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Abstract. In this note, we study a new Finslerian quantity Ĉ defined by the
Riemannian curvature. We prove that the new Finslerian quantity is a non-Riemannian
quantity for a Finsler manifold with dimension n = 3. Then we study Finsler metrics
of scalar curvature. We find that the Ĉ-curvature is closely related to the flag curvature
and the H-curvature. We show that Ĉ-curvature gives, a measure of the failure of a
Finsler metric to be of weakly isotropic flag curvature. We also give a simple proof of
the Najafi-Shen-Tayebi’ theorem.

1991 Mathematics Subject Classification. 58E20.

1. Introduction. In Finsler geometry, there are several important geometric
quantities: the flag curvature, the (mean) Cartan torsion and the (mean) Berwald
curvature, etc. (cf. [6, 10]). In [1], H. Arbar-Zadeh considered a Finslerian quantity
H, which is obtained from the mean Berwald curvature by the covariant horizontal
differentiation along geodesics. Arbar-Zadeh proved that for a Finsler metric of scalar
flag curvature with dimension ≥3, the flag curvature is constant on the manifold if and
only if H = 0.

Recently, a great progress has been made in studying Finsler metrics of weakly
isotropic flag curvature. These Finsler metrics are of scalar curvature whose flag
curvature is in a special form K = θ/F + σ where θ is a 1-form and σ is a scalar
function on M. Finsler metrics of weakly isotropic flag curvature not only include
Finsler metrics of constant flag curvature, but also include Finsler metrics of (almost)
isotropic S-curvature and of scalar flag curvature [4, 6, 13]. Cheng and Shen have
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classified Finsler metrics of Randers type with weakly isotropic flag curvature via the
navigation problem in Riemannian manifolds [5, 12]. Chen-Zhao constructed explicitly
Finsler metrics are of scalar curvature such that they are not of weakly isotropic flag
curvature [3]. A natural task for us is to give a geometric quantity on a Finsler manifold,
which characterises the Finsler metrics of weakly isotropic flag curvature.

In this paper, we find the desired quantity (see Section 2 below) and call it the
Ĉ-curvature. We show that the Ĉ-curvature gives a measure of the failure of an n-
dimensional Finsler metric of scalar curvature to be of weakly isotropic flag curvature
if n ≥ 3. Precisely we prove the following:

THEOREM 1.1. Let (M, F) be an n(≥3)-dimensional Finsler manifold of scalar
curvature with flag curvature K(x, y). Then K is weakly isotropic if and only if the
Ĉ-curvature vanishes.

Recall that a Finsler metric F is said to be of scalar curvature if the flag curvature
K = K(x, y) is a scalar function on the slit tangent bundle TM\{0}. For these Finsler
metrics, we establish an equation between the flag curvature K , the Ĉ-curvature Ĉ and
the H-curvature H (see Proposition 3.2 below), therefore the Ĉ-curvature is subtly
related to the flag curvature and the H-curvature.

Recently, Najafi-Shen-Tayebi extended Arbar-Zadeh’s characterisation for Finsler
metrics of constant flag curvature and proved the following [8, 11, 13]:

THEOREM 1.2. Let F be a Finsler metric of scalar flag curvature on an n(≥3)-
dimensional manifold M. For a 1-form θ , the flag curvature is weakly isotropic given by
(2.10) if and only if the H-curvature satisfies the following:

Hij = n + 1
6

θFyiyj , (1.1)

where θ = θi(x)yi is a 1-form on M.

See Section 2 for the definition of the H-curvature. Say a Finsler metric F has
almost vanishing H-curvature if its H-curvature is given by (1.1) [11, 13]. By using
Theorem 1.1 and Proposition 3.2, we obtain a new and simple proof of Theorem 1.2
(see Section 5).

Riemannian metrics are a special case of Finsler metrics, namely Finsler metrics
with the quadratic restriction. Call a geometric quantity on a Finsler manifold
non-Riemannian if it vanishes for a Riemannian metric. For instance, the (mean)
Cartan torsion, the S-curvature and the H-curvature are all non-Riemannian [6, 7]. In
Section 6, we show the following:

THEOREM 1.3. For a Finsler manifold with dimension n = 3, the Ĉ-curvature is a
non-Riemannian quantity.

