
JFP 14 (1): 1–2, January 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796803004866 Printed in the United Kingdom

1

Introduction to the Special Issue on
Dependent Type Theory Meets

Practical Programming

GILLES BARTHE

INRIA Sophia-Antipolis, France

(e-mail: Gilles.Barthe@inria.fr)

PETER DYBJEN

Department of Computing Science, Chalmers University, Göteberg, Sweden

(e-mail: peterd@cs.chalmers.se)

PETER THIEMANN

Institut für Informatik, Universität Freiberg, Germany

(e-mail: thiemann@informatik.uni-freiburg.de)

Modern programming languages rely on advanced type systems that detect errors

at compile-time. While the benefits of type systems have long been recognized,

there are some areas where the standard systems in programming languages are not

expressive enough. Language designers usually trade expressiveness for decidability

of the type system. Some interesting programs will always be rejected (despite their

semantical soundness) or be assigned uninformative types.

One promising approach for improving the expressiveness of type systems while

still maintaining decidability is provided by dependent type systems. Dependent

types may explicitly depend on other types or values. Dependent type systems have

been thoroughly investigated from a theoretical point of view by logicians and

type theorists. Moreover, sophisticated proof assistants for constructing proofs in

dependent type theories have been developed, and some recent developments aim

to decrease the gap between dependent type theory and practical programming.

To further promote the communication between programming language research-

ers and dependent type theorists a meeting entitled “Dependent Type Theory Meets

Practical Programming” was held in Schloss Dagstuhl in Germany in August 2001.

Participants at this seminar were invited to submit full articles to this special issue

of the Journal of Functional Programming.

Three articles were selected for publication, each of which is briefly summarized

below:

• The article by Appel and Felty shows how dependent types can be used for

implementing a theorem prover. They work in a logic programming setting

and show how dependent type correctness ensures that any proof that the

theorem prover builds is valid.

• The article by Kreitz shows how the NUPRL proof assistant for depend-

ent type theory was used for designing reliable high-performance networks.

https://doi.org/10.1017/S0956796803004866 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004866


2 G. Barthe, P. Dybjen and P. Thiemann

NUPRL was used for reasoning about optimizations in the ENSEMBLE group

communication tool kit.

• The article by McBride and McKinna develops a new high-level style for

programming with dependent types. They focus on pattern matching and

develop a generalized version of Wadler’s notion of ‘view’. They conclude by

developing a type-checker for the simply typed lambda calculus written in this

high-level style.

We would like to thank the authors and the referees for their efforts in producing

and reviewing these articles, Simon Peyton Jones and Phil Wadler for offering the

opportunity to publish the articles in a special issue of the Journal of Functional

Programming, and Greg Morrisett for his editorial advice. Finally, we would like to

thank Reinhard Wilhelm and the Dagstuhl Office for their help in organizing the

seminar in Schloss Dagstuhl.

https://doi.org/10.1017/S0956796803004866 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004866

