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Classification of Quantum Tori with
Involution

Yoji Yoshii

Abstract. Quantum tori with graded involution appear as coordinate algebras of extended affine Lie

algebras of type A1, C and BC. We classify them in the category of algebras with involution. From this,

we obtain precise information on the root systems of extended affine Lie algebras of type C.

Introduction

Let F be a field. A quantum torus Fq is a noncommutative analogue of the algebra of
Laurent polynomials over F, determined by a certain n × n matrix q. Quantum tori

appeared in several areas, e.g. quantum affine varieties [6], extended affine Lie alge-
bras [5] or quantum physics [7]. In noncommutative geometry or quantum physics,
a special type of quantum tori called a noncommutative torus is considered (see Re-
mark 1.0).

Our first purpose in this paper is to classify the graded involutions of quantum
tori. It is known [1] that the existence of a graded involution of Fq is equivalent to q

being elementary, i.e., all the entries of q are 1 or−1. We prove that for an elementary
q we have Fq

∼= Fhl,n
, where

hl,n =

l-times
︷ ︸︸ ︷

h× · · · × h×1n−2l and h =

(
1 −1
−1 1

)

(Theorem 1.10)

(see Definition 1.4 for the notation ×). Then we classify graded involutions τ of the
elementary quantum torus Fhl,n

. We obtain that the algebra with involution (Fhl,n
, τ )

is isomorphic to

(Fhl,n
, ∗), (Fhl,n

, τ1) or (Fhl,n
, τ2) (Theorem 2.7)

for three unique involutions ∗, τ1 and τ2.
A quantum torus has a natural Z

n-grading. For any graded involution the subset
of Z

n, consisting of the degrees in which homogeneous elements are fixed by the invo-
lution, is a so-called semilattice, studied in [1]. In Lemma 4.1 we determine the index,

an invariant of any semilattice [4], for each of the 3 involutions of Theorem 2.7. As a
result, the 3 semilattices are pairwise non-similar. Moreover, we introduce a natural
similarity invariant of semilattices called saturation number (Definition 4.2). Using
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712 Yoji Yoshii

this concept, we show that l in the three semilattices above is a similarity invariant.
This allows us to complete the classification of semilattices determined by quantum

tori with graded involution (Theorem 4.6).
Quantum tori with graded involution appear as coordinate algebras of extended

affine Lie algebras of type A1 in [11], C in [2] and BC in [3]. Isomorphic coordi-
nate algebras give rise to isomorphic extended affine Lie algebras. Thus, our results

provide a finer classification of extended affine Lie algebras in the above types. Also,
we obtain more precise information on the difference between extended affine root
systems and the root systems of extended affine Lie algebras of type Cr for r ≥ 3 than
the one described in [2] (see Corollaries 5.4 and 5.5).

The organization of the paper is as follows. In Section 1 we define elementary
quantum tori and classify them. In Section 2 we classify (elementary) quantum tori
with involution. In Section 3 we review semilattices. In Section 4 we obtain the clas-
sification of semilattices determined by (elementary) quantum tori with involution.

In the final section extended affine root systems of type C are reviewed and the dif-
ference to the root systems of extended affine Lie algebras of type C is discussed.

This is part of my Ph.D. thesis, written at the University of Ottawa. I would like
to thank my supervisor, Professor Erhard Neher, for his encouragement and sugges-

tions.

1 Elementary Quantum Tori

We begin by recalling quantum tori (see [8]). An n × n matrix q = (qi j) over a
field F such that qii = 1 and q ji = q−1

i j is called a quantum data matrix or simply
a quantum matrix. (This notion should not be confused with the use of the word
“quantum matrix” in quantum algebra, see e.g. [9]. But in our argument, no confu-

sion will arise, and so we will simply call the q a quantum matrix.) The quantum torus

Fq = Fq[t±1
1 , . . . , t

±1
n ] determined by a quantum matrix q is defined as the associa-

tive algebra over F with 2n generators t±1
1 , . . . , t

±1
n , and relations tit

−1
i = t−1

i ti = 1
and t jti = qi jtit j for all 1 ≤ i, j ≤ n. Note that Fq is commutative if and only if

q = 1 where all the entries of 1 are 1. In this case, the quantum torus F1 becomes the
algebra F[t±1

1 , . . . , t
±1
n ] of Laurent polynomials.

