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Abstract. In this paper, we discuss a connection between (−1,−1)-Freudenthal–
Kantor triple systems, anti-structurable algebras, quasi anti-flexible algebras and
give examples of such structures. The paper provides the correspondence and
characterization of a bilinear product corresponding a triple product.
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1. Introduction. The history of nonassociative algebras, the subject of this paper,
started with Hamilton, Cayley and Hurwitz and further with Artin and Zorn, who
studied alternative and nearly associative algebras. Thereafter, Freudenthal [10], Tits
[53], Kantor [34, 35, 36] and Koecher [39, 40] studied constructions of Lie algebras
from nonassociative algebras and triple systems, in particular Jordan algebras, while
Allison [1, 2] defined the concept of structurable algebras, containing Jordan algebras.
Recently, we have studied constructions of Lie superalgebras as well as Lie algebras
from triple systems [25, 27, 30–32]. As a continuation of [30, 31], we are interested
in characterizing the structure properties [7, 20, 28] of the subspace L−1 of the
five graded Lie (super)algebra L(ε, δ) := L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, [Li, Lj] ⊆ Li+j,
associated with an (ε, δ)-Freudenthal–Kantor triple system. In particular, we deal with
a characterization of triple systems from the point of view of a bilinear product by
means of anti-structurable algebras or balanced property. Specially, Jordan and Lie
(super)algebras [9, 13, 52] play an important role in many mathematical and physical
subjects [5, 11–14, 16, 26, 29, 37, 47, 48, 55, 56]). We also note that the construction
and characterization of these algebras can be expressed in terms of triple systems
[20, 23, 24, 28, 38, 49] by using the standard embedding method [22, 41, 42, 50, 54].
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As for δ-structurable algebras, the motivation for the study of such nonassociative
algebras is as follows. The existence of the class of structurable algebras is an important
generalization of Jordan algebras giving a construction of Lie algebras. Hence, from
our concept, by means of triple products, we define a generalization of such class to
construct Lie (super)algebras.

Summarizing the content, we give the introduction in Section 1. In Section
2, we present definitions and preamble. In Section 3, we present the study of
(−1,−1)-Freudenthal–Kantor triple systems and anti-structurable algebras and the
correspondence and characterization of a bilinear product corresponding a triple
product and study the structure of a broader class of algebras, i.e. anti-structurable
and quasi-flexible algebras, which generalize structurable and flexible algebras.

2. Definitions.

2.1. (ε, δ)-Freudenthal–Kantor triple systems. We are concerned in this paper
with triple systems which have finite dimension over a field � of characteristic �= 2 or
3.

In order to render this paper as self-contained as possible, we recall first the
definition of a generalized Jordan triple system of second order (for short GJTS of 2nd
order).

A vector space V over a field � endowed with a trilinear operation V × V × V →
V , (x, y, z) �−→ (xyz) is said to be a GJTS of 2nd order if the following conditions are
fulfilled:

(ab(xyz)) = ((abx)yz) − (x(bay)z) + (xy(abz)), (2.1)

K(K(a, b)x, y) − L(y, x)K(a, b) − K(a, b)L(x, y) = 0, (2.2)

where L(a, b)c := (abc) and K(a, b)c := (acb) − (bca).
A Jordan triple system (for short JTS) satisfies (2.1) and the identity (abc) = (cba).
We can generalize the concept of GJTS of 2nd order as follows (see [14, 15, 18–

22, 54] and the earlier references therein). For ε = ±1, δ = ±1, a triple product that
satisfies

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)), (2.3)

K(K(a, b)x, y) − L(y, x)K(a, b) + εK(a, b)L(x, y) = 0, (2.4)

where

L(a, b)c := (abc), K(a, b)c := (acb) − δ(bca), (2.5)

is called an (ε, δ)-Freudenthal–Kantor triple system (for short (ε, δ)-FKTS).

REMARK. We note that the concept of GJTS of 2nd order coincides with that
of (−1, 1)-FKTS. Thus, we can construct the simple Lie algebras by means of the
standard embedding method [6, 14–18, 22, 25, 27, 36, 54].

For an (ε, δ)-FKTS U, we denote

A(a, b) := L(a, b) − εL(b, a), (2.6)
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where L(a, b) is defined by (2.5). Then A(a, b)) is an anti-derivation of U [31], that is

[A(a, b), L(c, d)] = L(A(a, b)c, d) − L(c, A(a, b)d). (2.7)

An (ε, δ)-FKTS U is called unitary if the identity map Id is contained in κ :=
K(U, U) i.e., if there exist ai, bi ∈ U, such that �iK(ai, bi) = Id.

