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Abstract

We study the asymptotic behavior of the tail probability of integrated stable processes
exceeding power barriers. In the first part of the paper the limiting behavior of the integrals
of stable processes generated by ergodic dissipative flows is established. In the second
part an example with the integral of a stable process generated by a conservative flow is
analyzed. Finally, the difference in the order of magnitude of the exceedance probability
in the two cases is related to the dependence structure of the underlying stable process.
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1. Introduction

Consider S = {S(t), t ≥ 0}, a real-valued stochastic process, and a real-valued function b(·)
on nonnegative reals representing a deterministic barrier. A classical problem in the theory of
stochastic processes is to find the asymptotic behavior of the exceedance probability given by

ψ(u) = P
[
sup
t≥0
(S(t)− b(t)) > u

]
(1)

as u → ∞. The quantity ψ(u) has several interpretations in different fields of applied
probability. It is particularly important in insurance and queueing theory, and is also closely
related to the tail probability of solutions to certain stochastic recurrence equations. There is a
vast literature, specifically in the actuarial mathematics context, where the problem is treated
under various assumptions. (For a list of references, see, for instance, [5].)

Classical models studying ψ(u) (such as the Cramér–Lundberg model; see [11] for details),
started off by assuming a process S, which had independent increments with finite exponential
moments. However, empirical evidence in various fields, including finance, insurance, and
teletraffic, supports the presence of heavy tails in real life. Moreover, in many of the application
areas it is often more realistic to assume dependence among increments of S. These observations
have led to the recent efforts in the study of models where the increments of S are heavy tailed
and dependent.

This scenario is also quite intriguing from a theoretical point of view as it brings up the
possibility of gaining more insight into the dependence structure of stochastic processes with
heavy tails by observing the asymptotic behavior of the tail probability of the functional ψ on
the sample paths. The problem becomes particularly interesting when the second moments
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Power barriers for integrated stable processes 875

cease to exist as the classical definitions of the range of dependence (which mainly rely on
covariance like functions) become ambiguous.

In this paper we study the problem when S is an integrated continuous-time process.
Integrated processes are of interest on their own. In particular, integrated Brownian motion
has been studied widely as it appears in classical literature in mechanics and biology (see,
for instance, [12], [23], and [26], or [16]–[22] for a detailed account), as well as in quantum
probability (see, for instance, [2] and [14]). Here, we will consider an integrated process
described by

S(t) =
∫ t

0
X(s) ds, t ≥ 0,

where X = {X(t), t ≥ 0} is a stationary, ergodic, symmetric α-stable (SαS) process with
α ∈ (1, 2). For this choice of α, X has a finite first moment; however, the second moment does
not exist. This together with the fact that the structure of stable processes are relatively well
understood allows us to concentrate on the underlying dependence structure in the presence
of heavy tails. Furthermore, results for stable increments indicate to some extent what can be
expected for more general processes, including stationary infinitely divisible processes. We
believe the stable case will provide a benchmark which will help one to gain more insight into
exceedances for more general processes.

Recently, there has been some effort in studying the asymptotics of ψ(u) in the SαS setting.
Braverman [8] established an asymptotic equivalence between a class of subadditive functionals,
includingψ(u) given in (1), and a deterministic functional, which is based on the integral repre-
sentation of the underlying stable process. However, explicit results on the order of magnitude
of ψ(u) were not the focus of that study. Mikosch and Samorodnitsky [24] gave results on
the order of magnitude of the exceedance probabilities for discrete-time random walks driven
by different classes of stationary ergodic SαS processes. Alparslan and Samorodnitsky [3],
[4] extended some of the discrete-time results given in [24] and also established the order of
magnitude for certain classes of integrated continuous-time processes. All of these studies,
however, assumed a linear barrier.

The goal of this paper is to extend the results to exceedances of nonlinear barriers. In
particular, we analyze the asymptotic behavior of ψ(u) for power barriers of the form

b(t) = µtp, t ≥ 0, where µ > 0 and p > 1. (2)

To analyze ψ(u) for random walks driven by general classes of heavy-tailed, dependent
processes, we need large deviation results which are not straightforward. In the case of stable
processes, however, we make use of the representation of the stationary process with respect to
a common stable random measure to obtain the tail behavior of the random walk.

Consider a measurable, stationary, ergodic SαS process X with 1 < α < 2. Without loss of
generality, we will assume that

X(t) =
∫
E

ft (x)M(dx), t ≥ 0, (3)

where M is an independently scattered SαS random measure on a measurable space (E,E)
with a σ -finite control measure m on E, and {ft , t ≥ 0} is a subset of Lα(E,E,m). (See [30,
Theorem 3.5.6].) Moreover, owing to the stationarity of the process, for t ≥ 0, we can choose
the kernel ft to be of a more depictive form given by

ft (·) = at (·)
[

d

dm
m ◦ φt (·)

]α
f ◦ φt (·). (4)
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Here, f is a real-valued function in Lα(E,E,m); {φt (·), t ≥ 0} is a nonsingular flow on E;
and {at , t ≥ 0} is a cocycle of the flow taking values on the unit circle. (For further details,
see [27].) This representation allows us to relate certain path properties of a single kernel in
Lα(E,E,m) and ergodic properties of a flow to the probabilistic structure of X.