Remark 1.0 For F = C, if we assume that |qi j | = 1 for all i, j, then Cq is a non-

commutative torus [10]. Let θi j ∈ R be such that qi j = e2πiθi j . Then θ = (θi j) is
an antisymmetric matrix over R. In noncommutative geometry or quantum physics,
one studies the C∗-algebra completion of the quantum torus as defined above (see
e.g. [10] or [7]).

Let Λ = Λn be the free abelian group of rank n. We give a Λ-grading of the quan-
tum torus Fq = Fq[t±1

1 , . . . , t
±1
n ] in the following way: For any basis {σ1, . . . ,σn} of

Λ, we define the degree of

tα := tα1

1 · · · t
αn
n forα = α1σ1 + · · · + αnσn ∈ Λ as α.

Then Fq =
⊕

α∈Λ Ftα becomes a Λ-graded algebra. We call this grading the toral

Λ-grading of Fq determined by 〈σ1, . . . ,σn〉. Sometimes it is referred to as a
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〈σ1, . . . ,σn〉-grading. Also, if we write Fq =
⊕

α∈Λ (Fq)α or Fq =
⊕

α∈Λ Ftα,
we are assuming some toral Λ-grading of Fq. One can check that the multiplication

rule in Fq for q = (qi j) is the following: for β = β1σ1 + · · · + βnσn ∈ Λ,

tαtβ =
∏

i< j

q
α jβi

i j tα+β.(1.1)

Lemma 1.2 If ϕ : Fq =
⊕

α∈Λ Ftα −̃→ Fη =
⊕

α∈Λ Ftα is an isomorphism of

algebras, then there exists the induced group automorphism p of Λ such that ϕ(Ftα) =
Ftp(α) for all α ∈ Λ.

Proof It is easily seen that the units of any quantum torus with toral grading are
nonzero homogeneous elements. Thus, since ϕ(tα) is a unit for any α ∈ Λ, there
exists p(α) ∈ Λ such that ϕ(Ftα) = Ftp(α), and the map p : Λ −→ Λ is well-defined.
It is straightforward to check that p is an automorphism of Λ.

For quantum matrices q and η, we say that q is equivalent to η and denote this by
q ∼= η if Fq

∼= Fη. This is an equivalence relation. Note that q ∼= 1 implies q = 1.
If Fq has a toralΛ-grading, the centre Z(Fq) of Fq is graded by some subgroup ofΛ

which we call the grading subgroup of Z(Fq). If Fq and Fη each have toral Λ-gradings,
we write Fq

∼=Λ Fη to mean that Fq and Fη are isomorphic as Λ-graded algebras.

Lemma 1.3 Let q and η = (ηi j )1≤i, j≤n be quantum matrices, and let Fq respectively

Fη be the corresponding quantum tori. Then the following are equivalent:

(i) q ∼= η, i.e., Fq
∼= Fη as algebras,

(ii) for any toral grading of Fq, there exists a basis 〈σ1, . . . ,σn〉 of Λ and nonzero

homogeneous elements xi ∈ Fq of degree σi such that x jxi = ηi j xix j for all 1 ≤
i < j ≤ n,

(iii) for any toral grading of Fq, there exists a toral grading of Fη such that Fq
∼=Λ Fη.

In that case, the grading subgroups of the centres Z(Fq) and Z(Fη) coincide.

