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CORRIGENDUM

STABLY FREE MODULES OVER Z[(CP oCQ)×C M∞] ARE FREE

(Mathematika 63 (2017), 451–461)

J. D. P. EVANS

In the paper [1] I claimed to show that there are no non-trivial stably free modules
over integral group rings of the groups (C p o Cq) × Cm∞. Unfortunately there
are a number of erroneous statements in [1] which vitiate the attempted proof.
To explain where these occur, recall that in [1] two Milnor fibre squares (♣) and
(♥) were introduced as follows:

(♣)=


Z[C p o Cq ]

��

// Tq

��
Z[Cq ] // Fp[Cq ],

(♥)=


Z[(C p o Cq)× 0]

��

// Tq [0]

��
Z[Cq×0] // Fp[Cq×0].

Here 0 = Cm∞, and Tq = Tq(A, π) is the ring of quasi-triangular q × q matrices
where A = Z[ζp]Cq is the subring of the cyclotomic integers Z[ζp] fixed under
the Galois action of Cq and π ∈ Spec(A) is the unique prime over p.

The most obvious errors [1, Corollary 3.4] include a misdescription of the
unit group U (Fp[Cq×0]), and the possibility of non-trivial rank-one stably free
modules over T2[0]. A slightly less obvious but more significant error concerns
the possibility of lifting units from Fp[Cq × 0] to Tq [0]. In consequence we
must amend the original statement of [1] as follows.

THEOREM A. Let S be a stably free module of rank n over Z[(C p o Cq) ×
Cm∞] where m > 2. Then:
• if q is an odd prime, S is free provided n 6= 2; and
• if q = 2, S is free provided n > 3.

Nevertheless, when m = 1 the original statement continues to hold:

THEOREM B. Any stably free module over Z[(C p o Cq)× C∞] is free.

Rather than try to patch up the proof in [1] piecemeal we give a more
straightforward approach which isolates the real difficulty and avoids it where
possible. We first establish four propositions.
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PROPOSITION 1. U (Fp[Cq × 0])/U (Tq [0]) is finite; in fact

|U (Fp[Cq × 0])/U (Tq [0])| 6 |U (Fp[Cq ])/U (Tq)|.

Proof. As q is a divisor of p − 1, we have

Fp[Cq ] ∼= Fp × · · · × Fp︸ ︷︷ ︸
q

.

Consequently
Fp[Cq × 0] ∼= Fp[0] × · · · × Fp︸ ︷︷ ︸

q

[0]. (∗)

Observe that U (Tq [0]) contains a copy of 0(q) = 0 × · · · × 0︸ ︷︷ ︸
q

, namely the

diagonal matrices

1(γ1, . . . , γq) =
 γ1

γ2

. . .
γq

 ,

where γi ∈ 0. Combining this with the obvious inclusion U (Tq) ⊂ U (Tq [0])
gives an injection U (Tq)× 0(q) ↪→ U (Tq [0]). Hence we now have a surjection

U (Fp[Cq × 0])/U (Tq)× 0(q) � U (Fp[Cq × 0])/U (Tq [0]). (∗∗)
The ring isomorphism (∗) now gives an isomorphism of unit groups

U (Fp[Cq × 0]) ∼= U (Fp[0])× · · · ×U (Fp︸ ︷︷ ︸
q

[0]).

Now 0 = Cm∞ is a t.u.p. group so Fp[0] has only trivial units (cf. [2,
Appendix C]). Hence

U (Fp[Cq × 0]) ∼= (U (Fp)× 0)× · · · × (U (Fp)× 0)︸ ︷︷ ︸
q

∼= U (Fp)× · · · ×U (Fp)︸ ︷︷ ︸
q

×0(q)

so that, by (∗), there are bijections

U (Fp[Cq × 0])/U (Tq)× 0(q) ↔ U (Fp[Cq ])× 0(q)/U (Tq)× 0(q)
↔ U (Fp[Cq ])/U (Tq).