Indeed, one of the main objectives of this paper is to investigate the effects of an important
result from infinite ergodic theory on the asymptotic behavior of ψ(u): Hopf decomposition
of the flow implies that a stationary SαS process X can be represented in distribution as the
sum of two independent stationary SαS processes D and C, where the process D has an
integral representation with the kernel given by (4) with a dissipative flow {φt (·), t ≥ 0},
whereas the process C has an integral representation with the kernel given by (4) with a
conservative flow {φt (·), t ≥ 0}. (For an in-depth discussion of dissipative and conservative
flows, and Hopf decomposition, see, for instance, [1] or [15].) Rosiński [27] showed that any
stationary SαS processes D = {D(t), t ∈ R+} generated by a dissipative flow are automatically
ergodic. Moreover, if the dissipative flow itself is ergodic then the process can be represented
in distribution as a moving average

D
d=

{∫
R

f (x − t)M(dx), t ∈ R+
}

(5)

with f ∈ Lα(R,B, λ), where B is the Borel σ -algebra, λ is the Lebesgue measure, M is an
SαS random measure, and ‘

d=’ denotes equality in distribution.
This representation considerably simplifies the analysis of exceedance probabilities for

random walks driven by dissipative stable processes. In Section 2 we will focus on this
representation while studying the asymptotic behavior of ψ(u) as u → ∞. In this section
we will also verify that the properties of f can be significant in the determination of the order
of magnitude of ψ(u).

An analysis of exceedances for general stationary SαS processes generated by conservative
flows is substantially harder. Far less is known about the structure of conservative stable
processes compared to dissipative processes. Furthermore, even the construction of examples
of such processes is not straightforward. In Section 3 we will concentrate on a certain class
of conservative stable processes and show that ψ(u) may decay slower than it does in the
dissipative case, even with ‘nice’ kernels in the integral representation.

In Section 4 we will compare the main results of Section 2 and Section 3, and we will relate
them to the dependence structure of the underlying stationary ergodic SαS process X. Finally,
proofs of these results will be presented in Section 5.

2. Exceedances for stationary stable processes generated by ergodic dissipative flows

Consider a stationary symmetric α-stable process X = {X(t), t ≥ 0} with 1 < α < 2,
which is generated by an ergodic dissipative flow. As discussed in (5), these processes have a
moving average representation; so, without loss of generality, assume that

X(t) =
∫

R

f (x − t)M(dx), t ≥ 0, (6)

where f ∈ Lα(R,B, λ) and M is an SαS random measure on (R,B), with Lebesgue control
measure λ. It follows from [30, Theorem 11.3.2] that the process S = {S(t), t ≥ 0} given by

S(t) =
∫ t

0
X(s) ds, t ≥ 0, (7)
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is well defined. Moreover, defining ht (x) = ∫ t
0 f (x − s) ds, t ≥ 0, we have, by [30, Theo-

rem 11.4.1], S(t) = ∫
R
ht (x)M(dx), t ≥ 0.

Let b(·) be a power barrier, as given in (2). Then, for u > 0, the probability of exceeding
the barrier by u > 0 is given by

ψ(u) = P
(

sup
t≥0
(S(t)− µtp) > u

)
, u > 0. (8)

Next, define

ψ0(u) := Cα

2

∫
R

(
sup
t≥0

(ht (x))
α+

(u+ µtp)α
+ sup

t≥0

(−ht (x))α+
(u+ µtp)α

)
dx, u > 0, (9)

where

Cα =
(∫ ∞

0
x−α sin x dx

)−1

.

The importance of the functional ψ0 arises from the following observation.

Proposition 1. As u → ∞, ψ(u) ∼ ψ0(u) if, for some γ ∈ (0, 1), the scaling parameter of
S(t) is O(tγ ) as t tends to ∞, i.e. if

‖ht (·)‖Lα(R,B,λ) = O(tγ ) as t → ∞. (10)

This proposition is utilized in the proof of the theorem below, which is our main result for
this section and shows the interplay between properties of the kernel f in the moving average
(6) and the asymptotic behavior of the exceedance probability (8).

Theorem 1. Let f given in (6) be a nonnegative function, and suppose that there exist two
integers, Kl < 0 < Kr , such that the function defined by

g(x) := sup
t≥0

f (x − t)1{x≤Kl} + f (x)1{Kl<x<Kr } + sup
t≥0

f (x + t)1{x≥Kr }

is in L1(R,B, λ), and, for x ≥ Kr , g is bounded by a monotone, regularly varying function
with index −q < −1 (i.e. there exists a monotone function grv ∈ RV−q such that g ≤ grv on
x ≥ Kr ). Then, as u → ∞,

ψ(u) ∼ Cα

2pµ1/p ‖f ‖α
L1(R,B,λ)

B

(
1

p
, α − 1

p

)
u1/p−α,

where B(·, ·) is the beta function.

3. Exceedances for a class of stationary ergodic stable processes generated by
conservative flows

In this section we focus on a class of continuous-time random walks, where the increment
process X is a continuous-time, stationary, ergodic SαS process generated by a conservative
flow. The construction of such an X is due to Samorodnitsky [29], who used a standard
fractional Brownian motion with self-similarity exponent H ∈ (0, 1) to construct the random
measure M(·) given in the integral representation (3). Here we restrict our attention to the
standard Brownian motion case (i.e. H = 0.5), and we pick a fairly simple kernel for the
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integral representation of X. In doing so we intend to show that even for this simple case with
a ‘nice’ kernel, the order of magnitude of the exceedance probability is higher for the processes
generated by conservative flows than that for the processes generated by dissipative flows.

Now let B = {B(t), t ∈ R} be a standard Brownian motion. Letm be a σ -finite cylindrical
measure on C(R), the space of continuous functions on R, defined by

m(A) =
∫

R

P(B ∈ A− y) dy, where A is a cylindrical set,

i.e. m is the (infinite) law of the Brownian motion shifted according to the Lebesgue measure
on R. Define

ϕ(x) := (1 − |x|)1{(1−|x|)∈[0,1]}, x ∈ R.

Note that ϕ : R 
→ [0,∞) is Hölder continuous with exponent 1, even, and nonincreasing on
[0,∞). Also, note that ϕ ∈ Lα(R,B, λ). Clearly, the Hölder function

H(x) = sup
x≤s<t

ϕ(s)− ϕ(t)

t − s
, x ≥ 0,

also belongs to Lα(R,B, λ). Furthermore, define

X(t) =
∫
C(R)

ϕ(xt )M(dx), t ∈ R, x = (xs, s ∈ R),

where M is an SαS random measure on C(R) with control measure m. It was shown in [29]
that the process X = {X(t), t ∈ R} is a well-defined stationary SαS process, and is generated
by a conservative flow.

