbi has used our formulae to study the λ-invariant

in a family of quadratic extensions Q(
√
d), and has adapted Theorem 1 to compute zeros for

those twists with λp(χdω
1+β) > 0, thereby confirming the results in [6] by another means.)

Lastly, a new paper of Roblot [15] describes an explicit method for computing special values
of Shintani p-adic L-functions over totally real number fields, by using the cone decomposition
into partial zeta functions developed by Pi. Cassou-Noguès. It would be a worthwhile project
to combine Roblot’s methods with the Dirichlet series expansions (only found over Q thus far)
from [2, 3], and, consequently, extend the algorithm presented here to the totally real case.

Second method: Here we need make no assumption whatsoever on the choice of prime p 6= 2.
Let Bn,χωβ−1 denote the χωβ−1-twisted Bernoulli number of index n. Then the identity

Ωχ,β(r) := Lp(−pr, χω1+β) = ιp

(
−(1− χωβ−1(p)pp

r

) ·
B1+pr,χωβ−1

1 + pr

)
follows easily from the interpolation formula in equation (1). The cost of computing Ωχ,β(r) is
governed by the cost of computing each B1+pr,χωβ−1 , while the latter can be calculated using
the well-known formula

Bn,χωβ−1 = (fχωβ−1)n−1 ×
f
χωβ−1∑
a=1

χωβ−1(a)×
n∑
i=0

(
n
i

)
Bi

(
a

fχωβ−1

)n−i
,

where fχωβ−1 is the conductor of χωβ−1 viewed as a primitive Dirichlet character.
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Proposition 2. By expanding Fχ,β(X) =
∑∞
j=0 cj(Fχ,β) ·Xj , for all integers t > 1,

c0(Fχ,β) ≡ Ωχ,β(t− 1) mod pt, c1(Fχ,β) ≡ Ωχ,β(t− 1)− Ωχ,β(2t− 1)

(1 + p)pt−1 − 1
mod pt,

and

c2(Fχ,β) ≡ Ωχ,β(t− 1)− Ωχ,β(3t− 1)

((1 + p)pt−1 − 1)2
+

Ωχ,β(4t− 1)− Ωχ,β(2t− 1)

((1 + p)p2t−1 − 1)((1 + p)pt−1 − 1)
mod pt.

In particular, choosing t equal to one allows us to determine c0(Fχ,β), c1(Fχ,β) and c2(Fχ,β)
modulo p from the terms Ωχ,β(0), . . . ,Ωχ,β(3), so one can check whether λp(χω

1+β) is zero,
one, two, or greater than or equal to three. Of course if the λ-invariant is greater than or equal
to three, then more of these coefficients cj(Fχ,β) are required to calculate it exactly, which
may become relatively expensive from a computational perspective. Consequently, we only use
the second method in place of the first when p divides f.

Proof. Substituting X = (1 + p)p
t−1 − 1 into the Taylor series for Fχ,β(X), clearly gives

Ωχ,β(t− 1) = c0(Fχ,β) + c1(Fχ,β) · ((1 + p)p
t−1

− 1) + c2(Fχ,β) · ((1 + p)p
t−1

− 1)2 + . . .

and ordp((1 + p)p
t−1 − 1) = t at positive integers t.

The congruences for c0(Fχ,β), c1(Fχ,β), c2(Fχ,β) now follow by reducing the above equation
modulo pt, modulo p2t and modulo p3t, respectively.

3.3. Locating the zeros of Lp(s, χω
j)

In the situation where λ(χω1+β) > 0, we now consider the problem of determining the zeros
of the associated χω1+β-twisted p-adic L-function. Under the Mazur-Mellin transform, any
such zero s0 is mapped to the value x0 = (1 + p)−s0 − 1 ∈ pZp which itself is a zero of Fχ,β .
However, in general, there may exist zeros of Fχ,β(X) which do not arise from the image of
this transform (see [1, Theorems 4 and 5] or [6, § 3] for a nice discussion of this phenomenon).

Question. Given that λ(χω1+β) > 0, how can we determine where the zeros of Fχ,β(X)
lie?