2. Preliminaries. Let (M, F) be a Finsler manifold of dimension n ≥ 3. In a
standard local coordinate system (xi, yi) in TM, F = F(x, y) is a function of (xi, yi).
Let

gij(x, y) := 1
2

[F2]yiyj (x, y)
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and (gij) := (gij)−1. Let Ri
j denote the Riemannian curvature of F [7]. The Ĉ-curvature

is defined by Ĉ = Ĉijdxi ⊗ dxj where

Ĉij = Rij + 1
n − 2

(
yiRicj + yjRici − gijRic − RicijF2) + SF2

(n − 1)(n − 2)
hij, (2.1)

where Rij := gikRk
j is the flag curvature tensor of F , hij := FFyiyj is the angular metric

of F [10] and

Ric := Rj
j, (2.2)

Rici := 1
2

Ricyi , (2.3)

Ricij = 1
2

Ricyiyj , (2.4)

yi := gijyj, (2.5)

S := gijRicij. (2.6)

F is of scalar flag curvature with flag curvature K is equivalent to the following equation
(see [6, page 110]):

Ri
j = KF2hi

j, (2.7)

where

hi
j = δi

j − F−2gjkykyi = gikhkj. (2.8)

It is easy to see that (2.7) holds if and only if

Rij = KF2hij. (2.9)

In Sections 4 and 5, we will consider Finsler metrics of weakly isotropic flag
curvature defined as follows:

K = θ

F
+ σ, (2.10)

where σ = σ (x) is a scalar function and θ = λi(x)yi is a 1-form.
The H-curvature Hy = Hijdxi ⊗ dxj is defined by

Hij = Eij|kyk

where “ | ” denotes the covariant horizontal derivatives and Eij denote the mean
Berwald curvature of F [8, 13]. The H-curvature vanishes for a R-quadratic Finsler
metric [7, 9].

3. Finsler metrics of scalar flag curvature. Assume that F is of scalar curvature,
that is, the flag curvature K = K(x, y) is a scalar function on TM\ {0}. Using (2.2) and
(2.7), we obtain the Ricci scalar Ric is given by

Ric = (n − 1)KF2, (3.1)
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where we have used F−2gijyiyj = 1. We use the following notations:

Ki = Kyi , Kij = Kyiyj .

By (2.3) and (3.1) we get

Ricj = n − 1
2

[KF2]yj = n − 1
2

(KjF2 + 2Kyj), (3.2)

where we have used the fact

yj = FFyj =
(

F2

2

)
yj

. (3.3)

Together with (2.4) we obtain

Ricij = n − 1
2

(KijF2 + 2Kiyj + 2Kjyi + 2Kgij), (3.4)

where we have used (yj)yi = (F2

2

)
yjyi = gij. Note that the flag curvature K is

homogeneous of degree zero with respect to y. It follows that

Kjyj = 0. (3.5)

Using (2.6), (3.4) and (3.5), we obtain the scalar curvature S is determined by

S = n − 1
2

(gijKijF2 + 4Kjyj + 2nK) = n(n − 1)K + (n − 1)2

2
F2�,

where � := 1
n−1 gijKij. Together with (2.1), (2.9), (3.2) and (3.4), we get

Ĉij = KF2hij + n−1
2(n−2) (4Kyiyj − KiyjF2 − KjyiF2 − 4KF2gij − KijF4)

+ n−1
2(n−2)�F4hij + nK

n−2 F2hij.

Note that yiyj − F2gij = −F2hij. It follows that

Ĉij = KF2hij − n−1
2(n−2) F

2(4Khij + Kiyj + Kjyi + KijF2)

+ n−1
2(n−2)�F4hij + nK

n−2 F2hij

= n−1
2(n−2)

(
�F2hij − Kiyj − Kjyi − KijF2

)
F2.

