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Flow of a thin viscous film down a flat inclined plane becomes unstable to long-wave
interfacial fluctuations when the Reynolds number based on the mean film thickness
becomes larger than a critical value (this value decreases as the angle of inclination
to the horizontal increases, and in particular becomes zero when the plate is vertical).
Control of these interfacial instabilities is relevant to a wide range of industrial
applications including coating processes and heat or mass transfer systems. This
study considers the effect of blowing and suction through the substrate in order to
construct from first principles physically realistic models that can be used for detailed
passive and active control studies of direct relevance to possible experiments. Two
different long-wave, thin-film equations are derived to describe this system; these
include the imposed blowing/suction as well as inertia, surface tension, gravity and
viscosity. The case of spatially periodic blowing and suction is considered in detail
and the bifurcation structure of forced steady states is explored numerically to predict
that steady states cease to exist for sufficiently large suction speeds since the film
locally thins to zero thickness, giving way to dry patches on the substrate. The linear
stability of the resulting non-uniform steady states is investigated for perturbations of
arbitrary wavelength, and any instabilities are followed into the fully nonlinear regime
using time-dependent computations. The case of small amplitude blowing/suction is
studied analytically both for steady states and their stability. Finally, the transition
between travelling waves and non-uniform steady states is explored as the amplitude
of blowing and suction is increased.

Key words: bifurcation, interfacial flows (free surface), thin films

1. Introduction
The flow of a viscous liquid film down an inclined plane under the action of

gravity, inertia and surface tension, is a fundamental problem in fluid mechanics
that has received considerable attention both theoretically and experimentally due
to the richness of its dynamics and its wide technological applications, e.g. in
coating processes and heat or mass transfer enhancement. For sufficiently thin
films (with other parameters such as inclination angle and viscosity fixed), the
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FIGURE 1. (Colour online) Sketch of flow domain showing coordinate system. We
consider a fluid layer with mean height hs, bounded along y= 0 by a rigid planar wall
inclined at angle θ to the horizontal, and at y= h(x, t) by a free surface. Fluid is injected
through the wall, and so the normal velocity at the wall is given by the prescribed function
v = F(x, t).

uniform Nusselt solution (Nusselt 1923) is stable, but for thicker layers, the flow is
susceptible to interfacial instabilities in the form of two-dimensional travelling waves
which propagate down the slope, followed by more complicated time-dependent and
three-dimensional behaviour. The linear stability of a uniform film was first considered
by Benjamin (1957) and Yih (1963), who used an Orr–Sommerfeld analysis to show
that instability first appears at wavelengths that are large compared to the undisturbed
film thickness, hs. Using the Nusselt velocity at the free surface, we define a Reynolds
number R = ρ2gh3

s sin θ/2µ2 (see (2.4) also) where ρ is the fluid density, g is the
gravitational acceleration, θ is the angle of inclination to the horizontal (see figure 1)
and µ is the viscosity of the fluid; the flow becomes linearly unstable to long waves
when R > Rc = (5/4) cot θ and we can see that the critical Reynolds number tends
to zero as the plate becomes vertical. This result also shows that, for a given angle,
the flow can be made unstable by increasing the density and/or the film thickness, or
decreasing the viscosity.

In order to go beyond linear theory without recourse to direct numerical simulations
of the Navier–Stokes equations, a hierarchy of long-wave reduced-dimension models
have been developed to analyse in detail the stability and nonlinear development
of the flow (see reviews by Craster & Matar 2009; Kalliadasis et al. 2012). The
simplest fully nonlinear long-wave model was developed by Benney (1966), who
used an expansion in a small slenderness parameter to derive a single evolution
equation for the interface height. The Benney equation is valid for Reynolds numbers
near the critical value Rc (in fact it captures exactly the linear stability threshold).
However, for R sufficiently above this critical value, solutions can become unbounded
in finite time (Pumir, Manneville & Pomeau 1983), a phenomenon that invalidates
the long-wave approximation and is not observed in numerical simulations of the
Navier–Stokes equations (Oron & Gottlieb 2002; Scheid et al. 2005). The Benney
equation forms a rational basis for the development of asymptotically correct weakly
nonlinear models that lead to the Kuramoto–Sivashinsky (KS) equation (see Tseluiko
& Papageorgiou 2006, and references therein, for example). The KS equation displays
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very rich dynamical behaviour, including spatio-temporal chaos. In other canonical
asymptotic weakly nonlinear regimes one can derive the generalised (i.e. dispersively
modified) KS equation along with electric-field induced instabilities (Tseluiko &
Papageorgiou 2006, 2010). In order to overcome the near-critical restrictions of the
Benney equation, Shkadov (1969) developed a coupled fully nonlinear long-wave
system for the free-surface height and the local mass flux. The Shkadov model
avoids finite-time singularities, but under predicts the critical Reynolds number. Using
a weighted-residual method, Ruyer-Quil & Manneville (2000) recently developed
a new two-degrees-of-freedom long-wave model, which has the correct stability
threshold and is well behaved in the nonlinear regime.

In this paper, we consider two such reduced-dimensional models in the presence of
blowing and suction, based on the Benney and the weighted-residual methodologies.
These two models are the simplest models which correctly predict the critical
Reynolds number in the absence of blowing and suction. The Benney equation
is easier to use as it is scalar, but it is also less accurate at moderate Reynolds
number and can display unphysical finite-time blow up. The weighted residual model
has two coupled degrees of freedom, but is more accurate and appears to avoid blow
up in numerical computations. Many of the phenomena described in this paper occur
for both of these models, or indeed at zero Reynolds number, where the models are
identical, and so we can have reasonable confidence that the results do not depend
qualitatively on the model used.

In applications it is useful to be able to control the film dynamics. For instance,
in coating applications, a stable uniform film is required, whereas in heat or mass
transfer applications, efficiency is improved if the flow is non-uniform and attains
increased surface area and recirculation regions. Such diverse requirements motivate
the introduction of extrinsic modifications to the system in the interest of controlling
the dynamics. An example of such a modification is the utilization of a heated
substrate, which affects the interfacial dynamics via a combination of Marangoni
effects and evaporation (Kalliadasis et al. 2012). Substrate heating thus introduces
new modes of instability relating to convection, and lowers the critical Reynolds
number. The substrate behaviour can also be altered by allowing chemical coatings,
elastic deformations or interactions with flow through porous media (Thiele, Goyeau
& Velarde 2009; Ogden, D’Alessio & Pascal 2011; Samanta, Ruyer-Quil & Goyeau
2011; Samanta, Goyeau & Ruyer-Quil 2013), which is often modelled by an effective
slip condition. External fields can also be used to stabilise or destabilise the interface.
Depending on the fluids used, an applied magnetic field can stabilise the flow (see
Hsieh 1965; Shen, Sun & Meyer 1991; Renardy & Sun 1994), whereas an electric
field applied normal to the interface can destabilize the flow and in fact drive it to
chaotic spatio-temporal dynamics even below critical R<Rc (Tseluiko & Papageorgiou
2006, 2010).

One way to modify the dynamics of falling film flows is to topographically structure
the substrate. There have been several theoretical and experimental studies of film
flows down wavy inclined planes (typically with sinusoidal and step topographies),
aiming to explore how topography affects stability and stability criteria such as
the critical Reynolds number, how substrate heterogeneity interacts with nonlinear
coherent structures and from a practical perspective, how topography induces flows
that can be useful in heat or mass transfer by creating regions of recirculating fluid
(see for example Tseluiko, Blyth & Papageorgiou (2013), and numerous references
therein). The problem is quite complex with several parameters and an overall
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conclusion of these studies is that topography can either decrease or increase the
critical Reynolds number in different regimes.

Inhomogeneous heating of the substrate can generate non-uniform film profiles,
even in the absence of inclination (Saprykin et al. 2007). Scheid et al. (2002)
used an extension of the Benney model to analyse flow over a substrate with a
sinusoidally varying heat distribution, where temperature is coupled to flow via
Marangoni effects. They solved the equations to obtain travelling waves in the case
of uniform heating, and steady non-uniform solutions in the case of non-uniform
heating, and used initial value calculations to demonstrate that imposing heating is
able to halt the progress of a travelling wave, leading to stable, steady interface shapes.
The combination of localized heating and topography has also been considered and
it has been demonstrated that features that form in the isothermal case (e.g. ridge
formation ahead of step-down topography) can be removed by suitable heating (see
Ogden et al. 2011; Blyth & Bassom 2012). The removal of such a ridge has also
been shown to be possible by the imposition of vertical electric fields rather than
heating, providing another physical mechanism for interface control (see Tseluiko
et al. 2008a,b).

Suction and injection blowing through an otherwise rigid substrate has well-known
applications in stabilizing flows and changing global structures that can negatively
affect performance, such as boundary-layer separation, for example. In the types
of interfacial flows of interest here, there has been much more limited exploration;
Momoniat, Ravindran & Roy (2010) studied the effect of imposing either suction
or injection on a spreading drop and found that injection enhances ridge formation,
while suction leads to cavities forming on the free surface. As the total mass is not
conserved, a steady state is impossible, but they found that both injection and suction
are able to disrupt the predominantly streamwise spreading that would occur in the
absence of such effects. The total fluid mass is also not conserved for the flows of
films and drops over porous substrates (Davis & Hocking 2000); in fact both drops
and films are drawn entirely into the substrate in finite time as would be expected.
In the analysis of drop evaporation, a number of studies, e.g. Anderson & Davis
(1995) and more recently Todorova, Thiele & Pismen (2012) among others, have
considered the steady state obtained by imposing injection through the substrate that
exactly balances the mass lost to evaporation. In the latter study, the injection profile
was imposed according to a Gaussian distribution, and the drop shape is largely
independent of this distribution as long as the injection is not too large near the drop
contact line (note that a precursor film model was used by Todorova et al. 2012). For
continuous falling liquid films over porous substrates there have been linear stability
studies invoking a Darcy law in the porous medium and a Beavers–Joseph boundary
condition at the liquid substrate boundary (Sadiq & Usha 2008; Usha et al. 2011).
It is found that an effective slippage takes place that enhances the instability in the
sense that it reduces the critical Reynolds number. Slippage models were investigated
further by Samanta et al. (2011) and an alternative porous medium model is proposed
and analysed by Samanta et al. (2013).

In this paper we impose blowing or suction through the wall, and perpendicular
to it, of fluid that is identical to that of the liquid film. We thus replace the typical
no penetration condition at the boundary of the porous wall with blowing and
suction applied in the form of a specified, spatially varying, normal velocity. We will
assume that there is no slip along the substrate. Beavers & Joseph (1967) argued that
tangential slip occurs at the boundary between a fluid-filled porous medium and fluid
layer, and that the slip length scales with typical pore size. The no-slip boundary
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condition is therefore appropriate to those experimental set-ups for which the pores or
slits on the substrate which provide the conduit for fluid to enter and leave the wall
are much smaller than the typical film thickness. When this condition does not hold,
it would be necessary to modify the model to include a non-zero slip length along the
substrate, but we do not pursue this here. The blowing and suction of fluid through the
substrate affect the total mass in the film and on physical grounds we can anticipate
that a net suction would dry the substrate in finite time, whereas a net blowing would
increase the total mass and hence the mean thickness at any given time. An increase
in thickness would consequently increase the instantaneous Reynolds number since
it is proportional to the mean thickness, hence the flow is expected to become more
unstable. In this study we will consider the case of blowing/suction that conserves
the total film mass (e.g. spatially periodic blowing/suction of zero mean), which
is possibly the most interesting case since it sits on the boundary of the net-mass
decrease or increase, and hence both stabilising and destabilising phenomena can
occur depending on the parameters, as will be seen later.