REMARK. We note that a balanced triple system (i.e. it fulfils K(x, y) =< x | y >′

Id, where < |>′ is a symmetric bilinear form) is unitary, since Id ∈ κ = K(U, U).
We show in the following remark the equivalence between the balanced notion

defined above and the one of [7].

REMARK. We note that for a triple system U with product ( ), the notion of balanced
(−1,−1)-FKTS is equivalent to saying that the triple system satisfies (2.3) and

(xxy) = (xyx) =< x | x > y, x, y ∈ U, (2.8)

where < |> is a symmetric bilinear form.
Indeed, if U is a (−1, 1)-FKTS then (2.3) is fulfilled and, by (2.4),

K(K(a, b)x, y) − L(y, x)K(a, b) − K(a, b)L(x, y) = 0, a, b, x, y ∈ U,

that is K(x, y) = L(y, x) + L(x, y) =< x | y >′ Id, since K(x, y) =< x | y >′ Id, hence

(xwy) + (ywx) = (xyw) + (yxw) =< x | y >′ w, x, y, w ∈ U.

If we put now x = y in the last line, it follows 2(xwx) = 2(xxw) =< x | x >′ w, that is,
(2.8) is valid for the symmetric form < |>= 1

2 < |>′.
In contrast, by linearizing (2.8), we have

(xzy) + (yzx) = (xyz) + (zyx) =< x | z > y+ < z | x > y, x, y, z ∈ U,

hence, by (2.5), K(x, z) = 2 < x | z >, x, z ∈ U , so K(x, y) =< x | y >′ Id, x, y ∈ U .

2.2. δ-structurable algebras. Within the general framework of (ε, δ)-FKTSs
(ε, δ = ±1) and the standard embedding Lie (super)algebra construction studied in
[6, 7, 14–16, 27], we define δ-structurable algebras as a class of nonassociative algebras
with involution which coincides with the class of structurable algebras for δ = 1 as
introduced and studied in [1, 2]. Structurable algebras are a class of nonassociative
algebras with involution that include Jordan algebras (with trivial involution),
associative algebras with involution, and alternative algebras with involution. They
are related to (−1, 1)-FKTSs as introduced and studied in [34, 35] (and further studied
in [3, 4, 33, 43–46, 51]). Their importance lies with constructions of five graded Lie
algebras L(−1, 1). For δ = −1, the anti-structurable algebras [30] are a new class of
nonassociative algebras that may similarly shed light on the notion of (−1,−1)-FKTSs,
hence (by [6, 7]) on the construction of Lie superalgebras and Jordan algebras.

Let (A,− ) be a finite-dimensional nonassociative unital algebra with involution
(involutive anti-automorphism, i.e. x = x, xy = y x, x, y ∈ A) over �. Since char� �=
2, by [1], we have A = H ⊕ S, where H = {a ∈ A | a = a} and S = {a ∈ A | a = −a}.

Suppose x, y, z ∈ A. Put [x, y] := xy − yx and [x, y, z] := (xy)z − x(yz) so
[x, y, z] = −[z, y, x]. The operators Lx and Rx are defined by Lx(y) := xy, Rx(y) := yx.
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For δ = ±1 and x, y ∈ A define

δVx,y := LLx(y) + δ(RxRy − RyRx), (2.9)
δBA(x, y, z) :=δ Vx,y(z) = (xy)z + δ[(zy)x − (zx)y], x, y, z ∈ A. (2.10)

Here +BA(x, y, z) is called the triple system obtained from the algebra (A,− ). We will
call −BA(x, y, z) the anti-triple system obtained from the algebra (A,− ). We write for
short

Vx,y := δVx,y, BA := (δBA,A). (2.11)

A unital non-associative algebra with involution (A,− ) is called a structurable
algebra if

[Vu,v, Vx,y] = VVu,v (x),y − Vx,Vv,u(y), (2.12)

for Vu,v =+Vu,v, Vx,y =+Vx,y, u, v, x, y ∈ A, and we will call (A,− ) an anti-structurable
algebra if the identity (2.12) is fulfilled for Vu,v =−Vu,v, Vx,y =−Vx,y.

If (A,−) is structurable then, in [35], the triple system BA is called a generalized
Jordan triple system (GJTS) and in [8], BA is a GJTS of 2nd order, i.e. satisfies the
identities (2.3) and (2.4). If (A,− ) is anti-structurable then we call BA an anti-GJTS.