For t ≥ 0, let S(t) be as given in (7) and define

ht (x) :=
∫ t

0
ϕ(xs) ds.

It was shown in [4] that the process S := {S(t), t ≥ 0} is well defined, and, moreover,

S(t) =
∫
C(R)

ht (x)M(dx) almost surely (a.s.), t ≥ 0. (11)

Let {L(x, t), x ∈ R, t ≥ 0} be a jointly continuous local-time process of B defined by∫ t

0
g[B(s)] ds =

∫
R

g(x)L(x, t) dx

for every bounded continuous function g on R. (See [6] for details.) By the self-similarity of
B, the local-time process has the following scaling property:

{L(c1/2x, ct), x ∈ R, t ≥ 0} d= {c1/2L(x, t), x ∈ R, t ≥ 0} (12)

for any c > 0. Moreover, all moments of l(x, t) are finite, and are uniformly bounded in all
real x and all real t in a compact set. (See, for instance, [9] for details.)

Let ψ(u), u > 0, be as in (1) with S(·) given by (11). Now we state the main result of this
section.

Theorem 2. In the setting described above, as u → ∞,

ψ(u) ∼ CαB(1/2p, (2pα − α − 1)/2p)

µ(α+1)/2pp
√

2π
E

[(
sup
t≥0

L(0, t1/p)

1 + t

)α]
u−(2pα−α−1)/2p,

where B(·, ·) is the beta function.
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4. Discussion

In Section 2 we considered the case of stationary symmetric stable processes generated by
ergodic dissipative flows. It was shown through evaluation of the exact limit that, under certain
technical conditions imposed on the kernel in the integral representation,

ψ(u) = O(u1/p−α) as u → ∞.

It should be noted that any function with compact support, or exponentially decaying tails, or
tails decaying according to a power law with power smaller than −1, satisfy the conditions
imposed on the kernel.

In the case of stationary symmetric stable processes generated by ergodic conservative flows,
however, even the processes with ‘nice’ kernels might result in a slower decaying exceedance
probability. Indeed, the main theorem of Section 3 illustrates this through a certain class of such
processes obtained by using the infinite law of a standard Brownian motion shifted according
to the Lebesgue measure as the control measure. For illustrative purposes, a simple kernel with
compact support is chosen; and it is shown by evaluating the exact limit that even for this simple
kernel

ψ(u) = O(u(α+1)/2p−α) as u → ∞.

Observe that it follows from the particular choice of α that

α + 1

2
> 1,

and, hence, it is clear that the order of magnitude of the exceedance probability is larger in the
conservative case.

This observation is indeed consistent with the scheme suggested in [28], and further devel-
oped in [3], [4], [24], and [29] to distinguish between short- and long-range dependence of
stationary stable processes. All these papers observed a significant difference in the behavior
of a functional acting on the sample paths of stationary stable processes when one considers
the processes generated by dissipative flows versus the processes generated by conservative
flows. It was then suggested that this difference is related to the dependence structure of the
underlying stable process, and the processes generated by dissipative flows should be considered
short-range dependent, whereas the processes generated by conservative flows are long-range
dependent.

Furthermore, our results are consistent with those of [3] and [4], in the sense that if we let
p ↓ 1 in the result given in Theorem 1, we obtain the result given in [3, Theorem 3.3.b]; and if
we let p ↓ 1 in the result given in Theorem 2, we obtain the result given in [4, Theorem 3.1].

In this paper we analyze the asymptotic behavior of the probability of an integrated stable
process exceeding a deterministic power barrier described by b(t) = µtp with µ > 0 and
p > 1. We can consider a slight generalization by choosing b(t) to be regularly varying with
index p, i.e. b(t) = tpL(t), where L(·) is a slowly varying function. However, unlike power
functions, regularly varying functions are not necessarily monotone and it can be seen in the
next section that monotonicity of b(·) is essential in our proofs. To overcome this particular
problem in the regularly varying case, we need to introduce generalized inverses and strictly
monotone approximations to the barrier function. This in turn prevents us from getting precise
asymptotic results with exact constants as in the two main theorems above. Since the principal
objective of this paper is to get a qualitative comparison of dissipative and conservative cases
to obtain a deeper insight into the probabilistic structure of stable processes and to get exact
asymptotic results, we prefer to work with power barriers.
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5. Proofs

In this section we present the proofs of the results given earlier in the paper.

5.1. Proof of Proposition 1

Provided that (10) holds, Lemma 3.2 of [3] implies that there exists an ε̃ ∈ (0, 1) such that
the process Ỹ = {Ỹ (t), t ≥ 0} defined by

Ỹ (t) := (t + 1)ε̃−1S(t), t ≥ 0,

is a.s. bounded. So pick ε̃ ∈ (0, 1) such that Ỹ is a.s. bounded. Next, define a process
Y = {Y (t), t ≥ 0} by

Y (t) = [log(b(t)+ 2)]1+ε

b(t)+ 2
S(t), t ≥ 0.

Note, for any ε > 0 and p > 1, it can be easily verified that [log(tpµ+ 2)]1+ε/(tpµ+ 2) is
o((t + 1)ε̃−1) as t → ∞. Then, since ε̃ > 0 is picked such that Ỹ is a.s. bounded, we see that,
for any ε > 0, Y is a.s. bounded. The result follows from Theorem 4.1 and Remark 4.2 of [8].

5.2. Proof of Theorem 1

We first prove a lemma, which lets us work with ψ0 given in (9) instead of ψ .

Lemma 1. Under the assumptions of Theorem 1, ψ(u) ∼ ψ0(u) as u → ∞.