To answer the above question, we first need to find the coefficients of the polynomial

Xλ + aλ−1X
λ−1 + . . .+ a0

occurring in the Weierstrass decomposition of Fχ,β ; assume we want them modulo pk, say. Note
that the approach of Ellenberg, Jain and Venkatesh [4, Proposition 5.3] implies that if one
knows the coefficients cj(Fχ,β) of the power series Fχ,β(X) up to an accuracy of pK+1−j , then
one can compute the first few coefficients a0, a1, . . . , aK−λk of its distinguished polynomial
modulo pk. Therefore, choosing the auxiliary integer K so that k 6 bK/λc ensures that
K−λk > λ−1, and hence the entire collection of coefficients a0, a1, . . . , aλ−1 is found modulo
pk. Lastly, provided that the total number of zeros λ(Fχ,β) is less than or equal to four, the
location of each zero can then be established using the classical formulae.

We should also point out that the formula given in Theorem 1 for the cj(Fχ,β) required
p 6= 2 to be coprime to f×φ(f). To our great surprise, we discovered that the formula for these
approximations continued to hold true even without restricting p, in all the cases that we tried.
This indicates that the first named author was over-zealous in the conditions imposed in [3],
and so these formulae are likewise valid in the case where p | φ(f) with p - 2f.
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That leaves us to deal with the situation where p | f. As we are considering only p = 5 and
p = 7, the prime number 5 is automatically excluded, since none of the cubic conductors f is
divisible by 5. Therefore, let us suppose that p = 7 and put π+

7 := e2πi/7 + e−2πi/7, which
generates Q(µ7)+. Here the character χ associated to the cubic field K is such that χ = ω2mχ̃
for some integer m 6≡ 0 (mod 3) and cubic character χ̃ of conductor fχ̃ = f/7; one then has an

isomorphism K(π+
7 ) ∼= K̃(π+

7 ), where K̃ denotes the real cubic field of discriminant f2χ̃ = f2/49
cut out by χ̃. It follows that Fχ,β(X) = Fχ̃,β+2m(X), and it is straightforward to work out
the latter’s zeros using Theorem 1 (as discussed above), because the prime number 7 does not
divide fχ̃.

3.4. Determining the class number of K(µp)

Let us write Irr(θ,Q) = x3−Ax2+Bx−C for the minimal polynomial of three Gaussian periods
θ, θ′ and θ′′ associated to a generating cubic character χ of K, taken with an appropriate sign.
In particular, one has A = Tr(θ) = θ+θ′+θ′′, B = θθ′+θθ′′+θ′θ′′ and C = Norm(θ) = θθ′θ′′.
Then K = Q(θ) and

Irr(θ,Q) =

{
x3 + x2 + ((1− f)/3)x+ (f(a− 3) + 1)/27 if 3 - f,
x3 − (f/3)x− fa/27 if 3 | f,

where, as before, f = (a2 + 3b2)/4 . A proof of this formula is given by Mäki in [12, pp. 7–9].

Remark. We wish to compute the class group of K(µp): in order to implement this into
PARI, one needs to find an irreducible polynomial of degree 3(p−1) whose roots generate this
field. Note that, although Irr(θ,Q)× (xp− 1) generates the number field, it is not irreducible.

Definition 2. For each prime p, one defines the monic polynomial Pp(x) ∈ Z[x] by

Pp(x) := (xp − (θ)p)× (xp − (θ′)p)× (xp − (θ′′)p),

the roots of which are precisely {(e2πi/p)j · θ, (e2πi/p)j · θ′, (e2πi/p)j · θ′′ with j = 0, . . . , p− 1}.

It follows, from this description of its roots, that the splitting field of Pp(x) is equal to
Q(θ, µp). Furthermore, we observe that Irr(θ,Q) = (x − θ)(x − θ′)(x − θ′′) naturally divides
into Pp(x); in fact, the quotient polynomial

P †p (x) :=
Pp(x)

Irr(θ,Q)

must be irreducible over Q, since each of its roots generates Q(θ, µp) and P †p has the same

degree as [K(µp) : Q] = 3(p− 1). For the primes p = 5 and p = 7, the numerator Pp of P †p can
be explicitly determined as follows.