3. δ-flexible, quasi-flexible algebras and (−1,−1)-FKTSs.

3.1. δ-flexible and quasi-flexible algebras. For δ = ±1, an algebra A is called
δ-flexible if

−δ[x, y, z] = [z, y, x], x, y, z ∈ A. (3.13)

For δ = 1 then A is flexible, while for δ = −1 then A is called anti-flexible.

EXAMPLE. For δ = ±1, if A is an associative algebra then it is δ-flexible.
An algebra A is called quasi-flexible if

[x, y, z]w + [wy, z, x] = [xy, z, w] + [w, y, z]x, x, y, z, w ∈ A. (3.14)

REMARK. If we put y = e, the unit element, in (3.14) then we have
[x, z, w] = [w, z, x]; hence, (3.14) is a generalization of the anti-flexible property.

REMARK. If we put w = e, the unit element, in (3.14) then we have [x, y, z] =
−[y, z, x]; hence,

[x, y, z] = −[y, z, x] = (−1)2[z, x, y] = (−1)3[x, y, z] = −[x, y, z].

Then, [x, y, z] = 0 for char� �= 2; hence (3.14) is a generalization of the associative
property (char� �= 2).

First, we outline the main result as follows.

THEOREM 3.1. Let U be an anti-structurable and quasi-flexible algebra. Then U is a
(−1,−1)-FKTS.
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COROLLARY 3.1. Let U be an anti-structurable associative algebra. Then U is a
(−1,−1)-FKTS.

EXAMPLE. Let Mm,n(�) denote the vector space of m × n matrices over � and for
x ∈ Mm,n(�) denote by x� the transposed matrix. Then Mn,n(�) with the product

{x, y, z} := xy�z − zy�x + zx�y, x, y, z ∈ Mn,n(�) (3.15)

is a (−1,−1)-FKTS.

Proof of theorem. We remark first that for x, y ∈ U we have K(x, y) ≡ A(x, y) ≡
Lxy+yx, where K(x, y) and A(x, y) are defined by (2.5) and (2.6), respectively.
Indeed,

K(x, y)z = {x, z, y} + {y, z, x} = (xz)y − (yz)x + (yx)z + (yz)x

− (xz)y + (xy)z = Lxy+yx

is valid by (2.5) and (2.10), while by (2.6) and (2.10) follows

A(x, y)z = {x, y, z} + {y, x, z} = (xy)z − (zy)x + (zx)y + (yx)z

− (zx)y + (zy)x = Lxy+yx.

Then, by (2.4), it is enough to show A(A(a, b)c, d) = L(d, c)A(a, b) + A(a, b)L(c, d).
Thus, by (2.6), we must show

L(A(a, b)c, d) + L(d, A(a, b)c) = L(d, c)A(a, b) + A(a, b)L(c, d). (3.16)

We note now that by (2.7),

A(a, b)L(c, d) = L(A(a, b)c, d) − L(c, A(a, b)d) + L(c, d)A(a, b), (3.17)

and then replacing the last term on the right-hand side of equation (3.16) with the
right-hand side of (3.17) and cancelling, (3.16) becomes

L(d, A(a, b)c) + L(c, A(a, b)d) = (L(d, c) + L(c, d))A(a, b) = A(c, d)A(a, b). (3.18)

Denote h := ab + ba. Then, (3.18) can be written as

L(d, hc) + L(c, hd) = (L(d, c) + L(c, d))A(a, b) = A(c, d)h, (3.19)

or equivalently, by (2.5) and (2.10),

(d(hc))u − (u(hc))d + (ud)(hc) + (c(hd))u − (u(hd))c + (uc)(hd) = (cd + dc)(hu),

(3.20)

for all a, b, c, d, u ∈ U . Furthermore, since − is an involution and h = h, (3.20) is
equivalent to

(d(ch))u − (u(ch))d + (ud)(hc) + (c(dh))u − (u(dh))c + (uc)(hd) = (cd)(hu) + (dc)(hu),

(3.21)
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that is

(d(ch))u − (dc)(hu) − (u(ch))d + (uc)(hd) + (ud)(hc)

− (u(dh))c + (c(dh))u − (cd)(hu) = 0.