Proof. Start by observing that g is nonnegative, monotone increasing on (−∞,Kl], mono-
tone decreasing on [Kr,∞), and is the smallest of all functions dominating f , which satisfy
these properties. Thus, it is easy to see that g ∈ L1(R,B, λ) implies f ∈ L1(R,B, λ). Then
one can choose a K ∈ R+ such that

∫ −K
−∞ f (x) dx and

∫ ∞
K
f (x) dx are both smaller than 1,

and, hence,

‖ht (·)‖αLα(R,B,λ) =
∫

R\(−K,K+t)
hαt (x) dx +

∫
(−K,K+t)

hαt (x) dx

≤
∫

R

∫ t

0
f (x − s) ds dx +

∫
(−K,K+t)

‖f (·)‖α
L1(R,B,λ)

dx

≤ t‖f (·)‖L1(R,B,λ) + (2K + t)‖f (·)‖α
L1(R,B,λ)

.

Therefore, f ∈ L1(R,B, λ) implies that ‖ht (·)‖Lα(R,B,λ) = O(t1/α) as t → ∞. The result
follows from Proposition 1.

A similar argument to that given in the proof of Lemma 1 leads to the following useful
observation.

Lemma 2. Under the assumptions of Theorem 1, g ∈ Lα(R,B, λ).
Proof. Since g ∈ L1(R,B, λ) is nonnegative, monotone increasing on (−∞,Kl], and

monotone decreasing on [Kr,∞), there exists a finite constantC > Kr−Kl such that g(x) < 1
for any x ∈ R \ (−C,C). Also, without loss of generality, assume that g(Kl), g(Kr) < ∞.
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Then

‖g‖αLα(R,B,λ) ≤ ‖g‖L1(R,B,λ) + ‖f ‖αLα(R,B,λ) +
∫ Kl

−C
gα(x) dx +

∫ C

Kr

gα(x) dx

≤ ‖g‖L1(R,B,λ) + ‖f ‖αLα(R,B,λ) + 2C[g(Kl)+ g(Kr)]
< ∞,

yielding the desired result.

Now define ψ∗(u) := ∫
R

supt≥0[ht (x)/(u+µtp)]α dx, u > 0. Observe that, since f ≥ 0,
(9) reduces to

2ψ0(·)
Cα

= ψ∗(·). (13)

In the light of Lemma 1, we focus on ψ∗ in the rest of the proof of Theorem 1. We start by
showing that

lim sup
u→∞

uα−1/pψ∗(u) ≤
‖f ‖α

L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
.

To do so, we write

ψ∗(u) =
∫ Kl

−∞
sup
t≥0

[
ht (x)

u+ µtp

]α
dx +

∫ Kr

Kl

sup
t≥0

[
ht (x)

u+ µtp

]α
dx +

∫ ∞

Kr

sup
t≥0

[
ht (x)

u+ µtp

]α
dx

=: ψ∗
1 (u)+ ψ∗

2 (u)+ ψ∗
3 (u). (14)

We focus on ψ∗
1 first. Note that

ψ∗
1 (u) ≤

∫ Kl

−∞
sup

0≤t≤−x

[
ht (x)

u+ µtp

]α
dx +

∫ Kl

−∞
sup
t≥−x

[
ht (x)

u+ µtp

]α
dx

=: ψ∗
11(u)+ ψ∗

12(u). (15)

Since g ∈ L1(R,B, λ) and is monotone increasing on (−∞,Kl], it is easy to see that g(x) is
o(−1/x) as x → −∞. Consequently, for every ε > 0, there exists xε ≤ Kl such that, for any
x < xε , g(x) < −ε/x. Fix ε > 0 and xε . Then pick u > 0 sufficiently large such that

xε > −
(

u

(p − 1)µ

)1/p

=: xu.

Next note that it follows from the monotonicity of g on (−∞,Kl] that

ψ∗
11(u) ≤

∫ Kl

−∞
sup

0≤t≤−x

[∫ t
0 g(x − s) ds

u+ µtp

]α
dx

≤
∫ Kl

−∞
sup

0≤t≤−x

[
tg(x)

u+ µtp

]α
dx

≤
∫ xu

−∞
sup

0≤t≤−x

[
tg(x)

u+ µtp

]α
dx +

∫ xε

xu

sup
0≤t≤−x

[
tg(x)

u+ µtp

]α
dx

+
∫ Kl

xε

sup
0≤t≤−x

[
tg(x)

u+ µtp

]α
dx

=: ψ∗
111(u)+ ψ∗

112(u)+ ψ∗
113(u). (16)
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Lemma 3. For x ∈ (−∞, xu],

sup
0≤t≤−x

[
tg(x)

u+ µtp

]
≤

(
p − 1

u

)(p−1)/p

µ−1/pp−1g(x).

Proof. Define F(t) := tg(x)/(u + µtp). Observe that, on t ≥ 0, F is nonnegative and
continuous. Also, note that

lim
t↓0

F(t) = lim
t↑∞F(t) = 0.

Furthermore, on t ≥ 0, it is an easy task to verify that the only root of the equation dF(t)/dt = 0
is t0 = xu. Therefore,

sup
0≤t≤−x

[
tg(x)

u+ µtp

]
≤ sup

t≥0
F(t) = F(xu),

which completes the proof of the lemma.