Proof We prove (i)=⇒ (ii)=⇒ (iii)=⇒ (i). Suppose that (i) holds, i.e., there exists

an isomorphism ϕ from Fq onto Fη. Give a toral Λ-grading to Fq so that Fq =⊕

α∈Λ(Fq)α and a toral 〈ε1, . . . , εn〉-grading to Fη = Fη[t±1
1 , . . . , t

±1
n ] so that Fη =⊕

α∈Λ Ftα. Then, by Lemma 1.2, there exists the induced automorphism p ofΛ such

that ϕ
(

(Fq)α
)
= Ftp(α) for allα ∈ Λ. Let σi := p−1(εi) and xi := ϕ−1(ti) ∈ (Fq)σi

for i = 1, . . . , n. Then 〈σ1, . . . ,σn〉 is a basis of Λ, and we have

x jxi = ϕ
−1(t j )ϕ

−1(ti) = ϕ
−1(t jti) = ϕ

−1(ηi jtit j) = ηi jxix j

for all 1 ≤ i < j ≤ n. So (ii) holds. Suppose that (ii) holds. Since 〈σ1, . . . ,σn〉
is a basis of Λ, one has Fq =

⊕

α∈Λ Fxα where xα = xα1

1 · · · x
αn
n for α = α1σ1 +

· · · + αnσn. Define a map ϕ : Fq −→ Fη = Fη[t±1
1 , . . . , t

±1
n ] by ϕ(xα) = tα where

tα = tα1

1 · · · t
αn
n for all α ∈ Λ. Then, since x jxi = ηi jxix j , ϕ is an isomorphism of

algebras. Moreover, ϕ is graded if we give the 〈σ1, . . . ,σn〉-grading to Fη. Hence (iii)
holds. Finally, (iii) clearly implies (i).
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For convenience, we use the following notation:

Definition 1.4 For square matrices A1, . . . ,Ar of sizes li , i = 1, . . . , r, we define the
square matrix A1 × · · · × Ar of size l1 + · · · + lr to be

A1 × · · · × Ar =












A1 1 1 · · · 1

1 A2 1
...

1 1 A3

. . .
...

...
. . .

. . . 1

1 · · · · · · 1 Ar












,

where 1’s are matrices of suitable sizes whose entries are all 1. Also, we write 1 = 1k

if 1 is a square matrix of size k.

Lemma 1.5

(1) Let q = (qi j) be an n×n quantum matrix, σ a permutation on {1, . . . , n}, and put

q̃σ = (q̃i j) where q̃i j = qσ(i)σ( j). Then q ∼= q̃σ . In particular, for a transposition

(i j) ∈ S, we have q ∼= q̃(i j).

(2) Let r, s and η be quantum matrices with s ∼= η. Then:

(i) r× s ∼= s× r,

(ii) r× s ∼= r× η.

Proof For (1), let Fq = Fq[t±1
1 , . . . , t

±1
n ], and so we have t jti = qi jtit j . Hence the

generators t̃i := tσ(i) satisfy t̃ j t̃i = tσ( j)tσ(i) = qσ(i)σ( j)tσ(i)tσ( j) = qσ(i)σ( j)t̃i t̃ j , and

Fq = Fq̃σ [t̃
±1
1 , . . . , t̃

±1
n ].

Thus we get q ∼= q̃σ .

For (2), let r and s be the sizes of the matrices r and s, respectively, and let n := r+s

and Fr×s = Fr×s[t±1
1 , . . . , t

±1
n ].

(i) follows from (1): Take

σ =

(
1 · · · s s + 1 · · · n

r + 1 · · · n 1 · · · r

)

.

Then s× r = (r̃× s)σ .