If we put now d = x, c = y, h = z, u = w, in the last line, then (3.21) is equivalent to

(x(yz))w − (xy)(zw) − (w(yz))x + (wy)(zx) + (wx)(zy) − (w(xz))y

+ (y(xz))w − (y x)(zw) = 0. (3.22)

If we denote E(x, y, z, w) := (x(yz))w − (xy)(zw) − (w(yz))x + (wy)(zx), then (3.22)
holds if

E(x, y, z, w) = 0, (3.23)

for all x, y, z, w ∈ U since the identity (3.22) is equivalent to E(x, y, z, w) −
E(w, x, z, y) = 0.

The identity (3.23) holds if and only if

[x, yz, w] + x((yz)w) − (xy)(zw) − [w, yz, x] − w((yz)x) + (wy)(zx) = 0,

that is

[x, yz, w] + x[y, z, w] + x(y(zw)) − (xy)(zw) − [w, yz, x] − w[y, z, x]

−w(y(zx)) + (wy)(zx) = 0,

or equivalently

[x, yz, w] + x[y, z, w] − [x, y, zw] − [w, yz, x] − w[y, z, x] + [w, y, zx] = 0. (3.24)

In general, we have [a, b, c]d + [a, bc, d] = [ab, c, d] + [a, b, cd] − a[b, c, d]. Hence,
we have

[x, yz, w] + x[y, z, w] − [x, y, zw] = [xy, z, w] − [x, y, z]w (3.25)

and

−[w, yz, x] − w[y, z, x] + [w, y, zx] = [w, y, z]x − [wy, z, x]. (3.26)

Then, by (3.25) and (3.26), it follows that the identity is equivalent to the quasi-flexible
property (3.14). Hence, an anti-structurable and quasi-flexible algebra is a (−1,−1)-
FKTS. �

REMARK. We note that an anti-structurable algebra which is quasi-flexible is Lie
admissible. The proof will be given elsewhere.

3.2. (−1,−1)-FKTSs with left unit element. We outline first the main result as
follows.

THEOREM 3.2. A (−1,−1)-FKTS U with product ( ) and left unit element e can be
determined in terms of the bilinear product of U defined by

x · y = (exy), x, y ∈ U. (3.27)
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Let U be a triple system with product ( ). An element e ∈ U is called a left unit element
if

(eex) = x. (3.28)

An element e ∈ U is called a tripotent if

(eee) = e. (3.29)

Let us denote

Q(x) := (exe), R(x) := (xee), x ∈ U. (3.30)

LEMMA 3.1. Let U be a (−1,−1)-FKTS with a left unit element e. Then

Q2(x) = R2(x) = x, RQ(x) = QR(x), x ∈ U.

Proof. We remark first that by (2.5) and (3.29) we have K(e, e)e = 2e. Moreover,
by (2.4),

K(K(e, e)e, x)e − 2L(x, e)K(e, e)e − K(e, e)L(e, x)e = 0,

hence 2K(e, x)e − 2L(x, e)e − 2(eQ(x)e) = 0. Thus, by (2.5), (eex) + (xee) − (xee) −
Q2(x) = 0, that is Q2(x) = (eex) = x for all x ∈ U . Furthermore, by (2.3),

(xe(eee)) = ((xee)ee) − (e(exe)e) + (ee(xee)),

or equivalently, by (3.29), (xee) = ((xee)ee) − (e(exe)e) + (xee), that is Q2(x) = R2(x).
Finally, by (2.3), it follows that (ex(eee)) = ((exe)ee) − (e(xee)e) + (ee(exe)), or

equivalently, by (3.29), (exe) = RQ(x) − QR(x) + (exe), that is RQ(x) = QR(x). �
REMARK. By [38], we note that for a (−1, 1)-FKTS U with product ( ) and left

unit element e can be determined in terms of the bilinear product of U defined by
x ◦ y = (xey), x, y ∈ U , that is, by Theorem 3.3 [38], U = U+

11 ⊕ U−
11 ⊕ U+

13 ⊕ U−
13 with

the product

(xyz) = (Q−1(y) ◦ x) ◦ z + x ◦ (Q−1(y) ◦ z) − Q−1(y) ◦ (x ◦ z),

where Q(x) =
{ ±x, if x∈U±

11

±3x, if x∈U±
13

and U1i := {x ∈ U | R(x) = ix}.