The rest of the paper is organised as follows. In § 2, we discuss the governing
equations and dimensionless parameters, the scaling and statement of the two long
wave models and the choice of the blowing and suction function. The numerical
methods used to solve these models are described in § 3. In § 4, we explore the
steady states and bifurcations obtained for non-zero imposed suction, discovering a
non-trivial bifurcation structure even at zero Reynolds number. We also discuss the
distinctive effect of the suction on flow streamlines. Linear stability of steady solutions
is discussed in § 5, with a focus on stability to perturbations of arbitrary wavelength,
and thus the effect of suction on the critical Reynolds number. In § 6, we investigate
the effect of imposing suction on the travelling waves which occur above the critical
Reynolds number. In § 7, we review the various initial value calculations performed
in this paper and provide further results. Finally, we present our conclusions in § 8.

2. Problem formulation
2.1. Non-dimensionalisation and scaling

We wish to determine the evolution of a falling liquid film, with mean thickness hs,
on a slope inclined at angle θ to the horizontal. We model the liquid as a Newtonian
fluid of constant dynamic viscosity µ and density ρ, and the air as a hydrodynamically
passive region of constant pressure pa. The coefficient of surface tension across the
air–liquid interface is γ . We assume that the film flow is two-dimensional, with no
variations in the cross-stream direction. We use coordinates as illustrated in figure 1; x
is the down-slope coordinate, and y is the coordinate in the direction perpendicular to
the slope, so that the wall is located at y= 0 and the interface is defined as y= h(x, t).
We denote the velocity components in the x and y directions as u and v, respectively.

The dimensionless film flow is governed by the Navier–Stokes equations

R(ut + uux + vuy)=−px + 2+ uxx + uyy, (2.1)
R(vt + uvx + vvy)=−py − 2 cot θ + vxx + vyy, (2.2)

which are coupled to the incompressibility condition

ux + vy = 0. (2.3)
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Here we have non-dimensionalised the equations using the mean film thickness hs as
the length scale, the Nusselt surface speed of a flat film Us = ρgh2

s sin θ/2µ (Nusselt
1923) as the velocity scale, hs/Us as the time scale and µUs/hs as the pressure scale.
We note that this scaling, based on surface speed, is the same scaling as used by
Tseluiko et al. (2013) to study the influence of wall topography on the stability of
flow down an inclined plane. We define the Reynolds number R and the capillary
number C based on the surface speed Us, so that

R= ρhsUs

µ
, C= µUs

γ
. (2.4a,b)

We will suppose that the imposition of suction boundary conditions at the wall does
not alter the no-slip condition, but does affect the no-penetration condition, so that the
complete boundary conditions at the wall, y= 0, are

u= 0, v = F(x, t). (2.5a,b)

At the interface, y = h(x, t), the tangential and normal components of the dynamic
stress balance condition yield

(vx + uy)(1− h2
x)+ 2hx(vy − ux)= 0, (2.6)

p− pa − 2
1+ h2

x

(vy + uxh2
x − hx(vx + uy))=− 1

C
hxx

(1+ h2
x)

3/2
, (2.7)

respectively. The kinematic boundary condition on the interface can be written as

ht = v − uhx. (2.8)

We can use (2.3) together with (2.5) to rewrite (2.8) as

ht − F(x, t)+ qx = 0, (2.9)

where q(x, t) is the streamwise flow rate, defined as

q(x, t)=
∫ h

0
u(x, y, t) dy. (2.10)

2.2. Long-wave evolution equations
We now seek solutions with wavelength L relative to the thickness of the undisturbed
fluid layer, with L � 1, and so we introduce the long-wave parameter δ = 1/L.
We derive two first-order long-wave models, based on an asymptotic expansion
in the long-wave parameter (a Benney-type model, see Benney 1966) and on a
weighted-residual method (following the approach of Ruyer-Quil & Manneville
(2000)); derivations of both models are presented in appendix A. We assume that
cot θ = O(1). To retain inertial effects, we additionally assume that R = O(1), and
following Gjevik (1970) we choose C = O(δ2) to maintain the effect of surface
tension. We choose the canonical scaling F = O(δ) so that the imposed suction can
enter and compete with the perturbed flow and hence facilitate possible instability
enhancement or reduction.
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The essential task of the derivation is to estimate the flow rate q(x, t) for a non-
uniform film. In both models, the mass conservation equation is unchanged from (2.9),
and so we have

ht − F+ qx = 0. (2.11)

However, the two models differ in their treatment of nonlinearities in the momentum
equation, and thus yield different equations for q.

In the Benney equation (see § A.1), q is slaved to the interface height h, and is
given by

q(x, t)= 2h3

3
− h3

3

(
2h cot θ − hxx

C

)
x

+ R
(

8h6hx

15
− 2h4F

3

)
. (2.12)

The first-order weighted-residual approach (see § A.2) instead yields an evolution
equation for q:

2
5

Rh2qt + q= 2h3

3
− h3

3

(
2h cot θ − hxx

C

)
x

+ R
(

18q2hx

35
− 34hqqx

35
+ hqF

5

)
. (2.13)

The Benney and weighted-residual equations are identical when R= 0. For R 6= 0, the
Benney equation has a single degree of freedom h(x, t), while the weighted-residual
model has two degrees of freedom, h(x, t) and q(x, t). As a result, the weighted-
residual equations can in principle exhibit richer behaviour. However, it seems that
because of this additional complexity, the weighted-residual equations in fact support
bounded solutions across a greater range of parameter space (Scheid et al. 2005).

2.3. Choice of blowing and suction function
In time-dependent evolution with periodic boundary conditions, the mean layer height
is conserved only if the imposed flux function F has zero mean, and hence steady
states can only exist if F has zero mean. Conserved mean layer height is the natural
state for numerical calculations in a periodic domain, and is sometimes called ‘closed’
conditions as there is no net flux out of the domain. However, in experiments, closed
conditions are not easy to implement, and so experimental realisations more typically
impose the fluid flux at the domain inlet. In this second case, known as ‘open’
conditions, there is no direct control over the mean layer height.

In the absence of blowing and suction, both the open and closed systems support
uniform flow via the Nusselt solution, and thus we obtain the same scaling whether
based on the mean layer height or mean flux. In order to investigate the influence of
suction, we can consider steady states where the mean layer height remains fixed in
time for closed conditions, or where there is no change to the mean flux for open
conditions. However, the bifurcation diagrams for fixed mean layer height correspond
most naturally to statements about time evolution in closed conditions, as the layer
height is effectively constrained in both cases. Most of the results we present are for
fixed mean layer height, but we will also present some results for fixed flow rate. In
principle, by varying either h̄ or q̄, we should be able to map results between the two
conditions, but the bifurcations that occur as A is varied, for example, may depend
on whether layer height or flux is constrained.

Examination of the derivation presented in appendix A reveals that the long-wave
equations (2.11)–(2.13) also apply if F is unsteady, so long as F varies on
dimensionless time scales no shorter than O(δ), or the dimensional time scale δhs/Us.
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While all results presented in this paper are for the case of steady F, we note
that time derivatives of the vertical velocity, and hence F, would not feature in the
equations until the next order in δ. We are therefore free, at this order, to impose
a time dependence on F, or even choose F in response to the film evolution. The
latter formulation would be particularly useful in feedback control studies, which we
explore in Thompson et al. (2015).

In the rest of this manuscript, we will consider the simplest functional form for F
with zero mean, i.e. a single harmonic mode:

F(x)= A cos(mx)= A cos
(

2πx
L

)
. (2.14)

This function F(x) has the symmetry that the transformation A→−A is recovered by
translation in x by a distance L/2, and so translationally-invariant solution measures,
such as the critical Reynolds number for onset of instability, must be even in A.

3. Numerical methods
The numerical calculations that we perform are of three types: computation of

steady periodic solutions and their bifurcation structure, linear stability calculations
of such steady states to perturbations of arbitrary wavelength and nonlinear
time-evolution via initial value problems. We conduct these calculations using the
continuation software package AUTO-07P (Doedel et al. 2009) and Matlab.

The first task, of computing steady solutions and exploring their bifurcation
structure, was conducted in AUTO-07P by formulating the problem as a boundary-
value problem with periodic boundary conditions. The AUTO-07P code is spatially
adaptive, and unlikely to return spurious solutions. We are particularly interested in
limit point, pitchfork and Hopf bifurcations. The first two of these correspond to
bifurcations of steady states, and so can be detected and tracked using the same
formulation as for standard steady states. With regard to Hopf bifurcations, here we
are concerned with Hopf bifurcations with respect to time, whereby a steady state
becomes oscillatory in time when subject to a perturbation of fixed spatial wavelength.
If the perturbation satisfies periodic spatial boundary conditions, the instability will
in fact be oscillatory in both space and time. We used AUTO-07P to track individual
Hopf bifurcations by manually augmenting the steady system with a boundary-value
problem for the spatially periodic but non-constant eigenfunction, with the temporal
eigenvalue determined as part of the solution.

The linear stability calculations were performed in Matlab, and we used a pseudo-
spectral method for the spatial discretisation. After spatial discretisation, the governing
partial differential equation becomes a large system of coupled first-order ordinary
differential equations, which we can write in the general form

F(u, u̇)= 0 (3.1)

so that steady solutions u0 satisfy F(u0, 0) = 0. In order to determine the linear
stability of a steady solution, we suppose that

u(t)= u0 + εv exp(λt), ε� 1. (3.2)

We now expand (3.1) for small ε, to obtain

Jv + λMv = 0, J = ∂F
∂u

∣∣∣∣
u0,0

, M = ∂F
∂u̇

∣∣∣∣
u0,0

, (3.3)
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which is a generalised eigenvalue problem for λ and v, where J is the Jacobian
matrix and M is the mass matrix. As very few points were needed for the spatial
discretisation (we typically used 99 equally spaced points), we solved the eigenvalue
problem (3.3) directly in Matlab. We used Floquet multipliers to determine linear
stability to perturbations of arbitrary wavelength, and so modified the Jacobian matrix
to account for these when necessary.

We note that in the Benney equations, the only time derivatives are those of
interface height h, while the weighted-residual equations also feature time derivatives
of flux q. This means that, for the same spatial discretisation, there are twice as
many eigenmodes for the weighted-residual equations as for the Benney calculations.
We found that the weighted-residual calculations were prone to spurious eigenmodes,
which we removed by careful comparison of the eigenvalue spectrum at different
spatial resolutions. We also neglected the neutrally-stable eigenmode corresponding
to increasing the total volume of fluid in the domain, which arises in both sets of
equations.

Time evolution calculations were always performed in a fixed spatially-periodic
domain. The spatial problem was discretised via a pseudo-spectral method, while
time derivatives were handled via a second-order backward finite-difference scheme
(BDF2). The resulting code is fully implicit, and solved via direct Newton iteration.

The spatial discretization in the Matlab code was verified by comparing the steady
solutions and bifurcation structure obtained in Matlab to those obtained in AUTO-
07P. Further validation was obtained by comparison of numerical results to analytical
solutions for the shape of small-amplitude steady states and to analytical results for
the linear stability of uniform and small-amplitude states.