Now it follows from the above lemma that

lim sup
u→∞

uα−1/pψ∗
111(u) = lim sup

u→∞
uα−1/p

∫ xu

−∞
sup

0≤t≤−x

[
tg(x)

u+ µtp

]α
dx

≤
[
(p − 1)(p−1)/p

µ1/pp

]α
lim sup
u→∞

u(α−1)/p
∫ xu

−∞
gα(x) dx

≤
[
ε(p − 1)(p−1)/p

µ1/pp

]α
lim sup
u→∞

u(α−1)/p
∫ xu

−∞
(−x)−α dx

= εα(p − 1)α−1/p

(α − 1)µ1/ppα
. (17)

Moreover,

lim sup
u→∞

uα−1/pψ∗
112(u) = lim sup

u→∞
uα−1/p

∫ xε

xu

sup
0≤t≤−x

[
tg(x)

u+ µtp

]α
dx

≤ lim sup
u→∞

uα−1/p
∫ xε

xu

[−xg(x)
u

]α
dx

≤ εα lim sup
u→∞

u−1/p(xu − xε)

= εα[(p − 1)µ]−1/p. (18)

Lastly, it follows from Lemma 2 that

lim sup
u→∞

uα−1/pψ∗
113(u) ≤ lim sup

u→∞
uα−1/p

∫ Kl

xε

[−xg(x)
u

]α
dx

≤ lim sup
u→∞

u−1/p(xε)
α‖g‖αLα(R,B,λ)

= 0. (19)
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Furthermore, observe that it follows from f ∈ L1(R,B, λ) that, for every θ > 0, there
exists xθ ≤ Kl such that

∫ xθ
−∞ f (x) dx < θ . Then

lim sup
u→∞

uα−1/pψ∗
12(u) = lim sup

u→∞
uα−1/p

∫ Kl

−∞
sup
t≥−x

[
ht (x)

u+ µtp

]α
dx

≤ lim sup
u→∞

uα−1/p
∫ xθ

−∞

[∫ ∞
0 f (x − s) ds

u+ (−x)pµ
]α

dx

+ lim sup
u→∞

uα−1/p
∫ Kl

xθ

[∫ ∞
0 f (x − s) ds

u

]α
dx

≤ lim sup
u→∞

uα−1/p
∫ xθ

−∞

[∫ x
−∞ f (y) dy

u+ (−x)pµ
]α

dx

+ lim sup
u→∞

u−1/p(Kl − xθ )‖f ‖α
L1(R,B,λ)

≤ θα lim sup
u→∞

uα−1/p
∫ xθ

−∞
[u+ (−x)pµ]−α dx. (20)

Substituting y = (−x)pµ/u we have

lim sup
u→∞

uα−1/pψ∗
12(u) ≤ θα

pµ1/p lim sup
u→∞

∫ ∞

(−xθ )pµ/u
(1 + y)−αy1/p−1 dy

= θα

pµ1/pB

(
1

p
, α − 1

p

)
. (21)

Combining (15)–(21) we see that

lim sup
u→∞

uα−1/pψ∗
1 (u) ≤ εα(p − 1)α−1/p

(α − 1)µ1/ppα
+ εα

[(p − 1)µ]1/p + θαB(1/p, α − 1/p)

pµ1/p .

Letting ε ↓ 0 and θ ↓ 0 we conclude that

ψ∗
1 (u) ∼ o(u1/p−α) as u → ∞. (22)

Next note that

ψ∗
2 (u) =

∫ Kr

Kl

sup
t≥0

[
ht (x)

u+ µtp

]α
dx ≤ u−α(Kr −Kl)‖f ‖α

L1(R,B,λ)
,

and, hence,
ψ∗

2 (u) ∼ o(u1/p−α) as u → ∞. (23)

Before proceeding with ψ∗
3 we recall that there exists a monotone function grv, which is

regularly varying at infinity with index −q < −1, which dominates g for all x ≥ Kr . By
a characterization theorem due to Karamata (see, for instance, [7, Theorem 1.4.1]) we can write
grv(x) = x−q l(x), where l(·) is a slowly varying function at infinity. Moreover, it follows
from [7, Proposition 1.5.10] that

Irv :=
∫ ∞

Kr

grv(x) dx < ∞.
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In particular, for any ϑ ∈ (0, 1) there exists yϑ ≥ Kr such that
∫ ∞

x

grv(s) ds < ϑ for any x ≥ yϑ .

Fix ϑ ∈ (0, 1) and yϑ ≥ Kr , and write

ψ∗
3 (u) ≤

∫ yϑ

Kr

sup
t≥0

[
ht (x)

u+ µtp

]α
dx +

∫ ∞

yϑ

sup
t≥x−yϑ

[
ht (x)

u+ µtp

]α
dx

+
∫ ∞

yϑ

sup
0≤t≤x−yϑ

[∫ x
x−t grv(s) ds

u+ µtp

]α
dx

=: ψ∗
31(u)+ ψ∗

32(u)+ ψ∗
33(u). (24)

We immediately see that

lim sup
u→∞

uα−1/pψ∗
31(u) ≤ lim sup

u→∞
u−1/p(yϑ −Kr)‖f ‖α

L1(R,B,λ)
= 0. (25)

Also, it is easy to see that

ψ∗
32(u) ≤ ‖f ‖α

L1(R,B,λ)

∫ ∞

yϑ

[u+ (x − yϑ)
pµ]−α dx

=
‖f ‖α

L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
u1/p−α,

and, hence,

lim sup
u→∞

uα−1/pψ∗
32(u) ≤

‖f ‖α
L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
. (26)

Next we will need the following lemma.

Lemma 4. For ε ∈ (0, (p − 1)/p) and u > 0, let

yu(−) :=
(

u

[(1 + ε)p − 1]µ
)1/p

and yu(+) :=
(

u

[(1 − ε)p − 1]µ
)1/p

.

Then, for any ε ∈ (0, (p − 1)/p), there exists yε > yϑ + yu(+) such that, for any x > yε,

sup
t∈[0,x−yϑ ]

∫ x
x−t grv(s) ds

u+ tpµ
= sup
t∈[yu(−),yu(+)]

∫ x
x−t grv(s) ds

u+ tpµ
.

Proof. Start by defining

Grv(x, t) :=
∫ x
x−t grv(s) ds

u+ tpµ
, x ≥ yϑ, t ∈ [0, x − yϑ ].