(3.6)

Hence, we have the following:

LEMMA 3.1. Let (M, F) be an n(≥3)-dimensional Finsler manifold of scalar
curvature with flag curvature K(x, y). Then F has vanishing Ĉ-curvature if and only
if in any standard local coordinate system

�F2hij = Kiyj + Kjyi + KijF2, (3.7)

where � := 1
n−1 gijKij. In particular, F has vanishing Ĉ-curvature if F has isotropic (or

constant) flag curvature.
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A Finsler metric F is said to be of isotropic curvature if the flag curvature K(P, y) =
K(x) is a scalar function on M. In particular, F is said to have constant (flag) curvature
if the flag curvature K(P, y) = constant. Now we are going to establish an important
equation between the flag curvature, the Ĉ-curvature and the H-curvature.

PROPOSITION 3.2. Let F be a Finsler metric of scalar flag curvature on an n-manifold
M. Then the flag curvature, Ĉ-curvature and the H-curvature satisfy

Ĉij = n − 1
2(n − 2)

(
�F3Fyiyj + 6Hij

n + 1

)
F2, (3.8)

where � := 1
n−1 gijKij.

Proof. A direct calculation yields (cf [7, (3.26)])

0 = 6Hij + (n + 1)F [(FK)yiyj − KFyiyj ] = 6Hij + (n + 1)(Kiyj + Kjyi + KijF2). (3.9)

It follows that

−(Kiyj + Kjyi + KijF2) = 6Hij

n + 1
.

Plugging this into (3.6) yields (3.8). �

4. Proof of theorem 1.1. First suppose that F has weakly isotropic flag curvature,
i.e. (2.10) holds. Differentiating (2.10) with respect to yi, we obtain

Ki = λi

F
+ θ li

F2
, (4.1)

where li := Fyi = F−1yi. Moreover

Kij = −λilj
F2

− λj li + θFyiyj

F2
+ 2θ lilj

F3
= θ (3lilj − gij) − (λilj + λj li)

F3
, (4.2)

where we have used the fact

gij = hij + lilj. (4.3)

It follows that

� = − θ

F3
. (4.4)

From (4.1), (4.2) and (4.3) we get

Kiyj + Kjyi + KijF2 = θ (3lilj − gij) − 2θ lilj
F

= − θ

F
hij. (4.5)

It follows from (4.4) and (4.5) that

�F2hij = − θ

F
hij = Kiyj + Kjyi + KijF2.

By Lemma 3.1, F has vanishing Ĉ-curvature.
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Conversely, suppose that Ĉ = 0. Then (3.7) holds. Differentiating (3.7) with respect
to yk, we obtain

�yk F2hij + 2�hijyk + �F2(hij)yk = gikKj + yiKjk + gjkKi + yjKik + 2ykKij + F2Kijk,

(4.6)
where

Kijk := (Kij)yk = Kyiyjyk (4.7)

is totally symmetric. Direct computations yield

gijhij = n − 1, (4.8)

Kijyi = −Kj, (4.9)

(hij)yk = 2Cijk − F−2yjhik − F−2yihjk, (4.10)

where Cijk is the Cartan torsion [6]. Contracting (4.10) with gij yields

gij(hij)yk = 2Ik (4.11)

where Ik is the mean Cartan torsion [6] and we have used the fact

hijyi = 0. (4.12)

Contracting (4.6) with gij gives, by (4.8), (4.9) and (4.11),

(n − 1)�yk + 2�Ik = gijKijk. (4.13)

Since � is homogeneous of degree −2 with respect to y, we have �yk yk = −2�.
Together with (2.8) yields

�yk hk
j = �yj + 2F−2yj�. (4.14)

Contracting (4.10) with gik yields

gik(hij)yk = 2Ij − (n − 1)F−2yj, (4.15)

where we have made use of (4.8) and (4.12). Contracting (4.6) with gik gives, by (3.5),
(4.9) and (4.12),

�yk F2hk
j + �F2gik(hij)yk = nKj + (n − 1)yi� − 2Kj + F2gikKijk. (4.16)

Plugging (4.14) and (4.15) into (4.16) yields

F2(�yj + 2F−2yj�) + �F2[2Ij − (n − 1)F−2yj] = (n − 2)Kj + (n − 1)yi� + F2gikKijk.