Proof of theorem. By (2.3), it follows that (xe(eey)) = ((xee)ey) − (e(exe)y) +
(ee(xey)), or equivalently, (xey) = ((xee)ey) − (e(exe)y) + (xey), that is, by (3.30),

(eQ(x)y) = (R(x)ey), x, y ∈ U. (3.31)

Now, by Lemma 3.1, Q2(x) = x and by replacing x by Q(x) in (3.31) we have, by (3.27),

x · y = (exy) = (RQ(x)ey), x, y ∈ U. (3.32)
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Furthermore, by Lemma 3.1, Q2(x) = R2(x) = x and by replacing x by QR(x) in (3.32),
we have

QR(x) · y = (xey). (3.33)

On the other hand, by (2.3), it follows that (ex(eye)) = ((exe)ye) − (e(xey)e) +
(ey(exe)), or equivalently, by (3.30), (exQ(y)) = (Q(x)ye) − Q(xey) + (eyQ(x)).
Hence, by (3.27) and (3.33) follows x · Q(y) = (Q(x)ye) − Q(QR(x) · y) + y · Q(x)
or equivalently, by Lemma 3.1, x · Q(y) = (Q(x)ye) − Q(RQ(x) · y) + y · Q(x) for all
x, y ∈ U . Replacing x by Q(x) in the last line follows Q(x) · Q(y) = (Q2(x)ye) −
Q(RQ2(x) · y) + y · Q2(x); hence by Lemma 3.1,

(xye) = Q(x) · Q(y) + Q(R(x) · y) − y · x. (3.34)

Finally, by (2.3) follows (ex(yze)) = ((exy)ze) − (y(xez)e) + (yz(exe)), or equivalently,
by (3.30), (yzQ(x)) = (ex(yze)) − ((exy)ze) + (y(xez)e), for all x, y, z ∈ U . Replacing x
by Q(x) in the last line follows, by Lemma 3.1, (yzx) = (eQ(x)(yze)) − ((eQ(x)y)ze) +
(y(Q(x)ez)e), or equivalently,

(xyz) = (eQ(z)(xye)) − ((eQ(z)x)ye) + (x(Q(z)ey)e), x, y, z ∈ U. (3.35)

Hence, the product (xyz) can be characterized in terms of the bilinear pro-
duct (3.27). �

We now give a corollary which first appeared in [7] but without using the notion
of quadratic algebra [7]. First, we need a remark and two lemmas.

REMARK. We shall remark that the balanced property gives

x + x = T(x)e, where x := R(x) = (xee), T(x)e := 2 < x | e > e, (3.36)

and

e · x = x · e = x, [e, x, y] = 0 = [x, e, y], x, y ∈ U. (3.37)

Indeed, by (2.8), (xyx) =< x | x > y, x, y ∈ U ; hence, (xyz) + (zyx) = 2 < x | z >,
by the symmetry of the bilinear form. Then, (xee) + (eex) = 2 < x | e > e so, by (3.28),
it follows that (3.36) is fulfilled. Also by (2.8), (exe) =< e | e > x, x ∈ U , that is, by
(3.27), x · e = x since e is a tripotent. Then, x · e = x = e · x, by (3.28). Moreover,
the last identity gives [e, x, y] = (e · x) · y − e · (x · y) = x · y − x · y = 0 as well as
[x, e, y] = (x · e) · y − x · (e · y) = x · y − x · y = 0, so (3.37) is fulfilled.

LEMMA 3.2. Let U be a balanced (−1,−1)-FKTS with product ( ) and left unit
element e. Then the bilinear product (3.27) is flexible.

Proof. Indeed, by (2.8),

(ex(eyx)) + (xe(eyx)) = 2 < x | e > (eyx) = 2 < x | e > y · x = T(x)(y · x), x, y ∈ U.

(3.38)

On the other hand, by (2.3), it follows that (xe(eyx)) = ((xee)yx) − (e(exy)e) +
(ey(xex)), or equivalently, by (2.8)

(e(exy)e) = −(xe(eyx)) + ((xee)yx) + (ey(xex)) = −(xe(eyx)) + (xyx)+ < x | x > y · e,
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that is (e(exy)e) = −(xe(eyx)) + ((T(x) − x)yx)+ < x | x > y · e; hence,

(e(exy)e) = −(xe(eyx)) + T(x)(y · x) − (xyx)+ < x | x > y = −(xe(eyx)) + T(x)(y · x).

(3.39)

Then by (3.38) and (3.39) follows (ex(eyx)) = (e(exy)e), or equivalently x · (y · x) =
(x · y) · x; hence, [x, y, x] = 0, which implies the flexible identity (3.13). �

LEMMA 3.3. Let U be a balanced (−1,−1)-FKTS with product ( ) and left unit
element e. Then

x · y = y · x, x = x, x, y ∈ U, (3.40)

where x := (xee) and x · y is the bilinear product of U defined by (3.27).