4. Bifurcation structure for steady states
In the absence of blowing or suction, the only spatially-periodic steady state is

a uniform film. Introducing periodic suction naturally imposes a spatial structure
on the solutions, and means that any steady states must be non-uniform. When
R > 0, the solutions and bifurcations differ between the two long-wave models. The
weighted-residual model avoids the blow-up behaviour sometimes exhibited by the
Benney equation, and more accurately represents the behaviour of the Navier–Stokes
equations at moderate Reynolds number. We will generally present results for the
weighted-residual model when the two models differ, but we note that a non-trivial
bifurcation structure emerges even at zero Reynolds number, where the models are
identical.

4.1. Steady solutions at small A
We begin by considering the effect of small-amplitude forcing, in the form of blowing
and suction, on the uniform steady state h= 1. We choose F = A cos mx where m=
2π/L, and seek a steady solution for h and q when |A| � 1 of the form

h= 1+ A Re(Ĥ)+O(A2), q= 2
3 + A Re(Q̂)+O(A2), (4.1a,b)

where Re() indicates the real part. The mass conservation equation (2.11) immediately
supplies Q̂= exp(imx)/(im). However, the complex quantity Ĥ differs between the two
long-wave models. The Benney result, obtained by linearising (2.12), is

ĤBenney =
1+ 2

3
imR

2im+ 2
3

m2 cot θ − 8
15

Rm2 + m4

3C

exp(imx), (4.2)
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FIGURE 2. (Colour online) The steady-state deflection of a uniform film for F =
A cos(2πx/L) for A� 1, with L= 10 (a) and L= 40 (b), C = 0.05, θ = π/4 and R= 2.
The O(A) correction Re(Ĥ) is shown for the Benney equations (solid line) and the
weighted-residual equations (dashed line), with Ĥ defined in (4.2) and (4.3), respectively.
The dotted line indicates the scaled suction profile F(x)/A.

while the weighted-residual equation (2.13) gives

ĤWR =
1+ 18

35
imR

2im+ 2
3

m2 cot θ − 8
35

Rm2 + m4

3C

exp(imx). (4.3)

The resulting solutions for Ĥ are illustrated in figure 2 for L= 10 and L= 40.
The two expressions (4.2) and (4.3) are equal only if R = 0; otherwise both

the magnitude and phase of Ĥ differ between the two equations. At L = 10, the
predictions obtained via the two models are in reasonable agreement, but they are
indistinguishable when L= 40. Returning to the variables of the long-wave derivation,
we set m= δM and C= δ2Ĉ, and expand for small δ; we find that both models yield

Ĥ = 1
2δiM

+
(

cot θ
6
+ M2

12Ĉ
+ R

5

)
+O(δ), (4.4)

which is the expected order of agreement given that terms beyond the first order in δ
were neglected in the derivation of each model. We note from (4.4) that the magnitude
of Ĥ is inversely proportional to M at leading order, so that for fixed A, the maximum
perturbation to the interface grows linearly with the wavelength L of the imposed
blowing and suction. The long-wave expression for Ĥ (4.4) is in general complex,
so there is a phase shift between h and F. As δ→ 0, the dominant term is purely
imaginary, and so the phase shift tends to π/2 in the long-wave limit.

In order to calculate the small A correction to the mean flux analytically, we must
expand the steady solution h=H(x), q=Q(x) to O(A2). For steady states with F(x)=
A cos mx, we integrate the mass conservation equation (2.11) to yield

Q(x)= 2
3
+ A sin mx

m
+Q2A2 +O(A4), (4.5)

where we have used the fact that the spatially-averaged flux is even in A. We then
expand the interface height in A as

H(x)= 1+ A(p1 cos mx+ p2 sin mx)+ A2(p3 cos 2mx+ p4 sin 2mx)+O(A3). (4.6)
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We solve the flux equation, either (2.12) or (2.13), at O(A) and O(A2) to determine
the constants p1, p2, p3, p4 and Q2. The full result for Q2 in the Benney equation is

Q2 = 5(45/m2 − 28R2 − 20R(2 cot θ +m2/C))
Rm2(64R− 80(2 cot θ +m2/C))+ 25(4m2 cot θ(cot θ +m2/C)+m6/C2 + 36)

(4.7)
and in the weighted-residual equation is

Q2= 9(1225/m2 − 264R2 − 245R(2 cot θ +m2/C))
Rm2(576R− 1680(2 cot θ +m2/C))+ 1225(4m2 cot θ(cot θ +m2/C)+m6/C2 + 36)

.

(4.8)
It is easy to check that the two results are identical if R= 0.

In the long-wave limit m= δM, C= δ2Ĉ, with δ� 1, both the Benney and weighted-
residual equations yield

Q2 = 1
4δ2M2

+O(1). (4.9)

Thus we obtain agreement at the first two orders in δ. Furthermore, if blowing and
suction are applied at sufficiently long wavelength, and at small amplitude, the mean
down-slope flux is always increased relative to its value for a flat film. In fact, this flux
increase can be explained from the leading-order flux equation: q= 2h3/3+O(δ), with
steady states satisfying qx=F(x) while subject to the constraint that the mean value of
h is 1. With non-zero F, any steady states are non-uniform. In order to compare the
effect of the net flux in a non-uniform flow h(x) to that of a uniform film of height 1,
we consider∫ ∞
−∞
[q(h)−q(1)] dx= 2

3

∫ ∞
−∞
[h3−1] dx= 2

3

∫ ∞
−∞
[3(h−1)+ (2+h)(h−1)2] dx. (4.10)

The first term on the right-hand side of (4.10) vanishes because h has mean value 1.
The remaining term is non-negative, and so choosing any non-zero height profile,
while respecting the volume constraint, leads to an increased mean flux at this order.
However, the full result at O(A2), given by (4.7) or (4.8), can be negative if m is not
sufficiently small, and hence blowing and suction can increase or decrease the mean
downslope flux.

4.2. Steady solutions as A increases
As A increases, the film profile deviates more significantly from the uniform state,
and the nonlinearities in (2.12) and (2.13) can lead to bifurcations between steady
solutions. Figure 3 shows the behaviour of steady solutions to the weighted-residual
equations as A is varied for a selection of R at fixed L, θ and C subject to constrained
mean layer height 1.

For each R, the only steady solution at A= 0 is the uniform state with h= 1. All
steady solutions for A > 0 are non-uniform, and the extent of this non-uniformity
increases with A when A is moderate. However, for sufficiently large A, there are
no steady solutions that describe continuous liquid films due to a limit point in the
bifurcation diagram. We can follow the steady solution branches around the limit point,
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FIGURE 3. (Colour online) Bifurcation structure for steady solutions to the weighted-
residual equations as A increases, subject to fixed mean layer height of 1, and calculated
in a periodic domain of length 2L. Here F=A cos(2πx/L), L=10, C=0.05, θ =π/4, with
R= 0, 3, 6, 9 in (a–d), respectively. The shaded inset solutions lie on the dashed branch
of subharmonic steady solutions, which is unstable; all other solutions are harmonic, with
period L. Solutions filled in black are stable, while white solutions are unstable. We also
indicate pitchfork bifurcations at A=AP (f), limit points at A=ALP (u), Hopf bifurcations
within the domain of length L (p) and states with min q= 0 (F).

and find that each branch eventually terminates when the minimum film height tends
to zero, so that the layer dries up at some position. The film height profiles for these
drying states are shown as insets in figure 3.

When A is sufficiently large that there are no steady solutions, we explore the
system behaviour by conducting time-dependent simulations in a periodic domain of
length L, with a typical result shown in figure 4(a). We find that the film thins rapidly
in some localised regions, and is able to dry in finite time due to the fixed speed
of fluid removal. We have also conducted unsteady simulations starting from slightly-
perturbed states on the solution branch with the lower minimum height. We find that
these steady states are unstable, and the instability usually manifests as thinning and
drying behaviour, rather than tending towards the linearly stable steady states with a
larger minimum film thickness.

The solutions shown in figure 3 are all computed subject to a fixed mean layer
height of 1, and are plotted according to the minimum value of h in a single period.
As an alternative solution measure, we consider the mean flux q̄, averaged over
one spatial period. Figure 5(a,c) shows the bifurcation structure plotted in terms
of the mean flux; we find that imposing blowing and suction at finite wavelength
can either increase or decrease the mean flux. Figure 5(b,d) shows bifurcation
diagrams for two values of R with fixed q̄ = 2/3 and mean height free to vary
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FIGURE 4. Time evolution subject to periodic-boundary conditions, for R = 0, L = 10,
C = 0.05, F = A cos(2πx/L), with (a) initial condition h = 1 in a domain of length L
for ALP < A (A = 0.8) so that there are no steady states, and (b) initial condition h =
1+ 0.001 cos πx/10 in a domain of length 2L with AP <A<ALP (A= 0.72) so that steady
states exist but are unstable. In both cases, the film height vanishes in finite time at a
single point in the domain.

(this condition is appropriate to experimental investigations performed under open
conditions, corresponding to fixed mean down-slope flux). We find that, as was
the case for the fixed h̄ = 1 calculations, there is a limit point corresponding to a
maximum value of A with steady solutions. However, time-dependent calculations
for open conditions require non-periodic boundary conditions, which we have not
pursued here.

4.3. Subharmonic steady states
The steady solutions discussed in § 4.2 are limited to cases where both the steady
solution and the imposed blowing and suction are periodic in terms of q and h with
the same wavelength L. However, subharmonic steady solutions may also exist for
which the steady solution is spatially periodic with period nL, where n is an integer
equal to 2 or greater; we calculate subharmonic steady states by continuation in
a domain of length nL. For each case in figure 3, and also for the fixed q̄ = 2/3
calculations shown in figure 5, we have detected subharmonic solution branches with
n = 2. In each of these cases, the subharmonic solutions emerge via a subcritical
pitchfork bifurcation at A= AP in the steady-solution structure, and the subharmonic
steady states are all unstable. The unstable eigenmode of these states results in a
drying process similar to that occurring for unstable harmonic steady states.

As the subharmonic steady states shown in figure 3 are unstable, the only possible
stable steady states are harmonic, with period L. However, for A > AP, the period-L
steady states are also unstable to perturbations of wavelength 2L; this is a consequence
of the exchange of stability that occurs at the pitchfork bifurcation. The subharmonic
instability eventually results in a film thinning and drying event, but at only one of the
local minima within the domain of length 2L. One such drying sequence is illustrated
in figure 4(b).

4.4. Streamfunction and flow reversal
In addition to altering the interface height, the imposed blowing and suction
also fundamentally affect the arrangement of stagnation points and streamlines
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FIGURE 5. (Colour online) The bifurcation structure for steady solutions to the weighted
residual equations as A increases, subject to fixed mean height (a,c) and fixed mean flux
(b,d). Here L = 10, C = 0.05 and θ = π/4. The symbols mark the same bifurcations as
in figure 3, but we do not show Hopf bifurcations here. Solution branches terminate at
a point where the minimum layer height vanishes. (a) h̄= 1, R= 0. (b) q̄= 2/3, R= 0.
(c) h̄= 1, R= 2. (d) q̄= 2/3, R= 2.

within the fluid film. Under the weighted-residual formulation, the velocity field
(u, v)= (ψy,−ψx), where ψ is the streamfunction, is given by

u=ψy = 3q
h

(
y
h
− y2

2h2

)
+O(δ), v =−ψx, (4.11a,b)

with boundary condition v = F(x) on y = 0. Recalling that F(x) = q′(x) for steady
solutions, we can write the solution for ψ , up to the addition of an arbitrary constant,
as

ψ =−q(x)+ 3q(x)
h(x)

(
y2

2h
− y3

6h2

)
+O(δ). (4.12)

The same result applies to O(δ) in the Benney equations. According to (4.12), there
are no stagnation points in 0< y6 h if q 6= 0, and points along the wall are stagnation
points if and only if F(x)= 0. This means that, in the absence of blowing and suction,
every point on the wall is a stagnation point. With non-zero blowing and suction, there
are isolated stagnation points on the wall at the zeros of F(x).