From (∗∗) we obtain a surjection U (Fp[Cq ])/U (Tq) � U (Fp[Cq × 0])/U
(Tq [0]). The stated result now follows as U (Fp[Cq ])/U (Tq) is finite. �
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PROPOSITION 2. Let p be an odd prime and q be a divisor of p − 1. Then,
for all n > 3,

GLn(Fp[Cq × 0]) = U (Fp[Cq × 0]) · En(Fp[Cq × 0]).
Proof. Given rings A, B such that GLn(A) = U (A)En(A) and GLn(B) =

U (B)En(B), we have GLn(A × B) = U (A × B)En(A × B). The result thus
follows from (∗) by induction on q , the case q = 1 being Suslin’s theorem [3],
namely that

GLk(F[0]) = U (F[0]) · Ek(F[0])
for any field F and any integer k > 3. �

PROPOSITION 3. GLn(Fp[Cq × 0])/GLn(Tq [0]) is finite for n > 3; in fact

|GLn(Fp[Cq × 0])/GLn(Tq [0])| 6 |U (Fp[Cq ])/U (Tq)|.
Proof. Evidently U (Tq [0])En(Tq [0]) ⊂ GLn(Tq [0]) and so there is a

natural surjection GLn(Fp[Cq × 0])/U (Tq [0])En(Tq [0]) � GLn(Fp[Cq ×
0])/GLn(Tq [0]). Also, the ring homomorphism \ : Tq(A, π)[0] → Fp[Cq×0]
is surjective and so induces surjections \∗ : Ek(Tq(A, π)[0])→ Ek(Fp[Cq×0])
for all k > 2. By Proposition 2 we may write

GLn(Fp[Cq × 0]) = U (Fp[Cq × 0])En(Fp[Cq × 0]).
We obtain a surjection U (Fp[Cq × 0])/U (Tq [0]) � GLn(Fp[Cq × 0])/GLn
(Tq [0]) and so the stated result now follows from Proposition 1. �

PROPOSITION 4. Let p be an odd prime and q be a divisor of p − 1. Then,
for all n > 1,

GLn(Fp[Cq × C∞]) = U (Fp[Cq × C∞]) · En(Fp[Cq × C∞]).
Proof. We follow the same line of argument as Proposition 2 with the

exception that, in establishing the induction base, we do not use Suslin’s
theorem. Instead we note that, as Fp[C∞] is a Euclidean domain, we may
use the Smith normal form to show that GLk(Fp[C∞]) = U (Fp[C∞])·
Ek(Fp[C∞]). �

As in [1], we denote the set of isomorphism classes of locally free Z[C poCq ]-
modules of rank k by LFk(♣). By Milnor’s classification, this corresponds to the
two-sided quotient

LFk(♣) = GLk(Z[Cq ])\GLk(Fp[Cq ])/GLk(Tq).

Likewise, the locally free Z[(C p o Cq) × 0]-modules of rank k correspond to
the quotient

LFk(♥) = GLk(Z[Cq × 0])\GLk(Fp[Cq × 0])/GLk(Tq [0]).
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In particular, if neither Z[Cq ] nor Tq admits non-trivial stably free modules of
rank k, then any stably free module of rank k over Z[C p o Cq ] is locally free.
Consequently, the set SFk(Z[C p o Cq ]) of stably free modules of rank k over
Z[C p o Cq ] is a subset of LFk(♣). Similarly, SFk(Z[(C p o Cq) × 0]) is a
subset of LFk(♥) if neither Z[Cq × 0] nor Tq [0] admits non-trivial stably free
modules of rank k.

There are obvious mappings of fibre squares i : (♣) ↪→ (♥) and r : (♥)→ (♣)
such that r ◦ i = Id. Consequently, there is a commutative ladder of mappings

LF1(♣) LF2(♣)s1,1 - -LF3(♣)s2,1 -s3,1 LF4(♣) -s4,1

? ?

i1

?

i2 i3 i4

?
LF1(♥) LF2(♥)σ1,1 - -LF3(♥)σ2,1 -σ3,1 LF4(♥) -σ4,1

where sk,1 and σk,1 are the obvious stabilization mappings. We note that the
mappings ik are injective in view of the fact that r ◦ i = Id.