Then, for t ∈ (0, x − yϑ),

∂Grv(x, t)

∂t
= grv(x − t)[(u+ tpµ)− pµtp−1

∫ x
x−t grv(s) ds/grv(x − t)]

(u+ tpµ)2
.
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Observe that it is a direct consequence of Karamata’s theorem (see, for instance, [7, Proposi-
tion 1.5.10]) that, as x → ∞,∫ x

x−t grv(s) ds

grv(x − t)
∼ 1

q − 1

(
(x − t)−q+1 − x−q+1

(x − t)−q

)
.

But then, by l’Hôpital’s rule,∫ x
x−t grv(s) ds

grv(x − t)
∼ 1 − ((x − t)/x)q−1

(q − 1)(x − t)−1 ∼ t (1 − t/x)q−2x−2

(x − t)−2 ∼ t

(
1 − t

x

)q
∼ t.

In particular, for any ε ∈ (0, (p − 1)/p), there exists yε (which, without loss of generality,
could be picked to be greater than yϑ + yu(+)) such that, for any x > yε,

(1 − ε)t ≤
∫ x
x−t grv(s) ds

grv(x − t)
≤ (1 + ε)t,

and, hence,
∂Grv(x − t)

∂t
≥ grv(x − t){u− tpµ[(1 + ε)p − 1]}

(u+ tpµ)2
,

and

∂Grv(x − t)

∂t
≤ grv(x − t){u− tpµ[(1 − ε)p − 1]}

(u+ tpµ)2
.

Consequently, we see that, for t ≤ yu(−), ∂Grv(x − t)/∂t ≥ 0, and, for t ≥ yu(+),
∂Grv(x − t)/∂t ≤ 0, which gives the desired result.

Now fix ε ∈ (0, (p− 1)/p). It follows from Lemma 4 and the monotonicity of grv that, for
any u > 0,

ψ∗
33(u) =

∫ ∞

yϑ

sup
0≤t≤x−yϑ

[∫ x
x−t grv(s) ds

u+ µtp

]α
dx

≤ u−αϑα(yε − yϑ)+
∫ ∞

yε

sup
t∈[yu(−),yu(+)]

[∫ x
x−t grv(s) ds

u+ µtp

]α
dx

≤ u−αϑα(yε − yϑ)+
∫ ∞

yε

[∫ x
x−yu(+) grv(s) ds

u+ µ(yu(−))p

]α
dx

≤ u−αϑα(yε − yϑ)+ yu(+)
uα

[
(1 + ε)p − 1

(1 + ε)p

]α ∫ ∞

yε−yu(+)
grv(x) dx

≤ u−αϑα(yε − yϑ)+ u−αyu(+)ϑ
[
(1 + ε)p − 1

(1 + ε)p

]α
.

Therefore,

lim sup
u→∞

uα−1/pψ∗
33(u) ≤ ϑ

[
(1 + ε)p − 1

[(1 − ε)p − 1]1/(αp)(1 + ε)p

]α
. (27)

Combining (24), (25), (26), and (27), and letting ϑ ↓ 0, we conclude that

lim sup
u→∞

uα−1/pψ∗
3 (u) ≤

‖f ‖α
L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
. (28)
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Finally, combining (14), (22), (23), and (28), we have

lim sup
u→∞

uα−1/pψ∗(u) ≤
‖f ‖α

L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
. (29)

Next we will show that

lim inf
u→∞ uα−1/pψ∗(u) ≥

‖f ‖α
L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
.

Recall that, under the assumptions of the theorem, f ∈ L1(R,B, λ). Since f is nonnegative,
for any y ∈ R and any δ ∈ (0, 1), there exists yδ > y such that

∫ yδ

y

f (x) dx ≥ (1 − ε)

∫ ∞

y

f (x) dx.

Then, for any such y and yδ , we have

ψ∗(u) ≥
∫ ∞

yδ

sup
t≥0

[∫ x
x−t f (s) ds

u+ tpµ

]α
dx

≥
∫ ∞

yδ

[ ∫ x
y
f (s) ds

u+ (x − y)pµ

]α
dx

≥
[∫ yδ

y

f (s) ds

]α ∫ ∞

yδ

[u+ (x − y)pµ]−α dx

≥ u1/p−α[(1 − δ)
∫ ∞
y
f (s) ds]α

pµ1/p

∫ ∞

(yδ−y)pµ/u
(1 + x)−αx1/p−1 dx,

and, hence,

lim inf
u→∞ uα−1/pψ∗(u) ≥ [(1 − δ)

∫ ∞
y
f (s) ds]α

pµ1/p B

(
1

p
, α − 1

p

)
.

Letting δ ↓ 0 and y ↓ −∞ and combining with (29),

lim
u→∞ u

α−1/pψ∗(u) =
‖f ‖α

L1(R,B,λ)

pµ1/p B

(
1

p
, α − 1

p

)
.

Then (13) and Lemma 1 conclude the proof of the theorem.

5.3. Proof of Theorem 2

Start by defining

2ψ0(u)

Cα
:=

∫
C(R)

sup
t≥0

[
ht (x)

u+ tpµ

]α
m(dx) =

∫
R

E

[
sup
t≥0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy,

where µ > 0, p > 1, and Cα = (
∫ ∞

0 x−α sin x dx)−1, and observing the following lemma.

Lemma 5. We have ψ(u) ∼ ψ0(u) as u → ∞.
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Proof. It follows from Lemma 3.2 of [4] that there exists ε̃ ∈ (0, 1) such that the process
Ỹ = {Ỹ (t) := (t + 1)ε̃−1S(t), t ≥ 0} is a.s. bounded. Then, following the same steps as in the
proof of Proposition 1 gives the desired result.

