CORRIGENDUM

STABLY FREE MODULES OVER $\mathbf{Z}[(C_P \rtimes C_Q) \times C_\infty^M]$ ARE FREE (Mathematika 63 (2017), 451–461)

J. D. P. EVANS

In the paper [1] I claimed to show that there are no non-trivial stably free modules over integral group rings of the groups $(C_p \rtimes C_q) \times C_\infty^m$. Unfortunately there are a number of erroneous statements in [1] which vitiate the attempted proof. To explain where these occur, recall that in [1] two Milnor fibre squares (4) and (\heartsuit) were introduced as follows:

$$(\clubsuit) = \begin{cases} \mathbf{Z}[C_p \rtimes C_q] \longrightarrow \mathcal{T}_q \\ \downarrow & \downarrow \\ \mathbf{Z}[C_q] \longrightarrow \mathbf{F}_p[C_q], \end{cases} (\heartsuit) = \begin{cases} \mathbf{Z}[(C_p \rtimes C_q) \times \Gamma] \longrightarrow \mathcal{T}_q[\Gamma] \\ \downarrow & \downarrow \\ \mathbf{Z}[C_q \times \Gamma] \longrightarrow \mathbf{F}_p[C_q \times \Gamma]. \end{cases}$$

Here $\Gamma = C_{\infty}^m$, and $\mathcal{T}_q = \mathcal{T}_q(A, \pi)$ is the ring of quasi-triangular $q \times q$ matrices where $A = \mathbf{Z}[\zeta_p]^{C_q}$ is the subring of the cyclotomic integers $\mathbf{Z}[\zeta_p]$ fixed under the Galois action of C_q and $\pi \in \operatorname{Spec}(A)$ is the unique prime over p.

The most obvious errors [1, Corollary 3.4] include a misdescription of the unit group $U(\mathbf{F}_p[C_q \times \Gamma])$, and the possibility of non-trivial rank-one stably free modules over $\mathcal{T}_2[\Gamma]$. A slightly less obvious but more significant error concerns the possibility of lifting units from $\mathbf{F}_p[C_q \times \Gamma]$ to $\mathcal{T}_q[\Gamma]$. In consequence we must amend the original statement of [1] as follows.

THEOREM A. Let S be a stably free module of rank n over $\mathbf{Z}[(C_p \rtimes C_q) \times C_{\infty}^m]$ where $m \geq 2$. Then:

- if q is an odd prime, S is free provided $n \neq 2$; and
- if q = 2, S is free provided $n \ge 3$.

Nevertheless, when m = 1 the original statement continues to hold:

Theorem B. Any stably free module over $\mathbf{Z}[(C_p \rtimes C_q) \times C_\infty]$ is free.

Rather than try to patch up the proof in [1] piecemeal we give a more straightforward approach which isolates the real difficulty and avoids it where possible. We first establish four propositions.

Received 25 May 2017, published online 17 April 2018.

PROPOSITION 1. $U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma])$ is finite; in fact

$$|U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma])| \leq |U(\mathbf{F}_p[C_q])/U(\mathcal{T}_q)|.$$

Proof. As q is a divisor of p-1, we have

$$\mathbf{F}_p[C_q] \cong \underbrace{\mathbf{F}_p \times \cdots \times \mathbf{F}_p}_q.$$

Consequently

$$\mathbf{F}_p[C_q \times \Gamma] \cong \underbrace{\mathbf{F}_p[\Gamma] \times \cdots \times \mathbf{F}_p}_{q}[\Gamma]. \tag{*}$$

Observe that $U(\mathcal{T}_q[\Gamma])$ contains a copy of $\Gamma^{(q)} = \underbrace{\Gamma \times \cdots \times \Gamma}_q$, namely the diagonal matrices

$$\Delta(\gamma_1,\ldots,\gamma_q) = \begin{pmatrix} \gamma_1 & & & \\ & \gamma_2 & & \\ & & \ddots & \\ & & & \gamma_q \end{pmatrix},$$

where $\gamma_i \in \Gamma$. Combining this with the obvious inclusion $U(\mathcal{T}_q) \subset U(\mathcal{T}_q[\Gamma])$ gives an injection $U(\mathcal{T}_q) \times \Gamma^{(q)} \hookrightarrow U(\mathcal{T}_q[\Gamma])$. Hence we now have a surjection

$$U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q) \times \Gamma^{(q)} \to U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma]).$$
 (**)

The ring isomorphism (*) now gives an isomorphism of unit groups

$$U(\mathbf{F}_p[C_q \times \Gamma]) \cong \underbrace{U(\mathbf{F}_p[\Gamma]) \times \cdots \times U(\mathbf{F}_p}_{q}[\Gamma]).$$