Lemma 1. (i) If p = 5, then

P5(x) = x15 −A5x
10 + B5x5 − C5,

where

A5 = A5 − 5A3B + 5A2C + 5AB2 − 5BC,

B5 = B5 − 5AB3C + 5B2C2 + 5A2BC2 − 5AC3,

C5 = C5.
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(ii) If p = 7, then
P7(x) = x21 −A7x

14 + B7x7 − C7,

where

A7 = A7 − 7A5B + 7A4C + 14A3B2 − 21A2BC − 7AB3 + 7AC2 + 7B2C,

B7 = B7 − 7AB5C + 7B4C2 + 14A2B3C2 − 21AB2C3 − 7A3BC3 + 7BC4 + 7A2C4,

C7 = C7.

Proof. For each prime p and scalars α, β, γ ∈ C, consider the polynomial expansion

(xp − αp)(xp − βp)(xp − γp) = x3p − (αp + βp + γp)x2p + (αpβp + αpγp + βpγp)xp − (αβγ)p.

Taking p = 5 and (α, β, γ) = (θ, θ′, θ′′), assertion (i) follows from the identities

α5 + β5 + γ5 = (α+ β + γ)5 − 5(α+ β + γ)3(αβ + αγ + βγ) + 5(α+ β + γ)2(αβγ)

+ 5(α+ β + γ)(αβ + αγ + βγ)2 − 5(αβ + αγ + βγ)(αβγ)

and

α5β5 + α5γ5 + β5γ5 = (αβ + αγ + βγ)5 − 5(α+ β + γ)(αβ + αγ + βγ)3(αβγ)

+ 5(αβ + αγ + βγ)2(αβγ)2 + 5(α+ β + γ)2(αβ + αγ + βγ)(αβγ)2

− 5(α+ β + γ)(αβγ)3.

Similarly, if p = 7 and (α, β, γ) = (θ, θ′, θ′′) again, then (ii) follows from the identities

α7 + β7 + γ7 = (α+ β + γ)7 − 7(α+ β + γ)5(αβ + αγ + βγ) + 7(α+ β + γ)4(αβγ)

+ 14(α+ β + γ)3(αβ + αγ + βγ)2 − 21(α+ β + γ)2(αβ + αγ + βγ)(αβγ)

− 7(α+ β + γ)(αβ + αγ + βγ)3 + 7(α+ β + γ)(αβγ)2

+ 7(αβ + αγ + βγ)2(αβγ)

and

α7β7 + α7γ7 + β7γ7 = (αβ + αγ + βγ)7 − 7(α+ β + γ)(αβ + αγ + βγ)5(αβγ)

+ 7(αβ + αγ + βγ)4(αβγ)2 + 14(α+ β + γ)2(αβ + αγ + βγ)3(αβγ)2

− 21(α+ β + γ)(αβ + αγ + βγ)2(αβγ)3

− 7(α+ β + γ)3(αβ + αγ + βγ)(αβγ)3

+ 7(αβ + αγ + βγ)(αβγ)4 + 7(α+ β + γ)2(αβγ)4.

These equations can either be checked by hand(!), or by using a symbolic algebra package.

The coefficients of Pp(x), and hence of P †p (x), can now be calculated for both p = 5 and 7.

Because P †p (x) is irreducible, there exists an isomorphism K(µp) ∼= Q[x]/〈P †p (x)〉 of algebraic
field extensions of degree 3p − 3 over Q. Lastly, the PARI/GP [14] command bnfinit.clgp.no
works out the class number associated to the quotient polynomial P †p (x), under the default
assumption that the generalised Riemann hypothesis (GRH) holds.

4. Analysis of the results

Looking through the Tables 1–3 of λ-invariants computed in the Appendix, we did not find
a single invariant λ5(χω1+β) which was greater than one. However, this was not the case for
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p = 7; in fact we found four occurrences (at f = 547, 549, 2223 and 2493) where λ7(χω1+β) = 3,
and 27 examples with λ7(χω1+β) = 2. The precise distribution of these λ-invariants is given
in Tables I and II below.