We now examine the steady flow near such an isolated stagnation point, located at
x= x0, y= 0, with F(x0)= 0. As q′(x)= F(x), we can write

q∼ q(x0)+ F′(x0)
(x− x0)

2

2
+O(x− x0)

3. (4.13)

Substituting (4.13) into (4.12) yields

ψ ∼−q(x0)− F′(x0)x2

2
+ 3q(x0)y2

2h(x0)2
+O((x− x0)

2 + (y− y0)
2). (4.14)
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If F′(x0)/q(x0) > 0, the stationary point at x0 is a saddle point of ψ , and the
streamlines are locally straight lines, such that

y2

x2
= F′(x0)h(x0)

2

3q(x0)
. (4.15)

The streamlines become increasingly normal to the wall as q(x0)→ 0. In contrast,
if F′(x0)/q(x0) < 0, the stationary point at x0 is a local extremum of ψ , and the
streamlines are locally elliptical, with

−F′(x0)x2 + 3q(x0)y2

h(x0)2
= const. (4.16)

For any smooth, periodic, non-zero F(x) with mean zero, there must be some
stagnation points x0 with F′(x0) > 0 and others with F′(x0) < 0. There are no steady
solutions in figure 3 with negative h, but the same is not true for q; for each R with
solutions shown in figure 3, there is an amplitude A∗ above which all steady solution
have q(x) < 0 over a finite interval in x. As qx = F, the minimum of q occurs at a
point x0 with F(x0)= 0 and F′(x0) > 0.

There are no stagnation points inside the fluid domain, and so streamlines never
cross. For small A, q(x) > 0 for all x, and so stagnation points with F′(x) > 0 are
saddle points of ψ , while those with F′(x) < 0 are extrema of ψ . Two examples
of the flow field can be seen in figure 6(a,b). Streamlines emanate into the fluid
domain from each stagnation point with F′(x) > 0, and these stagnation points are
connected by a streamline which separates the fluid into a layer in which fluid
particles propagate down the plane, and a layer in which fluid particles must enter
and leave the flow domain via injection through the walls. At A = 0, all particles
propagate. As A increases, the propagating layer thins and the recirculating layer
thickens.

At A = A∗, the stagnation point at x = x0, y = 0 switches from a saddle point to
an extremum of ψ . The corresponding change in the flow field is illustrated in the
transition from figure 6(b) to (c). For A> A∗, q(x) is negative for some x, and hence
by (4.11) the horizontal velocity is directed up slope for all y. As a result, no particles
can propagate more than one period down the plane, and so the propagating layer
vanishes for A>A∗. The width of the region with up-slope flow increases with A, until
eventually there are no further steady solutions. Nonlinear time evolution calculations
at large A show that the film dries at a point just upstream of the negative-q stagnation
point. An instantaneous snapshot of the system at the moment of drying is shown in
figure 6(e).

If the mean downstream flow rate were held fixed at 2/3, rather than the mean
film thickness constrained to 1, a largely similar sequence of events would occur to
that shown in figure 6. If F = A cos mx, for steady solutions, we immediately have
q= 2/3+A sin mx/m, and so flow reversal would occur for any steady solutions with
A> 2m/3.

It is possible that our predictions of regions of reversed flow for steady states
with large amplitude blowing and suction are related to the phenomenon of capillary
backflow, as described by Malamataris, Vlachogiannis & Bontozoglou (2002) and
Dietze, Leefken & Kneer (2008). Backflow is observed in large-amplitude travelling
waves at moderately large Reynolds number, and occurs in the form of eddies near
the wall. In contrast, in our system, the reversed flow persists through the thickness
of the film, can occur at zero Reynolds number and would disappear if the blowing
and suction was removed.
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(a)

(b)

(c)

(d)

(e)

FIGURE 6. (Colour online) Solutions for the interface shape, velocity field and stagnation
points for θ = π/4, C = 0.05, L = 10, R = 0. Periodicity is enforced with L = 10, but
solutions are plotted over two periods and are shown with aspect ratio 1. Stagnation
points with q(x)F′(x) < 0 and with q(x)F′(x) > 0 are indicated byE and@, respectively.
(a) Steady state for A= 0.2, (b) A= 0.4, (c) A= 0.5, (d) A= 0.6, (e) there are no steady
states for A = 0.8; this is a final snapshot before drying. In (a,b), q > 0 everywhere,
so a streamline emanating from the stagnation point with q(x)F′(x) > 0 divides fluid
into particles which never meet the wall (yellow), and particles which enter and leave
through the wall (blue). For A>A∗= 0.46, all steady solutions have regions of negative q,
corresponding to a region of upstream flow near the stagnation point (between the vertical
lines), and all fluid particles must reach the wall.

5. Linear stability
5.1. Stability of uniform state

In the absence of imposed suction, the only steady state with mean layer height unity
is the Nusselt film solution, with h = 1 and q = 2/3. We linearise about this state,
and seek eigenmodes proportional to exp(ikx + λt). The Benney model yields the
eigenvalue λ directly, as

λ=−2ik+ k2

(
8R
15
− 2

3
cot θ

)
− k4

3C
. (5.1)

For the weighted-residual model, the linear stability analysis yields a quadratic
equation for λ:

2R
5
λ2 + λ

(
1− ik

68R
105

)
+ 2ik+ k2

(
2 cot θ

3
+ k2

3C
− 8R

35

)
= 0. (5.2)

In both models, the stability threshold for fixed k is

R< RH ≡ 5
4

cot θ + 5
8C

k2. (5.3)
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The linear stability threshold (5.3) is also valid for perturbations with long wavelengths
in full solutions to the Navier–Stokes equations (Benjamin 1957). At R = RH , both
(5.1) and (5.2) have a root with negative real part for R<RH , the value λ= λ0=−2ik
at R = RH and positive real part for R > RH . We note that (5.2) also has a second
root for λ, but this root always has negative real part when R> 0.

5.2. Perturbations of arbitrary wavelength about a periodic base state
When the base state is spatially uniform, the eigenmodes can be written as
Re(exp(ikx + λt)), and by calculating λ for all real k, we can determine linear
stability for perturbations of all wavelengths. However, when non-zero suction and
blowing is imposed, the base state is not uniform, and so the eigenmodes are no
longer simple exponential functions. Fortunately, Floquet–Bloch theory allows us to
compactly describe eigenmodes of arbitrary wavelength.

We suppose that we are given a steady solution h=H(x), q=Q(x) to the equations
with fixed, non-zero F(x), and consider the evolution of arbitrary small perturbations,
so that

h(x, t)=H(x)+ ε Re{ĥ(x, t)} +O(ε2), q(x, t)=Q(x)+ ε Re{q̂(x, t)} +O(ε2),

(5.4a,b)
with ε� 1. The mass conservation equation (2.11) becomes

ĥt + q̂x = 0. (5.5)

At O(ε), the Benney flux equation (2.12) yields

q̂= b0(x)ĥ+ b1(x)ĥx + b2(x)ĥxxx, (5.6)

where

b0 =H2

(
2− 2Hx cot θ + Hxxx

C

)
+ 16R

5
H5Hx − 8R

3
H4F, (5.7)

b1 =−2
3

H3 cot θ + 8
15

RH6, b2 = H3

3C
. (5.8a,b)

The weighted-residual equivalent of (5.6) additionally involves a term proportional to
q̂t. Given a base solution H(x), Q(x) and F(x), the coefficients b0, b1 and b2 are all
known periodic functions of x, with the same period as the base solution.

We now invoke the Floquet–Bloch form, observing that as (5.5) and (5.6) are linear
equations with coefficients that are periodic in x with period L, the eigenfunctions can
be written as

ĥ(x, t)= eλt+ikxĥk(x), q̂(x, t)= eλt+ikxq̂k(x), (5.9a,b)

where the Floquet wavenumber k 6= 2π/L is real, and ĥk and q̂k are periodic functions
of x with period L. Setting k= 0 recovers perturbations of wavelength L, while very
small but non-zero k corresponds to very long-wave perturbations. The solution is
stable to perturbations with period L if Re(λ) < 0 for all eigenfunctions when k = 0.
The base solution is linearly stable to perturbations of all wavelengths if Re(λ) < 0
for all eigenfunctions for each real k ∈ [0,π/L].
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5.3. Effect of small-amplitude blowing and suction on stability
We now analyse the effect of small amplitude blowing and suction in the form F =
A cos mx on the stability of eigenmodes with underlying Floquet wavenumber k, which
will allow us to determine how such forcing affects the critical Reynolds number. We
do so by expanding the eigenvalue λ for R close to RH , and for small A:

λ= λ0 + (R− RH)
∂λ

∂R
+ ZA2 +O((R− RH)

2)+O((R− RH)A2)+O(A4). (5.10)

We are concerned with the eigenvalue equal to λ0 =−2ik at R= RH , which is a root
of both the Benney and weighted-residual characteristic equations (5.1) and (5.2). We
can evaluate the term ∂λ/∂R which appears in (5.10) by differentiating (5.1) or (5.2),
as appropriate. The eigenvalue is even in A because the transformation A→−A can be
recovered by translation in x by a distance L/2, and the original eigenmode exp(ikx+
λt) has no preferred position; thus the leading-order contribution for small A is O(A2).

The effect of the imposed suction on the linear stability is encapsulated in the
coefficient Z appearing in (5.10), which depends on the suction wavenumber m and
the perturbation wavenumber k as well as C and θ . In order to calculate Z, we need
to calculate both the base solution and the eigenfunction to O(A2). The calculation of
the base solution to O(A2) was discussed earlier in the context of steady states, and
the required expansion is given by (4.5) and (4.6).