For (ii), we consider a toral 〈ε1, . . . , εn〉-grading of Fr×s. Let r × η = (ai j). The
subalgebra of Fr×s generated by t±1

r+1, . . . , t
±1
n can be identified with the quantum

torus Fs[t±1
r+1, . . . , t

±1
n ] with the 〈εr+1, . . . , εn〉-grading. By Lemma 1.3, our assump-

tion s ∼= η implies that there exists a basis 〈σr+1, . . . ,σn〉 of Zεr+1 + · · · + Zεn in
Λ such that x jxi = ai jxix j for all r + 1 ≤ i, j ≤ n where xi is a nonzero element
of degree σi . Note that all x1 := t1, . . . , xr := tr commute with all tr+1, . . . , tn, and
so all x1, . . . , xr commute with all xr+1, . . . , xn. Hence we get x jxi = ai jxix j for all
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1 ≤ i, j ≤ n. Since 〈ε1, . . . , εr,σr+1, . . . ,σn〉 is a basis of Λ, we obtain r× s ∼= r× η
by Lemma 1.3.

Definition 1.6 A quantum matrix ε = (εi j ) is called elementary if εi j = 1 or −1
for all i, j. Note that ε becomes a symmetric matrix. Also, the quantum torus Fε
determined by an elementary quantum matrix ε is called an elementary quantum

torus.

Note that any elementary quantum matrix is 1 if ch. F = 2. Thus our argument

will be trivial if ch. F = 2, and so for convenience we will assume that ch. F 6= 2 from
now on.

Example 1.7 Let

Fm3
= Fm3

[t±1
1 , t

±1
2 , t

±1
3 ] and Fm4

= Fm4
[t±1

1 , t
±1
2 , t

±1
3 , t

±1
4 ]

be elementary quantum tori with an 〈ε1, ε2, ε3〉-grading and an 〈ε1, ε2, ε3, ε4〉-grad-
ing, respectively, where

m3 =





1 −1 −1

−1 1 −1
−1 −1 1



 and m4 =







1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1

−1 −1 −1 1






.

In Fm3
, t1 commutes with t2t3 which has degree ε2 + ε3, and in Fm4

, t1 commutes

with t2t3 and t2t4 which has degree ε2 + ε3 and ε2 + ε4. Since 〈ε1, ε2, ε2 + ε3〉 and
〈ε1, ε2, ε2 + ε3, ε2 + ε4〉 are bases of Λ3 and Λ4, respectively, we have by Lemma 1.3,

m3
∼=





1 −1 1
−1 ∗ ∗
1 ∗ ∗



 and m4
∼=







1 −1 1 1
−1 ∗ ∗ ∗
1 ∗ ∗ ∗
1 ∗ ∗ ∗






,

and the ∗-parts of both matrices are some elementary matrices. Indeed in both alge-
bras, we have (t2t3)t2 = −t2(t2t3), and in Fm4

, (t2t4)t2 = −t2(t2t4) and (t2t3)(t2t4) =

−(t2t4)(t2t3). So we get

m3
∼=





1 −1 1
−1 1 −1
1 −1 1



 and m4
∼=







1 −1 1 1
−1 1 −1 −1

1 −1 1 −1
1 −1 −1 1






.

In both algebras, t1 and t2 commute with t1(t2t3) which has degree ε1 + ε2 + ε3,
and in Fm4

, t1 and t2 commutes with t1(t2t4) which has degree ε1 + ε2 + ε4. Since
〈ε1, ε2, ε1 + ε2 + ε3〉 and 〈ε1, ε2, ε1 + ε2 + ε3, ε1 + ε2 + ε4〉 are bases of Λ3 and Λ4,
respectively, we have by Lemma 1.3,

m3
∼=





1 −1 1
−1 1 1
1 1 1



 and m4
∼=







1 −1 1 1
−1 1 1 1
1 1 ∗ ∗
1 1 ∗ ∗






,

https://doi.org/10.4153/CMB-2002-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-063-0