Without reading too much into such a small sample, it would suggest that approximately 4%
of cubic 5-adic λ-invariants are positive, while roughly 13% of 7-adic λ-invariants are positive.
Another observation is that up to discriminant DK < 107, the equivalence

‘λ5(χω1+β) > 1 for some β ∈ {1, 3} ⇐⇒ 5 divides the class number of K(µ5)’

holds for these cyclic cubic fields K. Similarly, the implication

‘λ7(χω1+β) > 1 for some β ∈ {1, 3, 5} =⇒ 7 divides the class number of K(µ7)’

holds true up to discriminant DK < 107. However, the reverse implication turns out to be
false. To further the discussion, consider from [18, Theorem 4.17] the relative class number
formula

#Pic0(RK [µp])

#Pic0(RK [µp]+)
= Q ·#K(µp)

×
tors ×

∏
η∈{1,χ,χ−1}

p−2∏
β=1,
β odd

(
−1

2
B1,ηωβ

)

=
Q ·#K(µp)

×
tors

2[K(µp):Q]/2
×

∏
η∈{1,χ,χ−1}

p−2∏
β=1,
β odd

Lp(0, ηω
1+β),

where the second line follows by applying the p-adic interpolation rule given in equation (1).
One finds from [18, Theorem 4.12] that the index term Q ∈ {1, 2}, and, consequently,

ordp(hp) = ordp(h
+
p ) + 1 +

∑
β odd

(ordp(Lp(0, ω
1+β)) + 2 · ordp(Lp(0, χω

1+β))). (6)

Here we have written hp (respectively h+
p ) to abbreviate #Pic0(RK [µp]) (respectively

#Pic0(RK [µp]
+)).

Table I. The number of cyclic cubic fields K of discriminant DK < 107 with prescribed λ5(η).

p = 5 η = χω2 η = χ

#K with λ5(η) = 0 478 483
#K with λ5(η) = 1 23 18
#K with λ5(η) = 2 0 0
#K with λ5(η) = 3 0 0

#K with λ5(η) 6= 0 23 18

Table II. The number of cyclic cubic fields K of discriminant DK < 107 with prescribed λ7(η).

p = 7 η = χω2 η = χω4 η = χ

#K with λ7(η) = 0 433 432 440
#K with λ7(η) = 1 58 57 52
#K with λ7(η) = 2 8 10 9
#K with λ7(η) = 3 2 2 0

#K with λ7(η) 6= 0 68 69 61
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In particular, if either h+
p is divisible by a power of p or

∑
β λp(χω

1+β) is strictly positive,
then one might reasonably expect ordp(hp) to be a positive integer as well, and vice versa.
However, the statement ‘p | hp ⇐⇒ λp(χω

1+β) > 1’ does not follow from the equation (6).
To date, the best result along these lines is the generalisation of Kummer’s criterion to totally
real fields given in [8, Theorem 1] and [9]; one may then use the list of class numbers h5, h7

compiled in Tables 1–3 in the appendix to determine whether the prime numbers 5 and 7 are
regular/irregular over each cubic field.

The nature of the zeros of Lp(s, ηω
1+β), themselves, has a controlling influence on the

arithmetic of the cyclotomic Zp-extension of K. Let X∞,K := lim←−n Xn,K , where Xn,K denotes

the p-Sylow subgroup of Pic0(RK [µpn ]). Then X∞,K has a natural action of the Lie group

Gal(K(µp∞)/Q) ∼= C3 × F×p × Γ with Γ = 1 + pZp,

which extends, by continuity, to an action of the whole Iwasawa algebra Λ = Zp[[Γ]][C3 × F×p ].
Note that Zp[[Γ]] is non-canonically isomorphic to the power series ring Zp[[X]] upon sending a
topological generator γ0 of Γ to the polynomial X + 1.

Remark. For those who are unfamiliar with these notions, an excellent introduction to the
structure theory of Λ-modules, as well as to the Iwasawa Main Conjecture over the rationals,
is to be found in Washington’s book [18, Chapters 13 and 15].