For small-amplitude steady solutions, the suction function F(x) and the base
solution H(x), Q(x) are all periodic with wavenumber m, and so the coefficients in
the linearised equations (5.5) and (5.6) are also periodic with wavenumber m. As a
result, all eigenfunctions of (5.5) and (5.6) can be written in the Floquet form given
by (5.9). The unknown functions ĥk and q̂k are periodic with wavenumber m, are
constant when A= 0 and can be expanded for small A as

ĥk(x)= 1+ A(C1eimx +C2 +C3e−imx)+ A2(D1e2imx +D2eimx +D3 +D4e−imx +D5e−2imx)

(5.11)

and

q̂k(x) = iλ0

k
+ A(E1eimx + E2 + E3e−imx)

+A2(G1e2imx +G2eimx +G3 +G4e−imx +G5e−2imx), (5.12)

where the complex constants C1, C2, C3, D1, D2, D3, D4, D5, E1, E2, E3, G1, G2,
G3, G4 and G5 are to be found along with Z. We must also choose a normalisation
condition on the amplitude and phase of the eigenvector, and for this we use the
condition

ĥk(0)= 1. (5.13)

To determine the unknown constants, we set R = RH , where RH is defined in (5.3)
and is the critical Reynolds number for the stability of a flat film to perturbations of
wavenumber k, solve for the steady state given by (4.5) and (4.6) and then substitute
the eigenvalue expansion from (5.10) and the eigenfunction from (5.9), (5.11), (5.12)
into the two linearised equations (5.5) and (5.6), and also use the normalisation
condition (5.13). We solve the linearised equations first at O(A) and then at O(A2),
at each order obtaining linear systems for the unknown coefficients, including Z. We
perform this calculation in Maple, and obtain a lengthy expression for Z as a function
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FIGURE 7. (Colour online) Effect of small A blowing and suction with wavelength L on
the critical Reynolds number for perturbations of underlying wavenumber k as measured
through the weighted-residual results for W, with C = 0.05. The filled circles on each
curve mark the point where k= 2π/L. The dashed lines show the long-wave asymptotic
estimate (5.16). (a) θ =π/4, (b) θ =π/2, (c) θ = 3π/4.

of m, k, C and θ ; the full result depends on whether we have used the weighted
residual or Benney equations. Once Z is known, we can obtain the neutral stability
curve for fixed k, defined by the condition Re{λ} = 0, so that

R∼ RH + A2W, W ≡−Re{Z}
(

Re
{
∂λ

∂R

})−1

. (5.14a,b)

Figure 7 shows the effect of small A on the stability boundary as quantified
by the weighted-residual results for W. For θ = π/4, we find that forcing via
blowing and suction at wavelength L ≡ 2π/m = 10 destabilises short wavelength
perturbations, but has little effect on long wavelength perturbations. However, if the
forcing wavelength L > 20, W is positive for all k and so forcing has a stabilising
effect on all perturbations. Furthermore, for long wavelength forcing, the magnitude
of W increases with L, and the minimum value of W occurs at k = 0; this value is
positive and increases rapidly with L, so that the stabilising effect is increased for
longer wavelength blowing and suction. For θ = π/2, forcing with wavelength L has
a destabilising effect on short waves for L= 10, and a stabilising effect for L= 20,
40, 80. However, W tends to approximately −6 as k→ 0, and so the imposed forcing
in fact slightly destabilises long-wave perturbations. For θ = 3π/4, the behaviour
for small perturbation wavenumber is reversed from the θ = π/4 case; long-wave
forcing is always destabilising for k= 0, and becomes increasingly destabilising as L
is increased.

In order to gauge the behaviour of W over a wider range of parameters, in figure 8,
we survey the sign of W for k= 0 and k=m, with m and C varying, for three values
of θ , for both the Benney and weighted-residual models. The two models concur that
for each inclination angle θ , there are some regions of (C,m) parameter space where
the imposition of blowing and suction has a stabilising effect on the uniform state,
and other regions where such forcing destabilises the flow. For θ =π/4, both models
predict that imposing long-wave blowing and suction (i.e. m→ 0) is stabilising to
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FIGURE 8. (Colour online) The effect of small amplitude blowing and suction with
wavenumber m on perturbations with k = 0 and with k = m in the Benney and
weighted-residual (WR) models, as described by the quantity W defined in (5.14); W > 0
in the shaded regions, so small-amplitude blowing and suction increases the critical
Reynolds number, and has a stabilising effect on the flow. Results for θ =π/4, π/2, 3π/4
are shown in rows (a–d), (e–h) and (i–l) respectively. (a,e,i) Benney, k = 0; (b, f, j) WR,
k= 0; (c,g,k) Benney, k=m; (d,h,l) WR, k=m.

perturbations with wavenumber k � 1 and also with wavenumber m. For θ = π/2,
blowing and suction is destabilising in the limit k → 0 for all C and m, but has
a stabilising effect on perturbations with wavenumber m if m is not too large. For
θ = 3π/4, blowing and suction with small wavenumber m is destabilising to both
perturbations with wavenumber 0 and with wavenumber m.

The critical Reynolds number increases quadratically with perturbation wavenumber
k in the absence of blowing and suction, and so for very small A, the lowest critical
Reynolds number must also be obtained at small k. We now consider W in the limit of
both long-wavelength blowing and suction (small m) and long perturbation wavelength
(small k), setting m= δM, k= δK and C= δ2Ĉ and expanding the full expression for
Z with δ� 1. Both the Benney and weighted-residual results yield

Z ∼ 3iK
4δM2

+
[
−K2 cot θ

2M2
+ K2

6Ĉ
− 11K4

12ĈM2

]
+O(δ2), Re

{
∂λ

∂R

}
∼ 8K2δ2

15
+O(δ4).

(5.15a,b)
Substituting (5.15) into (5.14) yields the leading-order long-wave expansion

W=− 15
8δ2

[
−cot θ

2M2
+ 1

6Ĉ
− 11K2

12ĈM2

]
+O(1)=−15

8

[
−cot θ

2m2
+ 1

6C
− 11k2

12Cm2

]
+O(1).

(5.16)
The prediction (5.16) is plotted in figure 7 (dashed lines) for comparison to the non-
long-wave results obtained by direct evaluation of the Maple expressions for Z and
∂λ/∂R.
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For small-amplitude blowing and suction at fixed wavenumber m, the critical
Reynolds number for instability to perturbations of all real wavenumbers k is

R∗(m)=min
k∈R

[
5
4

cot θ + 5k2

8C
+ A2W(m, k,C, θ)

]
. (5.17)

Using the long-wave expansion for W given by (5.16), we obtain

R∗(m)= 5
4

cot θ + 15A2

16m2
cot θ − 5A2

16C
+min

k∈R

[
k2

(
5

8C
+ 55A2

32m2C

)]
. (5.18)

The term in square brackets is positive, and so the minimum of the expression
occurs at k = 0. This behaviour is driven by the behaviour of a flat film, where
long-wave perturbations are the first to become unstable, and so have the smallest
critical Reynolds number. Introducing blowing and suction will modify the eigenvalue
spectrum, but the minimum critical Reynolds number must still occur for long-wave
perturbations if A is sufficiently small.

Proceeding with the long-wave approximation, we evaluate the minimum of (5.18)
as

R∗ ∼ 5
4

cot θ + 15
16

A2

(
cot θ
m2
− 1

3C

)
, (5.19)

while if perturbations are restricted to those with wavenumber k=m, we find

Rm=k ∼ 5
4

cot θ + 5m2

8C
+ 15

16
A2

(
cot θ
m2
− 3

2C

)
. (5.20)

For comparison, we also calculate the linear stability properties of the full nonlinear
steady states by numerical solution of the eigenvalue problem described in § 5.2,
using Floquet multipliers in the form (5.9) to account for general perturbation
wavenumber k. It is also possible to formulate an augmented boundary-value problem
for the nonlinear base solution, linear eigenmode and the eigenvalue, and thus to
track the neutral stability boundaries directly using AUTO-07P.

The stability boundaries for perturbations with arbitrary k and with k = m are
plotted in figure 9 for nonlinear solutions to the weighted-residual equations, small
A predictions obtained using the full version of W and the long-wave, small A
predictions (5.19) and (5.20). We see that the first two boundaries are in good
agreement with each other when A is sufficiently small, for both L= 40 and L= 10.
The long-wave small-amplitude predictions are in good agreement with the other two
versions of boundaries when L= 40, but are poor agreement when L= 10.

In the case θ =π/4, R∗ is positive in the absence of suction, and long-wave blowing
and suction can either decrease or increase R∗, depending on the values of A, θ , m
and C, and here it is reasonable to seek an optimal strategy to increase the critical
Reynolds number. To maximise the stabilising effect at fixed A for θ <π/2, we should
choose m as small as possible, and in fact (5.19) predicts that R∗→+∞ as m→ 0
with A fixed. Regarding constraints on the magnitude of film height variations, we
note that these are of order A/m for A� 1 (see § 4.1) , and so we can approximately
constrain height variations by keeping α = A/m fixed. We find that the largest R∗ is
again obtained as m→ 0, but in contrast to the fixed A case, R∗ is bounded as m→ 0.

The governing equations are valid for 0<θ <π, with θ =π/2 corresponding to flow
down a vertical wall, and π/2< θ <π corresponding to flow along the underside of
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Figure 14(a)

Figure 14(b)
Figure 14(c)
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FIGURE 9. (Colour online) Stability properties for steady solutions as R and A vary at
fixed θ =π/4 and C= 0.05, for the weighted-residual model. Steady solutions are divided
into three linear-stability categories as indicated by the legend, with finite-A stability
boundaries shown by solid black lines. Two small-A estimates for these boundaries are
shown: the full result from (5.14) correct to O(A2) (solid white line), and the long-wave,
small A estimates (5.19) and (5.20) (dash-dotted line). We also indicate solutions with
min(q) = 0 (dashed line), and the pitchfork bifurcation AP (dotted line). (a) L = 10,
(b) L= 40.

an inclined plane. In the absence of blowing and suction, R∗ = 0 for θ = π/2, and
R∗< 0 for π/2<θ <π. The definition of the Reynolds number R in (2.4) means that
we cannot construct a physical system with R<0, but consideration of (5.19) may still
give some indication of the effect of blowing and suction when θ > π/2. According
to (5.19), when θ > π/2, imposing blowing and suction at long wavelengths always
reduces R∗, and so is destabilising. Our other results for θ = 3π/4, shown in figures 7
and 8, also suggest that blowing and suction have a destabilising effect on long-wave
perturbations.

5.4. Finite A stability results
Figure 9 shows stability regions as R and A vary, at fixed values of C and θ , for
imposed blowing and suction with wavelength L = 10 and L = 40. For L = 10,
introducing small amplitude blowing and suction decreases the critical R for linear
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stability both to perturbations of wavelength L and to perturbations of arbitrary
wavelength. In contrast, when the imposed suction has wavelength L= 40, increasing
A from zero initially increases both of these critical Reynolds numbers, and so has a
stabilising effect on the base flow.

The boundary of the region stable to perturbations of fixed wavelength L is defined
by a Hopf bifurcation. When A = 0, this is the Hopf bifurcation at R = RH , for
which the eigenmode can be written as ĥ= exp(ikx+ λt) with k= 2π/L. We can use
AUTO-07P to track the Hopf bifurcation as A varies. As A is increased from zero,
the eigenmode is modulated and is no longer a single Fourier mode, but remains
periodic with period L.

Calculation of the stability boundary in the presence of patterned blowing and
suction for perturbations of all wavelengths is not as simple as the case of tracking a
single bifurcation, as we do not know a priori which wavelengths are most unstable.
However, in the absence of blowing and suction, we know that long waves, with
k2 � 1, are the first to become unstable as R is increased. For R > RH , there is a
wavenumber cutoff, so that perturbations with k2 < k2

c are unstable, and there is a
finite k2 with maximum growth rate Re(λ). However, it is possible that for larger A,
imposing blowing and suction might destabilise at some wavelengths while stabilising
at others, and so the system may first become unstable at a non-zero wavenumber.
For finite A, we conduct a brute force computation of stability properties over a large
number of perturbation wavelengths to determine stability with respect to perturbations
of all wavelengths; this involves solving (2.11) and either (2.12) or (2.13) to obtain
the nonlinear steady state, and then solving the eigenvalue problem for linear stability
described in § 5.2 with the perturbation wavenumber incorporated in the form of a
Floquet multiplier in (5.9).

For the cases shown in figure 9, we find that at small A, the boundary for stability
to perturbations of arbitrary wavelength agrees well with the asymptotic results
derived in the previous subsection. For both L = 10 and L = 40, this boundary
connects smoothly to a finite suction amplitude A at R= 0. There is a turning point
with respect to R in the L= 40 results, and so the largest R at which the system is
stable occurs for a non-zero A. However, for L = 10, there is no turning point, but
there is a second ‘island’ region where the steady state is stable to perturbations of
all wavelengths. This region requires moderately large A and R. We will discuss the
results of time-dependent simulations in and around the island in § 7. As the island
region occurs only for L= 10, it is possible that it is simply an artefact of applying
long-wave models at relatively short wavelengths, and we have checked that no such
island region arises in similar calculations based on the Benney equation.