Now $\Gamma = C_{\infty}^m$ is a t.u.p. group so $\mathbf{F}_p[\Gamma]$ has only trivial units (cf. [2, Appendix C]). Hence

$$U(\mathbf{F}_p[C_q \times \Gamma]) \cong \underbrace{(U(\mathbf{F}_p) \times \Gamma) \times \cdots \times (U(\mathbf{F}_p) \times \Gamma)}_{q}$$
$$\cong \underbrace{U(\mathbf{F}_p) \times \cdots \times U(\mathbf{F}_p)}_{q} \times \Gamma^{(q)}$$

so that, by (*), there are bijections

$$U(\mathbf{F}_{p}[C_{q} \times \Gamma])/U(\mathcal{T}_{q}) \times \Gamma^{(q)} \leftrightarrow U(\mathbf{F}_{p}[C_{q}]) \times \Gamma^{(q)}/U(\mathcal{T}_{q}) \times \Gamma^{(q)}$$
$$\leftrightarrow U(\mathbf{F}_{p}[C_{q}])/U(\mathcal{T}_{q}).$$

From (**) we obtain a surjection $U(\mathbf{F}_p[C_q])/U(\mathcal{T}_q) \to U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma])$. The stated result now follows as $U(\mathbf{F}_p[C_q])/U(\mathcal{T}_q)$ is finite.

PROPOSITION 2. Let p be an odd prime and q be a divisor of p-1. Then, for all $n \ge 3$,

$$GL_n(\mathbf{F}_p[C_q \times \Gamma]) = U(\mathbf{F}_p[C_q \times \Gamma]) \cdot E_n(\mathbf{F}_p[C_q \times \Gamma]).$$

Proof. Given rings A, B such that $GL_n(A) = U(A)E_n(A)$ and $GL_n(B) = U(B)E_n(B)$, we have $GL_n(A \times B) = U(A \times B)E_n(A \times B)$. The result thus follows from (*) by induction on q, the case q = 1 being Suslin's theorem [3], namely that

$$GL_k(\mathbf{F}[\Gamma]) = U(\mathbf{F}[\Gamma]) \cdot E_k(\mathbf{F}[\Gamma])$$

for any field **F** and any integer $k \ge 3$.

PROPOSITION 3. $GL_n(\mathbf{F}_p[C_q \times \Gamma])/GL_n(\mathcal{T}_q[\Gamma])$ is finite for $n \ge 3$; in fact

$$|\mathrm{GL}_n(\mathbf{F}_p[C_q \times \Gamma])/\mathrm{GL}_n(\mathcal{T}_q[\Gamma])| \leq |U(\mathbf{F}_p[C_q])/U(\mathcal{T}_q)|.$$

Proof. Evidently $U(\mathcal{T}_q[\Gamma])E_n(\mathcal{T}_q[\Gamma]) \subset GL_n(\mathcal{T}_q[\Gamma])$ and so there is a natural surjection $GL_n(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma])E_n(\mathcal{T}_q[\Gamma]) \to GL_n(\mathbf{F}_p[C_q \times \Gamma])/GL_n(\mathcal{T}_q[\Gamma])$. Also, the ring homomorphism $\natural : \mathcal{T}_q(A,\pi)[\Gamma] \to \mathbf{F}_p[C_q \times \Gamma]$ is surjective and so induces surjections $\natural_* : E_k(\mathcal{T}_q(A,\pi)[\Gamma]) \to E_k(\mathbf{F}_p[C_q \times \Gamma])$ for all $k \geqslant 2$. By Proposition 2 we may write

$$GL_n(\mathbf{F}_p[C_q \times \Gamma]) = U(\mathbf{F}_p[C_q \times \Gamma])E_n(\mathbf{F}_p[C_q \times \Gamma]).$$

We obtain a surjection $U(\mathbf{F}_p[C_q \times \Gamma])/U(\mathcal{T}_q[\Gamma]) \twoheadrightarrow \mathrm{GL}_n(\mathbf{F}_p[C_q \times \Gamma])/\mathrm{GL}_n$ $(\mathcal{T}_q[\Gamma])$ and so the stated result now follows from Proposition 1.

PROPOSITION 4. Let p be an odd prime and q be a divisor of p-1. Then, for all $n \ge 1$,

$$GL_n(\mathbf{F}_p[C_q \times C_\infty]) = U(\mathbf{F}_p[C_q \times C_\infty]) \cdot E_n(\mathbf{F}_p[C_q \times C_\infty]).$$

Proof. We follow the same line of argument as Proposition 2 with the exception that, in establishing the induction base, we do not use Suslin's theorem. Instead we note that, as $\mathbf{F}_p[C_\infty]$ is a Euclidean domain, we may use the Smith normal form to show that $\mathrm{GL}_k(\mathbf{F}_p[C_\infty]) = U(\mathbf{F}_p[C_\infty]) \cdot E_k(\mathbf{F}_p[C_\infty])$.