Now let ψ∗ be as in (13). In the light of the above lemma we focus on ψ∗ instead of ψ . So,
for u > 0, write

ψ∗(u) =
∫

R

E

[
sup
t>0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy

=
∫ 1

−1
E

[
sup
t>0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy

+
∫ −1

−∞
E

[
sup
t>0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy

+
∫ ∞

1
E

[
sup
t>0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy

=: ψ∗
1 (u)+ ψ∗

2 (u)+ ψ∗
3 (u). (30)

Then observe, by Hölder’s inequality and Fubini’s theorem, that

ψ∗
1 (u) =

∫ 1

−1
E

[
sup
t>0

[∫
R
ϕ(x + y)L(x, t) dx

u+ tpµ

]α]
dy

≤
∫ 1

−1
E

[
sup
t>0

[∫ 1−y
−1−y L(x, t) dx

u+ tpµ

]α]
dy

≤ 2 E

[
sup
t>0

[∫ 2
−2 L(x, t) dx

u+ tpµ

]α]

≤ 22α−1 sup
t>0

[ √
t

u+ tpµ

]α ∫ 2

−2
E

[
sup
t>0

Lα
(
x√
t
, 1

)]
dx

= 2α−1
{ [u/(2p − 1)µ]1/2p

pu

}α ∫ 2

−2
E

[
sup
t>0

Lα
(
x√
t
, 1

)]
dx.

Now recall that all moments of the supremum of the local time L(x, t) over all real x are finite.
Consequently, it follows from the above observation that, for some positive constant c0,

lim sup
u→∞

u(2pα−α−p)/2pψ∗
1 (u) ≤ c0 lim sup

u→∞
u(2pα−α−p)/2p

{
u1/2p−1

p[(2p − 1)µ]1/2p

}α
= 0. (31)

We will need the following two lemmas before we can proceed with ψ∗
2 and ψ∗

3 .

Lemma 6. For any y ∈ R, as u → ∞,

g(u, y) := E

[
sup
t≥0

[∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α]
∼ u−α(1−1/2p) E

[
sup
t≥0

[
L(0, t1/p)

1 + t

]α]
.

Proof. Fix y ∈ R and K > 0, and define

g1(u, y) := E

[
sup

t≥(uK)1/p

[∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α]
,
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and

g2(u, y) := E

[
sup

0≤t≤(uK)1/p

[∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α]
.

It follows from Hölder’s inequality and Fubini’s theorem that

g1(u, y) ≤
∞∑
j=1

E

[
sup

(uK2j−1)1/p≤t≤(uK2j )1/p

[∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α]

≤
(
u

2

)−α ∞∑
j=1

E

[(∫ (uK2j )1/p

0 ϕ(B(s)+ y) ds

K2j

)α]

≤ 2α(uK)−α(1−1/2p)
∞∑
j=1

2−jα(1−1/2p)
∫ 1−y

−1−y
E

[
Lα

(
x

(uK2j )1/2p
, 1

)]
dx.

Since all moments of the supremum of the local time L(x, t) over all real x are finite, the sum
on the right-hand side converges, and, hence,

lim
K↑∞ lim sup

u→∞
uα(1−1/2p)g1(u, y) = 0. (32)

Next observe that, for any continuity point z ≥ 0 of the distribution of

sup
0≤s≤K

L(0, s1/p)

1 + s
,

it follows from the argument given in [10, p. 52] that, as u → ∞,

P

(
sup

0≤t≤(uK)1/p
u1−1/2p

∫ t
0 ϕ(B(s)+ y) ds

u+ tp
≥ z

)

= P

(
u−1/2p

∫ (u s)1/p

0
ϕ(B(s)+ y) ds ≥ (1 + s)z for some 0 ≤ s ≤ K

)

∼ P(L(0, s1/p) ≥ (1 + s)z for some 0 ≤ s ≤ K)

= P

(
sup

0≤s≤K
L(0, s1/p)

1 + s
≥ z

)
.

Hence, we conclude that, as u → ∞,

sup
0≤t≤(uK)1/p

u1−1/2p
∫ t

0 ϕ(B(s)+ y) ds

u+ tp
⇒ sup

0≤t≤K
L(0, t1/p)

1 + t
,

where ‘⇒’ indicates weak convergence. Then, by the continuous mapping theorem,
[

sup
0≤t≤(uK)1/p

u1−1/2p
∫ t

0 ϕ(B(s)+ y) ds

u+ tp

]α
⇒

[
sup

0≤t≤K
L(0, t1/p)

1 + t

]α
. (33)

Also, observe that

sup
0≤t≤(uK)1/p

u1−1/2p
∫ t

0 ϕ(B(s)+ y) ds

u+ tp
≤ u−1/2p

∫ 1−y

−1−y
L(x, (uK)1/p) dx,

https://doi.org/10.1239/aap/1253281067 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281067


Power barriers for integrated stable processes 889

and, hence, for any δ > 0, by Hölder’s inequality and (12) we have

[
sup

0≤t≤(uK)1/p
u1−1/2p

∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α+δ

≤ 2α+δ−1
∫ 1−y

−1−y
Lα+δ

(
x

u1/2p ,K
1/p

)
dx.

It follows from Fubini’s theorem that

sup
u>0

E

[∣∣∣∣ sup
0≤t≤(uK)1/p

u1−1/2p
∫ t

0 ϕ(B(s)+ y) ds

u+ tp

∣∣∣∣
α+δ]

≤ 2α+δ−1
∫ 1−y

−1−y
E

[
sup
u>0

Lα+δ
(

x

u1/2p ,K
1/p

)]
dx

< ∞,

since all moments of the supremum of the local time L(x, t) over all real x are finite. Thus, it
follows from the conditions discussed in [25, p. 184] that the family

{[
sup

0≤t≤(uK)1/p
u1−1/2p

∫ t
0 ϕ(B(s)+ y) ds

u+ tp

]α}
u>0

is uniformly integrable. Combining this with (33), [25, Theorem 6.6.1] gives

lim
u→∞ u

α(1−1/2p)g2(u, y) = E

[(
sup

0≤t≤K
L(0, t1/p)

1 + t

)α]
,

and, therefore,

lim
K↑∞ lim

u→∞ u
α(1−1/2p)g2(u, y) = E

[(
sup
t≥0

L(0, t1/p)

1 + t

)α]
.