5.5. Optimal wavelength for blowing and suction to obtain a stable steady state
Determination of the largest R that can be stabilised in an infinite domain by imposing
a suitable suction profile is a complicated process, requiring finite amplitude results for
the steady solutions and for their linear-stability operators. We can address this task
numerically by choosing a suction wavenumber m, increasing R in small increments
from R0 = (5/4) cot θ and testing the stability of steady solutions beginning from
A= 0 until A is too large for steady states to exist. Perturbations with wavenumber k
not equal to the wavenumber of the forcing m were taken into account in the linear-
stability calculations using Floquet multipliers. The smallest perturbation wavenumber
k tested was 0.005. Figure 10 shows numerical results from this search for the case
θ = π/4, C = 0.05, using the weighted-residual model. We find two ranges of m in
which imposing suction can increase the critical Reynolds number.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

68
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.683


Falling liquid films with blowing and suction 315

m

R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

2

4

6

8

10

FIGURE 10. (Colour online) Finite A stability results across a range of blowing and
suction wavenumber m, with F=A cos mx, C= 0.05 and θ =π/4. Each black dot indicates
that for the given R and m, there is some A for which there is a steady state stable to
linear perturbations of all wavelengths. The dashed line is obtained by explicit tracking of
the maximum stable R for fixed Floquet number k= 0.01; this curve follows the stability
boundary relatively well until it diverges at m ≈ 0.05. In the small-amplitude long-wave
limit, fixed α=A/m corresponds to fixing the amplitude of interface deflection as m varies.
We find that along the dashed line, α is between 0.5 and 1. To provide an indication of
the effectiveness of the small-A, long-wave stability prediction (5.19), the solid blue line
shows the stability boundary that would be obtained if α = 1, which is an overestimate
of A, but in fact the blue line under predicts the range of stable R for small m.

Firstly, at large wavelengths with L≈ 200, imposing blowing and suction allows the
critical Reynolds number for stability to all perturbations to increase from the unforced
value of 5/4 to approximately 8. However, figure 10 seems to indicate a downturn in
the maximum stable R at very small m. From the small A, long-wave result (5.19),
we on the contrary expect forcing via blowing and suction at small m to have some
stabilising effect, but this result does not predict the magnitude of the stabilising effect
on its own, as we do not know A. Furthermore, estimates of the maximum stable
R typically require large-A calculations, and so predictions based on the long-wave,
small-amplitude expression (5.19) are not particularly useful in this case.

The second region in which steady solutions are stable to perturbations of all
wavelengths in figure 10 appears when the wavenumber m for blowing and suction
is relatively large, and only at moderately large R. This region corresponds to the
island region in the L= 10 results in figure 9. There is no such stable island in the
results for L = 40, or for the equivalent Benney results for L = 10, and so it is not
clear that this island is of physical relevance.

6. Travelling waves
6.1. Travelling waves in the absence of suction

In the absence of blowing and suction, the system can support travelling waves,
propagating at a constant speed U without changing form. We can write the solution
as

h(x, t)=H(ζ ), q(x, t)=Q(ζ ), ζ = x−Ut, (6.1a−c)

where U is the unknown constant wave speed. In the weighted-residual equations, H
and Q must satisfy

−UH′ +Q′ = 0 (6.2)
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FIGURE 11. (Colour online) Travelling wave H(ζ ) and perturbation functions J(ζ ) and
K(ζ ) as defined in (6.27) for θ = π/4, C = 0.05, R = 3 using the weighted-residual
equations, and corresponding superpositions of the travelling wave H(ζ ) and O(A)
perturbation ĥ(x, t) as defined in (6.10) for various A. H(ζ ) has wavelength 30, but
blowing and suction are applied with wavelength 20; we show solutions in a domain of
length 60. The black contours indicate h = 1, and the same colour map is used in the
first three figures. Both travelling wave and perturbation are periodic in time and space.
Nonlinear time-dependent results for A= 0.02 are shown in figure 13 for various initial
conditions.

and

−2
5

RUHQ′ +Q= H3

3

(
2− 2H′ cot θ + H′′′

C

)
+ R

(
18
35

Q2H′ − 34
35

QQ′H
)
, (6.3)

where a prime indicates a derivative with respect to ζ . If H(ζ ) is periodic, with
period L, then the travelling-wave solution is spatially periodic with period L, and
temporally periodic with period T = L/U. We can compute large-amplitude travelling
waves numerically; figure 11 shows one such travelling-wave solution for θ = π/4,
C= 0.05, R= 3.

Individual travelling waves may be stable or unstable, and branches of travelling
waves can undergo a range of bifurcations. However, small amplitude travelling
waves connect to the uniform film state via a Hopf bifurcation at R= RH . This Hopf
bifurcation can be supercritical or subcritical, with stable, small-amplitude travelling
waves observed near the bifurcation only in the supercritical case. We can determine
the criticality of the Hopf-bifurcation by solving for small-amplitude limit cycles near
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to the critical Reynolds number via the following expansion:

ζ = x−Ut, H(ζ )= 1+ ε cos kζ + ε2H2(ζ )+O(ε3), (6.4a,b)

H2(ζ )= r1 cos 2kζ + r2 sin 2kζ , q(x, t)=UH(ζ )+ S, (6.5a,b)

U =U0 + ε2U2 +O(ε4), S= S0 + ε2S2 +O(ε4), R= RH + ε2R̄+O(ε4). (6.6a−c)

We expand the equations for ε � 1, and must solve the equations at up to O(ε3)
in order to determine R̄. We find that small-amplitude travelling waves always travel
downstream, with speed U = U0 = 2, which is twice the velocity of particles on the
surface. The bifurcation is supercritical if R̄> 0 and subcritical if R̄< 0. The Benney
equations yield

R̄= 120C2 − 60C2k2 cot2 θ − 120Ck4 cot θ − 45k6

64Ck4
, (6.7)

which may be positive or negative. However, for the weighted-residual equations, we
find

R̄= 4410C2 + 6670k2C2 cot2 θ + 12 235k4C cot θ + 4450k6

2352Ck4
, (6.8)

which is always positive when θ < π/2, corresponding to a supercritical Hopf
bifurcation. In the long-wave limit, with k = δK and C = δ2Ĉ, both (6.7) and (6.8)
yield

R̄∼ 15Ĉ
8δ2K4

+O(δ2)= 15C
8k4
+O(δ2), (6.9)

which is positive.
The quantity R̄ determines the criticality of the Hopf bifurcation, and so also

governs the stability of small-amplitude travelling waves in the neighbourhood of the
bifurcation. However, the branch of travelling waves may undergo further bifurcations
(Scheid et al. 2005), and so the value of R̄ does not necessarily prescribe the stability
of finite-amplitude travelling waves.

6.2. Influence of heterogeneous blowing and suction on travelling waves
Introducing spatially-periodic suction means that the system is no longer translationally
invariant, and so we cannot obtain true travelling waves for non-zero A. For the next
stage of our analysis, we calculate the effect of small-amplitude suction on travelling
waves, and consider in particular how travelling waves can transition to steady,
stable, non-uniform states as the amplitudes of the imposed blowing and suction are
increased.

We perturb the travelling wave by introducing a small-amplitude suction F= Af (x)
with f (x) periodic with period LF, and A small. We expect to find

h(x, t)=H(ζ )+ Aĥ(x, t)+O(A2), q(x, t)=Q(ζ )+ Aq̂(x, t)+O(A2), (6.10a,b)

where the behaviour of ĥ and q̂ is in some way related to the periodicity of the
original travelling wave with respect to ζ with period L, and of the blowing and
suction function with respect to x with period LF.

The weighted-residual equations for h and q yield, at O(A),

ĥt − f (x)+ q̂x = 0 (6.11)
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and

q̂+w6(ζ )q̂t =w0(ζ )ĥ+w1(ζ )ĥx +w2(ζ )ĥxxx +w3(ζ )q̂+w4(ζ )q̂x +w5(ζ )f (x), (6.12)

where

w0 =H2

(
2− 2H′ cot θ + H′′′

C

)
− 34RQQ′

35
, (6.13)

w1 =−2
3

H3 cot θ + 18RQ2

35
, w2 = H3

3C
, w3 = R

(
36QH′

35
− 34HQ′

35

)
, (6.14a−c)

w4 =−34RHQ
35

, w5 = RHQ
5
, w6 = 2RH2

5
. (6.15a−c)

The coefficients wi, i = 0, . . . , 6 are functions of ζ . If we set f (x) = 0 in these
equations, we recover the equations governing the evolution of linearised perturbations
to the travelling wave in the absence of suction, i.e. the equations of linear stability.
For non-zero f , we can integrate forward in time from a given initial condition
ĥ(x, 0)= ĥ0(x), q̂(x, 0)= q̂0(x), to determine ĥ(x, t) and q̂(x, t).

The system (6.11) and (6.12) features some terms that are known functions of ζ ,
and others that are known functions of x, but the system is autonomous with respect
to t. We therefore choose to rewrite (6.11) and (6.12) in terms of x and ζ :

ĥt→−Uĥζ , ĥx→ ĥx + ĥζ , q̂t→−Uq̂ζ , q̂x→ q̂x + q̂ζ . (6.16a−d)

We obtain a system in two variables, x and ζ , with equations

−Uĥζ − f (x)+ q̂x + q̂ζ = 0 (6.17)

and

q̂−Uw6(ζ )q̂ζ = w0(ζ )ĥ+w1(ζ )(ĥx + ĥζ )+w2(ζ )(ĥxxx + 3ĥxxζ + 3ĥxζ ζ + ĥζ ζ ζ )
+w3(ζ )q̂+w4(ζ )(q̂x + q̂ζ )+w5(ζ )f (x). (6.18)

We now regard ζ and x as independent variables. Under this transformation, x remains
as a purely spatial variable, but ζ has a dual identity, incorporating both spatial and
time-like components. The statement of initial conditions becomes more complicated
in the new variables:

ĥ(ζ = x)= h0(x), q̂(ζ = x)= q0(x) (6.19a,b)

so that the initial conditions are spread across the whole range of ζ .
If the Fourier expansion of f (x) is

f (x)=
∑

m

fm cos mx+ gm sin mx, (6.20)

we can write the general solution of (6.17) and (6.18) as

ĥ=
∑

m

Jm(ζ ) cos mx+Km(ζ ) sin mx+ h∗(ζ , x), (6.21)

q̂=
∑

m

Mm(ζ ) cos mx+Nm(ζ ) sin mx+ q∗(ζ , x), (6.22)
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where the functions Jm(ζ ), Km(ζ ), Mm(ζ ) and Nm(ζ ) are periodic in ζ . The remaining
terms, h∗ and q∗, satisfy the homogeneous versions of (6.17) and (6.18) obtained by
setting f (x) = 0, which are exactly the equations for linear stability of the original
travelling wave. We can calculate the periodic functions Jm, Km, . . . , corresponding
to a limit cycle, for any periodic travelling wave. However, we would only expect
to observe the limit-cycle behaviour in initial-value calculations if the limit cycle
is stable. If the travelling wave is stable, all solutions h∗, q∗ to the homogeneous
perturbation problem eventually decay to zero and so ĥ and q̂ are limit cycles,
periodic in time.