Proof. By definition x · y = ((x · y)ee) = ((exy)ee); hence, by (2.3), it follows that

x · y = (ex(yee)) + (y(xee)e) − (ye(exe)) = x · y + (yxe) − y · x, (3.41)

since by the balanced property (2.3), (3.28) and (3.30), we have Q(x) = (exe) = (eex) =
x. Furthermore, by (3.30) we have R(x) = (xee) = x; hence, by (3.34),

(yxe) = y · x + y · x − x · y. (3.42)

Then, by (3.42) and (3.34), it follows

x · y = x · y + y · x + y · x − x · y − y · x. (3.43)

Now, by (3.36), it follows that (3.43) is equivalent to

x · y = (T(x)e − x) · y + (T(y)e − y) · x + y · x − x · (T(y)e − y) − y · (T(x)e − x).

Then, the first identity in (3.40) follows from the last line, (3.27) and straightforward
cancellations. The second identity in (3.40), that is x = x, follows from Lemma 3.1,
that is from the identity R2(x) = x since we have shown above that R(x) = x; hence
R2(x) = x. �

COROLLARY 3.2. Let U be a balanced (−1,−1)-FKTS with product ( ) and left unit
element e. Then

(xyz) = (x · y) · z − x · (y · z) + y · (x · z), x, y, z ∈ U, (3.44)

where x := (xee) and x · y is the bilinear product of U defined by (3.27).

Proof. Since by the proof of Lemma 3.3 we have Q(x) = x, R(x) = x, then by
(3.35),

(xyz) = (ez(xye)) − ((ezx)ye) + (x(zey)e). (3.45)

Now, since x · y = (exy), x · y = (xey) and, by (3.42), (xye) = x · y + x · y − y · x,

then (ez(xye)) = z · (x · y + x · y − y · x), ((ezx)ye) = ((z · x)ye) = (z · x) · y + (z · x) ·
y − y · (z · x) and (x(zey)e) = (x(z · y)e) = x · (z · y) + x · (z · y) − (z · y) · x. Hence,
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(3.45) is equivalent to

(xyz) = −[z, x, y] + z · (x · y) + z · (y · x) − T(z) · (y · x) − (z · y) · x
− (x · z) · y − x · (z · y) + T(x) · (z · y) + x · (z · y) + y · (z · x),

that is

(xyz) = −[z, x, y] + z · (x · y) − [z, y, x] − T(z) · (y · x) − (x · z) · y

+ T(x) · (z · y) + y · (z · x).

Since (x · z) · y = ((T(x)e − x) · z) · y = T(x)(z · y) − (x · z) · y, then the last identity is
equivalent to

(xyz) = −[z, x, y] + z · (x · y) − [z, y, x] − T(z) · (y · x) + (x · z) · y + y · (z · x).

(3.46)

We remark now that [z, x, y] = −[z, x, y] since z = T(z)e − z and [e, x, y] = 0, by
(3.37); hence, by (3.46), it follows that

(xyz) = [z, x, y] + z · (x · y) − [z, y, x] + (x · z) · y − y · (z · x), (3.47)

since −T(z) · (y · x) + y · (z · x) = −y · (z · x). Analogously, we have [z, x, y] =
−[z, x, y], by (3.37); thus [z, x, y] = −[z, x, y] = −[z, x, y]. Hence, by (3.47), it follows
that

(xyz) = [z, x, y] + z · (x · y) − [z, y, x] + (x · z) · y − y · (z · x). (3.48)

Now, from the identity [z, y, x] = −[z, y, x] above, it follows that [z, y, x] =
−[z, y, T(x) − x] = [z, y, x] since, by Lemma 3.2 the flexible property is satisfied for
the dot product; thus [z, y, e] = 0 since [e, y, z] = 0, by (3.37). Then the identity (3.48)
is equivalent to

(xyz) = [z, x, y] + z · (x · y) − [z, y, x] + (x · z) · y − y · (z · x), i.e.

(xyz) = (z · x) · y − [z, y, x] + (x · z) · y − y · (z · x)

= (x · z + x · z) · y − y · (z · x) + [x, y, z]. (3.49)

Furthermore, since x · z + x · z = T(x · z) by the flexible property, and

T(x · y) = T(x · y) = T(y · x) = T((T(y) − y) · (T(x) − x)) = T(y · x),

it follows that (3.49) is equivalent to

(xyz) = T(z · x)y − y · (z · x) + [x, y, z] = y · (z · x) = y · (x · z) + [x, y, z],

hence the identity (3.44) is fulfilled. �
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