Recall that a polynomial f(X) = Xn + bn−1X
n−1 + . . .+ b0 ∈ O[X] is called ‘distinguished’

if |bj |p < 1 for every j ∈ {0, . . . , n− 1}. As a consequence of Wiles’ fundamental work [19], at
each odd branch β ∈ {1, 3, . . . , p− 2}, the corresponding (χωβ)−1-eigenspace in O ⊗Zp X∞,K
is a finitely-generated Λ-torsion module. Furthermore, there exists a pseudo-isomorphism

(O ⊗Zp X∞,K)(χ
−1ω−β) ps ∼=−→

t⊕
j=1

O[[X]]/(fj(X)ej ),

where the distinguished polynomials fj(X) ∈ O[X] satisfy
∏t
j=1 fj(X)ej = Fχ,β(X), up to an

element of O[[X]]× (see [19, Theorem 1.2]).

Proposition 3. If p = 5 or 7, and for every cyclic cubic field K of discriminant DK < 107

and conductor f, then each (χωβ)−1-eigenspace in O ⊗Zp X∞,K has a monogenic Λ-module
structure: that is there exists a pseudo-isomorphism

(O ⊗Zp X∞,K)(χ
−1ω−β) ps ∼=−→ O[[X]]/(Fχ,β(X)).

Proof. If λp(χω
1+β) = 1, there is nothing to prove as Fχ,β(X) = (linear polynomial)×(unit).

Hence, without loss of generality, we may assume that p = 7, in which case O = Z7[µ3] = Z7.
If λ7(χω1+β) = 2, then 26 out of the 27 specimen fields from Table 5 in the Appendix satisfy

|x1|7 = 7−1/2, |x2|7 = 7−1/2 and |x1 − x2|7 = 7−1/2,

where x1, x2 are the two zeros of the power series Fχ,β(X). In particular, the roots x1, x2
generate a ramified quadratic extension of Q7 and the associated distinguished polynomial

is an irreducible quadratic: therefore (O ⊗Z7
X∞,K)(χ

−1ω−β) cannot be pseudo-isomorphic to
Z7[[X]]/f1(X)⊕ Z7[[X]]/f2(X), as the associated polynomial does not split.

The missing example with λ7(χω1+β) = 2 occurs when f = 2263 = (952 + 3× 32)/4 and
β = 5; here the roots x1, x2 instead satisfy

x1 = 2× 7 +O(72), x2 = 0 +O(72) and |x1 − x2|7 = 7−1.
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Consequently, its distinguished quadratic polynomial becomes equal to X2−14X inside F7[X],
which means that it must split over Q7, via Hensel’s lemma. However, the ideals generated by
X − x1 and X − x2 are coprime in Z7[[X]], and one concludes that

Z7[[X]]

〈X − x1〉
⊕ Z7[[X]]

〈X − x2〉
ps ∼=−→ Z7[[X]]

〈(X − x1)(X − x2)〉
upon using [18, Lemma 13.8].

Finally there are four specimens in Table 5 with λ7(χω1+β) = 3, namely (f, β) = (547, 1),
(549, 1), (2223, 3) and (2493, 3); their respective distinguished polynomials are

X3 + 42X2 + 7X + 35 up to O(72),

X3 + 0X2 + 14X + 7 up to O(72),

X3 + 0X2 + 35X + 35 up to O(72),

X3 + 28X2 + 21X + 28 up to O(72),

all of which are Eisenstein (and thus irreducible) over Q7, so the proof is complete.

The perceptive reader will have noticed that for the situation where (p, f, β) = (7, 2263, 5), in
the Appendix, we computed c0(Fχ,β), . . . , cj(Fχ,β), . . . , c9(Fχ,β) up to an accuracy O(p10−j).
We could, in principle, have undertaken this task for all the cubic fields treated in this paper,
but it is both time consuming and ultimately unnecessary in order to deduce Λ-monogeneity.
Note that obtaining the distinguished polynomial associated to Fχ,β up to an accuracy O(pk)

requires us to calculate the individual cj(Fχ,β) to accuracy O(p(λ+δβ=−1)×k+1−j), where we
have set δβ=−1 = 1 or δβ=−1 = 0, depending on whether β ≡ −1 (mod p− 1) or not.
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