We now calculate ĥ for a small-amplitude limit cycle driven by f (x)= cos mx, so
that the forcing Fourier series has only a single component. The sums in (6.21) are
then over a single value of m, for which we obtain

−UJ′m +mNm +M′m = 1, (6.23)
−UK ′m −mMm +N ′m = 0, (6.24)

Mm −w6UM′m = w0Jm +w1(J′m +mKm)+w2(J′′′m + 3mK ′′m − 3m2J′m −m3Km)

+w3Mm +w4(M′m +mNm)+w5 (6.25)

and

Nm −w6UN ′m = w0Km +w1(K ′m −mJm)+w2(J′′′m + 3mK ′′m − 3m2J′m −m3Km)

+w3Nm +w4(N ′m −mMm). (6.26)

We solve the equations for M = Mm, N = Nm, J = Jm and K = Km in AUTO-07P,
coupled to a system to find the travelling wave itself, seeking both travelling wave
and perturbation periodic in ζ with period L. Thus we obtain the solution

ĥ= Jm(ζ ) cos mx+Km(ζ ) sin mx= Jm(x−Ut) cos mx+Km(x−Ut) sin mx. (6.27)

Regardless of the relation between the travelling-wave period L and the blowing/
suction wavenumber m, we see that if Jm(ζ ) and Km(ζ ) are periodic with period L,
then the function ĥ(x, t) is temporally periodic with period T = U/L, which is the
same temporal period as the base travelling wave. However, the solution for ĥ(x, t)
is spatially periodic only if L/LF is rational, with period given by the least common
multiple of L and LF. A typical set of solutions for H(ζ ), Jm(ζ ) and Km(ζ ), and also
the reconstructed field ĥ, are shown in figure 11. For the travelling-wave solution
shown in figure 11, we find that the functions Jm(ζ ) and Km(ζ ) display little relative
variation with ζ . This means that the field ĥ(x, t) is essentially steady.

Figure 12 shows a comparison between fully nonlinear time-dependent calculations
and the perturbed travelling-wave solution at a value of R small enough that the
uniform state is unstable to only a single perturbation, and the travelling wave
is stable. We obtain good agreement between the time-dependent calculations and
the asymptotic predictions based on (6.10) and (6.27). Both sets of results show a
smooth transition as A increases from travelling waves with wavelength 60 at A= 0
to almost-steady states at A = 0.18 with wavelength 20, which is the wavelength of
the imposed blowing and suction.

The composite solution shown in figure 11(b) has LF = 20 and L= 30; the resulting
perturbed field has spatial period 60. We have only considered corrections up to O(A),
and in this expansion, the imposed blowing and suction cannot affect the periodicity
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FIGURE 12. (Colour online) Contour plots of h(x, t) from nonlinear time-dependent
calculations (a–e) and using the small-A asymptotic solutions for perturbed travelling
waves given by (6.10) and (6.27) (f –j) for R = 1.7, C = 0.05, θ = π/4, in a domain of
length 60 with suction wavelength LF = 20. The colour map is scaled to the maximum
and minimum value in each column. Here the travelling wave is stable in the absence
of suction. Time-dependent results for a larger R, for which the uniform film solution is
unstable to multiple perturbations, are shown in figure 13. (a, f ) A = 0; (b,g) A = 0.02;
(c,h) A= 0.04; (d,i) A= 0.10; (e, j) A= 0.18.

of the underlying travelling wave. However, in the fully nonlinear time-dependent
simulation, even if we begin with initial conditions that are perfectly periodic with
period L= 30, but force at a different wavelength, such as LF = 20, nonlinear effects
will lead to a perturbation at wavelength 60 that will cause the underlying travelling
wave to double in spatial period, and likely change shape and speed. Eventually,
we expect to reach the state where the dominant wave has period 60, and the
linear perturbation field ĥ is a solution to equations where the coefficients wi are
those for the travelling wave with wavelength 60. Figure 13 shows time-dependent
simulations for forcing at wavelength 20 with A= 0.02 in a domain of length 60, at
a value of R large enough that travelling waves with wavelengths 60, 30 and 20 are
unstable. When the initial conditions involve only modes of wavelength 60, a periodic
equilibrium state is quickly reached. For initial conditions of wavelength 30, these
modes compete with the wavelength 20 forcing, but eventually a wavelength 60 state
is indeed achieved. For initial conditions containing only perturbations with the same
wavelength as the imposed blowing and suction, we rapidly reach an initial periodic
state with three equal waves in the domain. However, after a very long time, noise
in the system causes a switch to a single wave with wavelength 60, thus yielding the
same eventual behaviour regardless of initial conditions.

7. Initial value problems

As discussed in § 4, steady states only exist if the amplitude of blowing and suction
is below a critical value. In time-dependent simulations above the critical amplitude, as
illustrated in figure 4, the film exhibits a new form of blow up by locally thinning to
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FIGURE 13. (Colour online) Time-dependent simulations in a domain of length 60, with
F = 0.02 cos(2πx/20), with R= 3, C = 0.05 and θ = π/4, and varying initial conditions:
we set h(x,0)=1+0.1 cos(2πnx/60) and q(x,0)=2/3+0.2 cos(2πnx/60), with n=1,2,3
in (a–c) respectively. These initial conditions correspond to neither travelling waves nor
steady states, so nonlinear evolution is required if the system is to reach a periodic state.
These plots shows the single contour h(x, t) = 1, with h > 1 in the shaded region. The
same periodic state is reached eventually, regardless of the initial conditions.

zero in finite time. This thinning occurs even at zero Reynolds number, and so arises
in both Benney and weighted-residual models. Similar blow up can occur even below
the critical amplitude if the interface is not initially close to a stable steady state. The
blow up need not occur at the same wavelength as the forcing function; for example
it can be triggered by subharmonic perturbations to an unstable, periodic steady state.

The film dynamics still interacts with the imposed blowing and suction even if blow
up is avoided. In the absence of suction, the system exhibits periodic behaviour in
the form of travelling waves, which propagate at a constant speed without changing
form. If non-uniform suction is imposed via a non-constant function F(x), which
remains fixed with respect to the frame of the wall, waves must change in form
as they propagate, and so propagating waves are unsteady in any frame, with a
complicated, but possibly periodic, dependence on both x and t. Figure 12 shows
initial value calculations in which the unforced system exhibits stable travelling
waves. The imposed suction need not have the same wavelength as the travelling
wave, and in figure 12, three periods of suction fit within the discretised domain.
The initial value calculations show a smooth transition as A increases from travelling
waves at A = 0 to an essentially steady state at A = 0.18. At small A, the blowing
and suction causes slight perturbations to the travelling wave, while at larger A,
small-amplitude disturbances propagate over a large-amplitude non-uniform steady
state. The underlying flow field retains its dominant down-slope direction, and so
there is still a well-defined wave speed, even when the interface shape is steady.
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FIGURE 14. (Colour online) Nonlinear time-dependent calculations subject to blowing and
suction F=A cos 2πx/L, with L= 10, C= 0.05, θ =π/4. The simulations are conducted in
a domain of length 6L, and the initial conditions for h and q includes a small perturbation
proportional to sin(2πx/(6L)). The stable, steady solution shown in (b) can be accessed
by either increasing the Reynolds number from (c), or the amplitude of blowing and
suction from (a). Time-dependent waves persist at long times in both (a) and (c); in (a),
the waves propagate more rapidly and have more than one temporal period; in (c) the
waves propagate more slowly, and there is just one propagating wave. (a) A= 0.25, R= 4;
(b) A= 0.45, R= 4; (c) A= 0.45, R= 2.

The applied suction can also lead to states which are neither steady nor time
periodic. Figure 14 shows the result of initial value calculations conducted at
parameters near to the stable ‘island’ shown in figure 9 for L = 10. This is a
region of parameter space with steady solutions that are stable to perturbations of
all wavelengths, but is unusual in that solutions lose stability if either A or R is
decreased, so that sufficiently large inertia is required to maintain stability. In the
case shown in figure 14(a), with A = 0.25 and R = 4, the height field displays
aperiodic behaviour. At each instant, six peaks corresponding to the six periods of
the suction function are visible, but waves propagate over these peaks without a clear
structure. We can increase the suction amplitude to A= 0.45 to obtain steady, stable
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solution, shown in figure 14(b). Decreasing the Reynolds number to R= 2 means that
the steady state again loses stability, but in this case to a wavelength 60 travelling
wave which propagates over the steady solution with a single time period, as shown
in figure 14(c).

8. Conclusion

In this paper, we considered thin-film flow down an inclined plane modified so that
fluid is injected and withdrawn through the wall according to an arbitrary periodic
function F(x, t). We derived and studied two long-wave models for this system, based
on the first-order Benney and weighted-residual formulations. If the average layer
height is conserved, then F must have zero mean in space. We then specialised to
the case where F is a single steady Fourier mode, F = A cos mx, and investigated
the form, bifurcations and linear stability of steady states, as well as a range of
fully-nonlinear time-dependent behaviours.

Any steady states subject to non-uniform blowing and suction must themselves
be non-uniform. When the amplitude of the blowing and suction is small, we can
calculate the deformation of the film from a uniform state analytically. The interface
has the same period as the applied blowing and suction, with a phase difference due
to the down-slope direction of the base flow which tends to π/2 as the wavelength of
blowing and suction is increased. The predicted interface deformation differs between
the two models, but agrees at long wavelength and at small Reynolds number. We
find that the spatially-averaged down-slope flux can be either increased or decreased
by the blowing and suction, and the effect is O(A2). However, in the long-wave
limit, where the local flux is determined only by the local film height, the mean
flux is always increased. This is because steady states subject to blowing and suction
must be non-uniform, and the increased flux in regions of thicker film outweighs the
decrease in flux in the thinner regions.

For larger amplitude blowing and suction, we calculate periodic steady states
numerically by formulating a boundary-value problem for the interface shape, firstly
assuming that the interface has the same spatial period as the blowing and suction.
As the blowing and suction amplitude A increases, the interface becomes increasingly
deformed and the nonlinearity of the governing equations becomes increasingly
important, leading to a non-trivial bifurcation structure including multiple steady
states. There is a maximum amplitude of blowing and suction for steady states,
which corresponds to a limit point in the bifurcation structure. Time-dependent
evolution beyond the existence of steady states shows that the film can dry in finite
time, as the imposed rate of fluid removal in regions of suction is locally not matched
by the supply of fluid.

We find that there is a region of moderately large A for which the steady solutions
have regions with negative down-slope volume flux q, and we analysed the flow field
within the fluid layer to interpret these observations. The imposition of non-zero,
non-uniform F leads to a series of isolated stagnation points along the wall, wherever
F(x) = 0. Connections between the stagnation points allow us to demarcate the
boundary between ‘recirculating’ fluid which enters and leaves through the wall, and
‘propagating’ fluid which never reaches the wall. The height of the recirculating layer
near the wall increases with the amplitude of the blowing and suction. For large
enough amplitude, all steady solutions have negative flux q for some x. For those
x with q(x) < 0, all flow is directed up the slope, against gravity; this flow reversal
means that the propagating layer disappears. The disappearance of the propagating
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layer could be of practical relevance if blowing and suction is used to enhance
mixing or heat transfer in the fluid; blowing and suction could be used to halt the
down-slope progression and increase recirculation, followed by reducing the blowing
and suction in order to enable down-slope transport.