Finally, noting that g2(u, y) ≤ g(u, y) ≤ g1(u, y) + g2(u, y), and recalling (32), gives the
desired result.

Lemma 7. For any y ∈ R, as u → ∞,

G(u, y) :=
∫ ∞

0
E

[
sup
t≥0

[∫ t
0 ϕ(B(s)+ y) ds

u+ (t + v)p

]α]
v−1/2 dv

∼ u−(2pα−α−1)/2p

p
E

[(
sup
t≥0

L(0, t1/p)

1 + t

)α]
B

(
1

2p
,

2pα − α − 1

2p

)
,

where B(·, ·) is the beta function.

Proof. Fix y ∈ R and K > 0, and define

G1(u, y) :=
∫ (uK)1/p

0
E

[
sup
t≥0

(∫ t
0 ϕ(B(s)+ y) ds

u+ (t + v)p

)α]
v−1/2 dv,
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and

G2(u, y) :=
∫ ∞

(uK)1/p
E

[
sup
t≥0

(∫ t
0 ϕ(B(s)+ y) ds

u+ (t + v)p

)α]
v−1/2 dv.

Let g(u, y) be as in Lemma 6. Start by noting that
∫ (uK)1/p

0

[
inf
t≥0

u+ vp + tp

u+ (t + v)p

]α
g(u+ vp, y)v−1/2 dv

≤ G1(u, y)

≤
∫ (uK)1/p

0

[
sup
t≥0

u+ vp + tp

u+ (t + v)p

]α
g(u+ vp, y)v−1/2 dv.

But

sup
t≥0

u+ vp + tp

u+ (t + v)p
≤ 1 and lim

u→∞ inf
t≥0

u+ vp + tp

u+ (t + v)p
= 1.

Then it follows from Lemma 6 that, as u → ∞,

G1(u, y) ∼ E

[
sup
t≥0

[
L(0, t1/p)

1 + t

]α] ∫ (uK)1/p

0
(u+ vp)−α(1−1/2p)v−1/2 dv

= u−(2pα−α−1)/2p

p
E

[
sup
t≥0

[
L(0, t1/p)

1 + t

]α] ∫ K

0
(1 + z)−α(1−1/2p)z1/2p−1 dz.

Thus,

lim
K↑∞ lim

u→∞ u
(2pα−α−1)/2pG1(u, y) = B(1/2p, (2pα − α − 1)/2p)

p
E

[
sup
t≥0

[
L(0, t1/p)

1 + t

]α]
.

(34)
Furthermore, it follows from Lemma 6 again that, for any ε > 0, there exists uε such that, for
u > uε ,

G2(u, y) ≤
∫ ∞

(uK)1/p
g(vp, y)v−1/2 dv

≤ (1 + ε)(uK)−(2pα−α−1)/2p

p((2pα − α − 1)/2p)
E

[
sup
t≥0

(
L(0, t1/p)

1 + t

)α]
,

and, hence,
lim
K↑∞ lim sup

u→∞
u−(2pα−α−1)/2pG2(u, y) = 0. (35)

Combining (34) and (35), and observing that G1(u, y) ≤ G(u, y) ≤ G1(u, y) + G2(u, y),
concludes the proof of the lemma.

Lemma 7 will be our key tool in dealing with ψ∗
2 and ψ∗

3 . First concentrate on ψ∗
2 .

Let τ [y] := inf{t ≥ 0; B(t) = y} be the first passage time of level y ∈ R. Note that

ψ∗
2 (u) =

∫ −1

−∞
E

[
sup

t>τ [−1−y]

[∫ t
0 ϕ(B(s)+ y) ds

u+ tpµ

]α]
dy

=
∫ −1

−∞
E

[
sup
t>0

[∫ t+τ [−1−y]
τ [−1−y] ϕ(B(s)+ y) ds

u+ (t + τ [−1 − y])pµ
)α]

dy.
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It is known that, for v > 0 and y ∈ R,

P(τ [y] ∈ dv) = |y|√
2πv3

exp

(
−y

2

2v

)
dv

(cf. [13, p. 80]). Then, conditioning on τ [−1 − y], we see that the following is a direct
consequence of the strong Markov property for Brownian motion and Fubini’s theorem:

ψ∗
2 (u) =

∫ −1

−∞

∫ ∞

0
E

[
sup
t>0

[∫ t
0 ϕ(B(s)− 1) ds

u+ (t + v)pµ

]α]
P(τ [−1 − y] ∈ dv) dy

=
∫ ∞

0
E

[
sup
t>0

[∫ t
0 ϕ(B(s)− 1) ds

u+ (t + v)pµ

]α] ∫ −1

−∞
−1 − y√

2πv3
exp

(
− (−1 − y)2

2v

)
dy dv

= 1

µα
√

2π

∫ ∞

0
E

[
sup
t>0

[∫ t
0 ϕ(B(s)− 1) ds

u/µ+ (t + v)p

]α]
v−1/2 dv

= G(u/µ,−1)

µα
√

2π
.

Similarly, we can easily show that

ψ∗
3 (u) =

∫ ∞

1

∫ ∞

0
E

[
sup
t>0

[∫ t
0 ϕ(B(s)+ 1) ds

u+ (t + v)pµ

]α]
P(τ [1 − y] ∈ dv) dy

= G(u/µ, 1)

µα
√

2π
.

Therefore, recalling (30), (31), and Lemma 7, as u → ∞, we have

ψ∗(u) = o(u−(2pα−α−p)/2p)+ 1

µα
√

2π

[
G

(
u

µ
,−1

)
+G

(
u

µ
, 1

)]

∼ 2u−(2pα−α−1)/2p

µ(α+1)/2pp
√

2π
E

[(
sup
t≥0

L(0, t1/p)

1 + t

)α]
B

(
1

2p
,

2pα − α − 1

2p

)
.

Finally, since ψ∗(u) = 2ψ0(u)/Cα , the desired result follows.
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