As in [1], we denote the set of isomorphism classes of locally free $\mathbb{Z}[C_p \rtimes C_q]$ modules of rank k by $\mathcal{LF}_k(\clubsuit)$. By Milnor's classification, this corresponds to the
two-sided quotient

$$\mathcal{LF}_k(\clubsuit) = \mathrm{GL}_k(\mathbf{Z}[C_q]) \backslash \mathrm{GL}_k(\mathbf{F}_p[C_q]) / \mathrm{GL}_k(\mathcal{T}_q).$$

Likewise, the locally free $\mathbf{Z}[(C_p \rtimes C_q) \times \Gamma]$ -modules of rank k correspond to the quotient

$$\mathcal{LF}_k(\heartsuit) = \mathrm{GL}_k(\mathbf{Z}[C_q \times \Gamma]) \backslash \mathrm{GL}_k(\mathbf{F}_p[C_q \times \Gamma]) / \mathrm{GL}_k(\mathcal{T}_q[\Gamma]).$$

500 J. D. P. EVANS

In particular, if neither $\mathbf{Z}[C_q]$ nor \mathcal{T}_q admits non-trivial stably free modules of rank k, then any stably free module of rank k over $\mathbf{Z}[C_p \rtimes C_q]$ is locally free. Consequently, the set $\mathcal{SF}_k(\mathbf{Z}[C_p \rtimes C_q])$ of stably free modules of rank k over $\mathbf{Z}[C_p \rtimes C_q]$ is a subset of $\mathcal{LF}_k(\clubsuit)$. Similarly, $\mathcal{SF}_k(\mathbf{Z}[(C_p \rtimes C_q) \times \Gamma])$ is a subset of $\mathcal{LF}_k(\heartsuit)$ if neither $\mathbf{Z}[C_q \times \Gamma]$ nor $\mathcal{T}_q[\Gamma]$ admits non-trivial stably free modules of rank k.

There are obvious mappings of fibre squares $i:(\clubsuit)\hookrightarrow(\heartsuit)$ and $r:(\heartsuit)\to(\clubsuit)$ such that $r\circ i=\mathrm{Id}$. Consequently, there is a commutative ladder of mappings

where $s_{k,1}$ and $\sigma_{k,1}$ are the obvious stabilization mappings. We note that the mappings i_k are injective in view of the fact that $r \circ i = \text{Id}$.

The argument is now divided into two cases: q is odd, and q=2. First, suppose q is an odd prime dividing p-1. As noted in [1], in (4), the rings $\mathbf{Z}[C_q]$ and \mathcal{T}_q both have property SFC. Consequently, $\mathcal{SF}_k(\mathbf{Z}[C_p \rtimes C_q])$ is a subset of $\mathcal{LF}_k(4)$ for all $k \geq 1$. Similarly, in the fibre square (\heartsuit) , the rings $\mathbf{Z}[C_q \times \Gamma]$ and $\mathcal{T}_q[\Gamma]$ also have SFC and once again $\mathcal{SF}_k(\mathbf{Z}[(C_p \rtimes C_q) \times \Gamma])$ is a subset of $\mathcal{LF}_k(\heartsuit)$ for all $k \geq 1$. The essence of the argument now consists of the following five statements.

- (I) For all n, $\mathcal{LF}_n(\clubsuit)$ is finite and $s_{n,1}: \mathcal{LF}_n(\clubsuit) \to \mathcal{LF}_{n+1}(\clubsuit)$ is bijective.
- (II) $i_1: \mathcal{LF}_1(\clubsuit) \to \mathcal{LF}_1(\heartsuit)$ is bijective.
- (III) $i_n: \mathcal{LF}_n(\clubsuit) \to \mathcal{LF}_n(\heartsuit)$ is bijective for all $n \geqslant 3$.
- (IV) $\sigma_{n,1}: \mathcal{LF}_n(\heartsuit) \to \mathcal{LF}_{n+1}(\heartsuit)$ is injective provided $n \neq 2$.
- (V) If m = 1 (that is, $\Gamma = C_{\infty}$) then $i_2 : \mathcal{LF}_2(\clubsuit) \to \mathcal{LF}_2(\heartsuit)$ is bijective.