The argument is now divided into two cases: q is odd, and q = 2. First,
suppose q is an odd prime dividing p − 1. As noted in [1], in (♣), the rings
Z[Cq ] and Tq both have property SFC. Consequently, SFk(Z[C p o Cq ]) is a
subset of LFk(♣) for all k > 1. Similarly, in the fibre square (♥), the rings
Z[Cq ×0] and Tq [0] also have SFC and once again SFk(Z[(C p oCq)×0]) is
a subset of LFk(♥) for all k > 1. The essence of the argument now consists of
the following five statements.

(I) For all n, LFn(♣) is finite and sn,1 : LFn(♣)→ LFn+1(♣) is bijective.
(II) i1 : LF1(♣)→ LF1(♥) is bijective.

(III) in : LFn(♣)→ LFn(♥) is bijective for all n > 3.
(IV) σn,1 : LFn(♥)→ LFn+1(♥) is injective provided n 6= 2.
(V) If m = 1 (that is, 0 = C∞) then i2 : LF2(♣)→ LF2(♥) is bijective.

To prove (I) we note that, as C p o Cq is finite, the finiteness of
LFn(♣) follows from the Jordan–Zassenhaus theorem, together with Milnor’s
classification of projectives. Moreover, as Z[C p o Cq ] satisfies the Eichler
condition, the Swan–Jacobinski theorem shows that each sk,1 : LFk(♣) →
LFk+1(♣) is bijective. It follows from Proposition 1 that |LF1(♥)|6 |LF1(♣)|.
Thus (II) is true as i1 is injective and LF1(♣) is finite. Likewise it follows from
Proposition 3 that |LFn(♥)| 6 |LFn(♣)| for n > 3. Thus (III) is true as in
is injective and LFn(♣) is finite; (IV) now follows from (I), (II) and (III) by
diagram chasing using the fact that i2 is injective. Finally, (V) follows by the
same argument as (III) on substituting Proposition 4 for Proposition 2.

To proceed with the proof of Theorem A, put σn,k = σn+k−1,1 ◦ · · · ◦ σn,1
whenever k > 1. It follows from (IV) that σn,k is injective provided n > 3.
A straightforward diagram chase using (I), (II) and (III) also shows that each
σ1,k is injective. Now suppose that S is a stably free module of rank n 6= 2
over 3 = Z[(C p o Cq) × 0] ) and denote its class in LFn(♥) by [S]. Then
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S⊕3k ∼= 3n+k for some k > 1 so that σn,k[S] = σn,k[3n]. As σn,k is injective,
S ∼= 3n . Consequently, when n 6= 2 there are no non-trivial stably free modules
of rank n over Z[(C p o Cq)×Cm∞], and this proves the first part of Theorem A.

In the case q = 2 (i.e. dihedral groups) we cannot claim T2[0] has property
SFC. To see why, consider the square

T2(A, π)[0]

��

// M2(A[0])
\

��
T2((A/π)[0]) i // M2((A/π)[0]).

As (A/π)[0] is commutative, we have GL2((A/π)[0]) = U ((A/π)[0]) ·
SL2((A/π)[0]). The unit group U ((A/π)[0]) lifts back to T2((A/π)[0]).
However, it is not clear whether we can lift the elements of SL2((A/π)[0]).
Thus, it is conceivable that T2(A, π)[0] has non-trivial stably free modules
of rank 1. Nevertheless, using Suslin’s theorem as before, it is clear that
T2(A, π)[0] admits no non-trivial stably free module of rank> 2. Consequently,
we observe that SFk(Z[(C p o Cq) × 0]) is a subset of LFk(♥) for all k > 2.
We now proceed as above.

Finally, the proof of Theorem B follows exactly the same lines except that
now, in the case where m = 1 and 0 = C∞, we see from (V) that σ2,1 is
also injective. Consequently, each σ2,k is injective. Thus, there are no non-trivial
stably free modules of any rank over Z[(C p o Cq)× C∞].
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