Taking this together with (4.13) yields

(n − 2)(F2�yj + Kj + 2yj�) = 0. (4.17)
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It follows from (4.17) that

(F2� + K)yj = F2�yj + 2yj� + Kyj = 0.

Thus

σ := F2� + K (4.18)

is a scalar function on M. Plugging (4.18) into (3.7) yields

[σ (x) − K ] hij = Kiyj + Kjyi + KijF2. (4.19)

By using (3.3), (4.19) and the definition of the angular metric we get

Fyi Kyj + Fyj Kyi + FKyiyj + (K − σ )Fyiyj = 0.

This implies that

[(K − σ )F ]yiyj = [Kyi F + (K − σ )Fyi ]yj

= Kyiyj F + Kyi Fyj + Kyj Fyi + (K − σ )Fyiyj = 0.
(4.20)

Note that (K − σ )F is homogeneous of degree one with respect to y. Together with
(4.20) we obtain (K − σ )F is a 1-form

(K − σ )F = λi(x)yi = θ.

We get that K = θ/F + σ .

5. An alternative proof of the Najafi-Shen-Tayebi’ theorem. In this section, we are
going to give a new proof of Theorem 1.2 (see Section 1) using Theorem 1.1 and the
important identity (3.8).

5.1. Proof of Theorem 1.2. First suppose that H is almost vanishing given by (1.1).
Plugging (1.1) into (3.9) yields

θFyiyj + Kiyj + Kjyi + KijF2 = 0. (5.1)

Contracting (5.1) with gij gives, by (3.5) and (4.8), (n − 1)
(

θ
F + F2�

) = 0. It follows
that

θ = −F3�. (5.2)

Plugging this into (1.1) yields Hij = − n+1
6 �F3Fyiyj . Substituting this into (3.8) gives

Ĉ = 0. By Theorem 1.1,

K = θ̃

F
+ σ,

where σ = σ (x) is a scalar function and θ̃ = ai(x)yi is a 1-form on M. By (4.4) we
arrive at the following identity

� = − θ̃

F3
.
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Plugging this into (5.2) yields θ̃ = θ . We conclude that the flag curvature is weakly
isotropic given by (2.10).

Conversely, suppose that K = θ
F + σ where σ = σ (x) is a scalar function and

θ = λi(x)yi is a 1-form on M. From (4.4) we deduce that

� = − θ

F3
. (5.3)

By Theorem 1.1, F has vanishing Ĉ-curvature. Together with (3.8) we obtain

Hij = −n + 1
6

�F3Fyiyj . (5.4)

Plugging (5.3) into (5.4) yields (1.1). �

6. Three-dimensional Finsler manifold. In Finsler geometry, there are several
important non-Riemannian quantities: the mean Cartan torsion I, the Cartan torsion
C and the H-curvature H, etc [6, 7]. They all vanish for Riemannian metrics, hence
they said to be non-Riemannian. In this section, we are going to show the following:

THEOREM 6.1. For a Finsler manifold with dimension n = 3, the Ĉ-curvature is a
non-Riemannian quantity.

Proof. Assume that (M, F) is a Riemannian manifold. Then then the flag curvature
tensor Rij is given by

Rij = Rkijl(x)ykyl (6.1)

where Rkijl(x) is the Riemannian curvature of F . It follows that, from (2.2) and (2.4),

Ric = Rij(x)yiyj (6.2)

and

Ricij = Rij(x), (6.3)

where Rij(x) is the Ricci tensor of F . By using (2.6) and (6.1) we have

S = R, (6.4)

where R is the scalar curvature of Riemannian metric F . Plugging (6.1)–(6.4) into (2.1)
yields

Ĉij = Rkijl(x)ykyl + R
(n−1)(n−2) (gijgklykyl − gilgkjykyl)

− 1
n−2 (RijF2 − Rilgkjykyl − Rjlgkiykyl + Rklgijykyl) = Ckijlykyl,

where Ckijl is the Weyl conformal curvature tensor [2]. Now our conclusion is an
immediate consequence of Ckijl ≡ 0 for a 3-dimensional Riemannian manifold [2,
Proposition 3.3.9]. �
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