To prove (I) we note that, as $C_p \rtimes C_q$ is finite, the finiteness of $\mathcal{LF}_n(\clubsuit)$ follows from the Jordan–Zassenhaus theorem, together with Milnor's classification of projectives. Moreover, as $\mathbf{Z}[C_p \rtimes C_q]$ satisfies the Eichler condition, the Swan–Jacobinski theorem shows that each $s_{k,1}:\mathcal{LF}_k(\clubsuit)\to \mathcal{LF}_{k+1}(\clubsuit)$ is bijective. It follows from Proposition 1 that $|\mathcal{LF}_1(\heartsuit)| \leqslant |\mathcal{LF}_1(\clubsuit)|$. Thus (II) is true as i_1 is injective and $\mathcal{LF}_1(\clubsuit)$ is finite. Likewise it follows from Proposition 3 that $|\mathcal{LF}_n(\heartsuit)| \leqslant |\mathcal{LF}_n(\clubsuit)|$ for $n \geqslant 3$. Thus (III) is true as i_n is injective and $\mathcal{LF}_n(\clubsuit)$ is finite; (IV) now follows from (I), (II) and (III) by diagram chasing using the fact that i_2 is injective. Finally, (V) follows by the same argument as (III) on substituting Proposition 4 for Proposition 2.

To proceed with the proof of Theorem A, put $\sigma_{n,k} = \sigma_{n+k-1,1} \circ \cdots \circ \sigma_{n,1}$ whenever $k \geq 1$. It follows from (IV) that $\sigma_{n,k}$ is injective provided $n \geq 3$. A straightforward diagram chase using (I), (II) and (III) also shows that each $\sigma_{1,k}$ is injective. Now suppose that S is a stably free module of rank $n \neq 2$ over $\Lambda = \mathbf{Z}[(C_p \rtimes C_q) \times \Gamma]$) and denote its class in $\mathcal{LF}_n(\heartsuit)$ by [S]. Then

 $S \oplus \Lambda^k \cong \Lambda^{n+k}$ for some $k \geqslant 1$ so that $\sigma_{n,k}[S] = \sigma_{n,k}[\Lambda^n]$. As $\sigma_{n,k}$ is injective, $S \cong \Lambda^n$. Consequently, when $n \neq 2$ there are no non-trivial stably free modules of rank n over $\mathbf{Z}[(C_p \rtimes C_q) \times C_\infty^m]$, and this proves the first part of Theorem A.

In the case q=2 (i.e. dihedral groups) we cannot claim $\mathcal{T}_2[\Gamma]$ has property SFC. To see why, consider the square

As $(A/\pi)[\Gamma]$ is commutative, we have $\operatorname{GL}_2((A/\pi)[\Gamma]) = U((A/\pi)[\Gamma]) \cdot \operatorname{SL}_2((A/\pi)[\Gamma])$. The unit group $U((A/\pi)[\Gamma])$ lifts back to $\mathcal{T}_2((A/\pi)[\Gamma])$. However, it is not clear whether we can lift the elements of $\operatorname{SL}_2((A/\pi)[\Gamma])$. Thus, it is conceivable that $\mathcal{T}_2(A,\pi)[\Gamma]$ has non-trivial stably free modules of rank 1. Nevertheless, using Suslin's theorem as before, it is clear that $\mathcal{T}_2(A,\pi)[\Gamma]$ admits no non-trivial stably free module of rank $\geqslant 2$. Consequently, we observe that $\mathcal{SF}_k(\mathbf{Z}[(C_p \rtimes C_q) \times \Gamma])$ is a subset of $\mathcal{LF}_k(\heartsuit)$ for all $k \geqslant 2$. We now proceed as above.

Finally, the proof of Theorem B follows exactly the same lines except that now, in the case where m=1 and $\Gamma=C_{\infty}$, we see from (V) that $\sigma_{2,1}$ is also injective. Consequently, each $\sigma_{2,k}$ is injective. Thus, there are no non-trivial stably free modules of any rank over $\mathbf{Z}[(C_p \rtimes C_q) \times C_{\infty}]$.

References

- 1. J. D. P. Evans, Stably free modules over $\mathbf{Z}[(C_p \rtimes C_q) \times C_\infty^m])$ are free. *Mathematika* 63 (2017), 451–461.
- 2. F. E. A. Johnson, Syzygies and Homotopy Theory, Springer (London, 2011).
- 3. A. A. Suslin, On the structure of the special linear group over polynomial rings. *Math. USSR, Izvestiya* 11(2) (1977), 221–238.

J. D. P. Evans,
Department of Mathematics,
University College London,
Gower Street,
London WC1E 6BT,
U.K.
E-mail: john.evans.09@ucl.ac.uk