Steady solutions need not have the same spatial period as the imposed blowing and
suction, and as a test case we seek steady solutions that are periodic in a domain
containing two periods of the blowing and suction. This allows us to calculate
subharmonic solution branches in addition to the harmonic bifurcation structure
discussed above. We find that the two types of solution branches are connected by
symmetry-breaking pitchfork bifurcations. In our calculations, we have not found
any subharmonic steady states that are stable when subjected to time-dependent
evolution. Unstable subharmonic steady states also occur in thin-film flow with
periodic topography (Tseluiko et al. 2013), but it is possible that subharmonic steady
states may be stable for other parameter values. Initial-value calculations starting
from near the periodic steady states sometimes show subharmonic drying, where the
film dries at any one of the local minima of h.

For falling liquid films, disturbances to steady states will tend to develop into
waves which propagate in the down-slope direction. Blowing and suction will alter
the propagation of these disturbances, not least because the basic state of the system
becomes non-uniform in the direction of propagation. We calculated the linear
stability of the non-uniform steady states numerically for two classes of perturbations:
firstly, those that are periodic with the same period as the blowing and suction, and
secondly perturbations of any wavelength. We found that blowing and suction can
increase or decrease the critical Reynolds number for linear stability to both classes
of perturbation, depending on the system parameters R, C and θ , as well as the
amplitude and wavelength of the applied blowing and suction.

When the amplitude A of blowing and suction is small, we can calculate the
O(A2) correction to the critical Reynolds number analytically for both classes of
perturbations. For flow above an inclined plane (θ < π/2), we find that imposing
blowing and suction at very long wavelength increases the critical Reynolds number
for both classes of perturbations. Due to the quadratic dependence of the critical R
on perturbation wavenumber, the first perturbations to become unstable as R increases
are those with infinite wavelength, both when A = 0 and for small A. The converse
case of flow underneath an inclined plane (θ >π/2) is always unstable in the absence
of blowing and suction, and in fact our small-amplitude expansions suggest that the
flow is made more unstable by applying long-wave blowing and suction.

Even when small-amplitude blowing and suction has a stabilising effect relative to
the uniform flow, large-amplitude suction will eventually lead to symmetry-breaking
bifurcations or localised drying of the film. There is then, for fixed blowing and
suction wavelength, an intermediate amplitude which has the largest stabilising effect
on the film, and a corresponding maximum stable Reynolds number. Calculations
using the weighted-residual model predict large increases in the critical Reynolds
number, from 5/4 to 4 or more, for stability to perturbations of arbitrary wavelength
if blowing and suction is applied with wavelengths of around 200 times the mean
thickness of the film.

In the absence of suction, and beyond the critical Reynolds number, the film can
exhibit a range of behaviour including the emergence of travelling waves which
propagate in the down-slope direction at constant speed U without changing form.
Imposing blowing and suction as F(x) introduces heterogeneity to the system, and
so we expect periodic travelling waves h = H(ζ ) where ζ = x − Ut to become
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limit cycles that are periodic in both x and t, with explicit dependence on both
variables. We calculated the O(A) correction to the travelling wave due to small
amplitude blowing and suction, showing that the equations are closely related to
those governing linear stability of the travelling wave and can be solved simply if
transformed to (x, ζ ) coordinates. The resulting solution for h(x, t) and q(x, t) is
periodic in time with the same time period as the underlying travelling wave, but is
spatially periodic only if the ratio between the wavelength of the blowing and suction
and the wavelength of the travelling wave is rational. In many cases, the O(A)
correction to the travelling wave is almost steady in a fixed frame, and so the small
A expansion allows exploration of the transition between finite-amplitude travelling
waves propagating through a slowly-varying environment when the imposed blowing
and suction is small, and small waves propagating over a steady, non-uniform state
for larger-amplitude blowing and suction. We also conducted initial-value calculations
for different initial conditions to investigate competition between the period of the
travelling wave and of the imposed suction. The same state is eventually reached
regardless of initial conditions, but competition between different wavelengths can
persist over a long time.

The Benney and weighted-residual models that we have derived here are also
valid for the case of a time-dependent blowing and suction profile, so long as the
timescale for variation is not too short. This leads to the possibility of delivering
feedback control by basing the blowing and suction profile on observations of the
interface height. Under the assumption of small deviations from a uniform state,
both the weighted-residual equations and the Benney equations reduce via a weakly
nonlinear analysis to a forced version of the Kuramoto–Sivashinsky equations (KS),
for which optimal feedback controls have been successfully applied (Gomes et al.
2015). However, away from this weakly nonlinear limit, the strong nonlinearities
present in the Benney and weighted-residual models present a significant challenge
for feedback control. In Thompson et al. (2015), we show that applying feedback
in the form of blowing and suction based on observations of the interface height
can be successfully used to control the film behaviour represented by the nonlinear
long-wave models derived in this paper. We focus especially on the robustness of
control strategies of varying complexity applied in a hierarchical manner starting with
application to simple models (e.g. KS) and then used in more complicated models
(such as the Benney, weighted-residual and Navier–Stokes equations).
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Appendix A. Derivation of long-wave equations

We first rescale the governing equations (2.1) to (2.7) according to

X = δx, T = δt, v = δw, C= δ2Ĉ, (A 1a−d)
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where we are interested in the long-wave limit δ� 1. We will consider two different
scalings for F: firstly F = δf , and also F = δ2 f̂ . If F is unsteady, we require for
consistency that fT =O(1) or smaller. The full set of equations becomes

Rδ(uT + uuX +wuy)=−δpX + 2+ δ2uXX + uyy, (A 2)

Rδ2(wT + uwX +wwy)=−py − 2 cot θ + δ3wXX + δwyy, (A 3)
uX +wy = 0. (A 4)

The boundary conditions at y= 0 are

u= 0, w= f (X, T), (A 5a,b)

and at y= h we have

(δ2wX + uy)(1− δ2h2
X)+ 2δhX(δwy − δuX)= 0, (A 6)

p− pa − 2
1+ δ2h2

X
(δwy + δ3uXh3

X − δhX(δ
2wX + uy))=− hXX

Ĉ(1+ δ2h2
X)

3/2
. (A 7)

The rescaled kinematic equation (2.9) is

hT − f (X, T)+ qX = 0, q=
∫ h

0
u dy. (A 8a,b)

As f is known, we need only an expression for q to close the system.

A.1. Benney equation
To obtain the Benney equation for q as a function of h, we expand u, w, p and q in
powers of δ, while assuming that h is an O(1) quantity:

u= u0 + δu1 +O(δ2), w=w0 + δw1 +O(δ2), (A 9a,b)
p= p0 + δp1 +O(δ2), q= q0 + δq1 +O(δ2). (A 10a,b)

The leading-order solution of (A 2) to (A 7) for small δ is

u0 = y(2h− y), w0 = f (X, T)− y2hX, p0 = pa − hXX

Ĉ
+ 2(h− y) cot θ. (A 11a−c)

The flux at this order is

q0 =
∫ h

0
u0 dy= 2h3

3
, (A 12)

leading to the evolution equation

hT − f (X, T)+ 2h2hX =O(δ). (A 13)

We must calculate u1 in order to obtain the O(δ) correction to q. After integrating the
O(δ) part of (A 2) twice, and applying boundary conditions at this order, we find

u1 = yp̂X

2
(y− 2h)+ R

[
(hT − f )

(
y3

3
− h2y

)
+ 2hhX

3

(
y4

4
− h3y

)
+ hy(y− 2h)f

]
,

(A 14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

68
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.683


Falling liquid films with blowing and suction 327

where we have defined

p̂= 2h cot θ − hXX

Ĉ
. (A 15)

The first-order correction to the flux can now be calculated as

q1 =
∫ h

0
u1 dy=−h3p̂X

3
+ R

(
−5hTh4

12
− 3h6hX

10
− h4f

4

)
. (A 16)

We eliminate hT from this expression by using (A 13), and thus obtain the Benney
equation for q:

q= q0 + δq1 +O(δ2)= 2h3

3
− δ h3p̂X

3
+ Rδ

(
8h6hX

15
− 2h4f (X, T)

3

)
+O(δ2). (A 17)

Alternatively, if f = δf̂ , then f still appears via the mass conservation (A 8a,b), but
is absorbed into the O(δ2) error term in (A 17).

A.2. First-order weighted-residual equations
The derivation of the first-order weighted-residual equations closely follows the
original derivation presented by Ruyer-Quil & Manneville (2000). Imposing suction
at the wall does not affect the boundary conditions on u, and so the basis functions
for u described by Ruyer-Quil & Manneville yield the first-order equation without
difficulty.

In contrast to the derivation of the Benney equations, here we use δ as an ordering
parameter, rather than directly expanding variables with respect to δ. For the first-order
weighted-residual equations, we retain terms up to and including O(δ) in the equations,
and so the momentum equations yield

R(δuT + δuuX + δwuy)=−δpX + 2+ uyy +O(δ2) (A 18)

and

0=−py − 2 cot θ + δwyy +O(δ2), (A 19)

while the mass conservation equation (A 4) and the boundary conditions on the wall
(A 5) are unchanged. The normal and tangential components of the dynamic boundary
condition become

0= uy +O(δ2), p= pa − 2δuX − hXX

Ĉ
+O(δ2) at y= h. (A 20a,b)

We can integrate (A 19) with respect to y, and apply (A 20) to obtain

p= pa + 2(h− y) cot θ − hXX

Ĉ
+O(δ). (A 21)

We then substitute (A 21) into (A 18) and discard terms smaller than O(δ), leaving

Rδ(uT + uuX +wuy)=−δp̂X + 2+ uyy, (A 22)

which is coupled to the mass conservation equation (A 4), and subject to the boundary
conditions u= 0 and w= f (X, T) at y= 0, and uy = 0 at y= h(X, T).
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Following Ruyer-Quil & Manneville, we posit an expansion for u in terms of basis
functions φj satisfying no slip on the wall and zero tangential stress on the interface:

u=
∑

j

aj(X, T)φj(ȳ), φj(z)= zj+1 −
(

j+ 1
j+ 2

)
zj+2, ȳ= y

h(X, T)
. (A 23a−c)

If δ = 0, the only non-zero an is a0, and for small δ, we find that a0 = O(1), while
an=O(δ) or smaller for n> 1. We can calculate the coefficients aj by using the φj as
test functions in (A 22), but can obtain the leading-order equations by use of φ0 only.

Correct to O(δ) we can write the weak form of (A 22) as

Rδ
∫ h

0
φn(ȳ)(u0T + u0u0X +w0u0y) dy= (−δp̂X + 2)

∫ h

0
φn(ȳ) dy+

∫ h

0
φn(ȳ)uyy dy,

(A 24)
where

u0(X, y, T)= 3q
h
φ0(ȳ), w0(X, y, T)= f (X, T)−

∫ y

0
u0X(X, y′, T) dy′. (A 25a,b)

After setting n= 0 and repeated integration by parts, (A 24) yields

Rδ
(

2
5

qT − 23
40

qhT

h
+ 111

280
qqX

h
− 18

35
q2hX

h2
+ 3qf

8h

)
= (−δp̂X + 2)

h
3
− q

h2
. (A 26)

We can eliminate hT from (A 26) by using (A 8a,b), and thus obtain

q+ 2
5

Rδh2qT = 2h3

3
− δh

3p̂X

3
+ Rδ

(
18
35

q2hX − 34
35

hqqX + hqf (X, T)
5

)
+O(δ2). (A 27)

The two equations (A 8a,b) and (A 27) form a closed system for h and q without
requiring calculation of an for n > 1. However, the higher coefficients are required
to fully determine the velocity field within the fluid layer.

As in the case of the Benney equations, if we take f = δf̂ , the mass conservation
equation (A 8a,b) is unchanged, but the term involving f in (A 27) disappears as it is
absorbed into the O(δ2) error term.
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