716 Yoji Yoshii

and the ∗-part is h by (t1t2t4)(t1t2t3) = −(t1t2t3)(t1t2t4). Thus we have shown

m3
∼= h1,3 and m4

∼= h2,4 = h× h

(see the definition of hl,n in Theorem 1.10). Note that we also have shown

Fm3
∼=Λ Fh1,3

[u±1
1 , u

±1
2 , u

±1
3 ] via t1 7−→ u1, t2 7−→ u2, t1t2t3 7−→ u3,

Fm4
∼=Λ Fh×h[u±1

1 , u
±1
2 , u

±1
3 , u

±1
4 ] via

t1 7−→ u1, t2 7−→ u2, t1t2t3 7−→ u3, t1t2t4 7−→ u4,

for the 〈ε1, ε2, ε3〉-grading of Fh1,3
and the 〈ε1, ε2, ε3, ε4〉-grading of Fh×h.

In general, the centre Z(Fq) of a quantum torus Fq is an algebra of Laurent poly-
nomials, and the grading group is given by

{

α ∈ Λ
∣
∣
∣

∏

i, j

q
α jβi

i j = 1 for all β ∈ Λ
}

(see [5] or [8]). For later use, we directly calculate the centre of Fhl,n
.

Lemma 1.8 Let l > 0 and Fhl,n
= Fhl,n

[t±1
1 , . . . , t

±1
n ] be an elementary torus. Then the

centre Z(Fhl,n
) is equal to

F[t±2
1 , . . . , t

±2
2l , t

±1
2l+1, . . . , t

±1
n ],

the algebra of Laurent polynomials in the variables t 2
1 , . . . , t

2
2l, t2l+1, . . . , tn. Hence for a

〈σ1, . . . ,σn〉-grading of Fhl,n
, the grading group of Z(Fhl,n

) is equal to

2Zσ1 + · · · + 2Zσ2l + Zσ2l+1 + · · · + Zσn.

Proof It is clear that Z ′ := F[t±2
1 , . . . , t

±2
2l , t

±1
2l+1, . . . , t

±1
n ] ⊂ Z(Fhl,n

) =: Z. For the
other inclusion, if Z \ Z ′ 6= ∅, there exists x := tκ1

1 · · · t
κ2l

2l ∈ Z, where κi = 0 or 1
but not all κi are 0. But then, for κ j 6= 0, we have xtk = −tkx where

k =

{

j + 1 if j is odd

j − 1 if j is even,

i.e., x /∈ Z, which is a contradiction. Hence Z = Z ′.

Note that h0,n = 1 and so Z(Fh0,n
) = F[t±1

1 , . . . , t
±1
n ].

Lemma 1.9 Let ε = (εi j ) be an n × n elementary quantum matrix for n ≥ 3. If

εkp = εkq = −1 for some distinct 1 ≤ k, p, q ≤ n, then there exists an elementary

quantum matrix η = (ηi j ) with

ηi j = εi j for all i, j 6= q (ηqq = εqq = 1),

ηiq = εi pεiq for all i 6= q

such that ε ∼= η. In particular,
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(a) ηkq = 1 and ηki = εki for all i 6= q;

(b) if k = 2 and p = 1, then ηi1 = εi1 for all i, i.e., the first rows of ε and η are the

same.

Proof Let Fε = Fε[t
±1
1 , . . . , t

±1
n ] with a 〈σ1, . . . ,σn〉-grading. Since εkp = εkq =

−1, we have tptk = −tktp and tqtk = −tktq. Hence tk commutes with tptq which has
degree σp + σq. Let

x1 := t1, . . . , xq−1 := tq−1, xq := tptq, xq+1 := tq+1, . . . , xn := tn.

Then the relations between xi and x j for 1 ≤ i, j ≤ n determine an elementary
quantum matrix η = (ηi j ), i.e., x jxi = ηi jxix j . It is clear that ηi j = εi j for all
i, j 6= q. For i 6= q, we have xqxi = (tptq)ti = εi pεiqti(tptq) = εi pεiqxixq. Hence

ηiq = εi pεiq. Since

〈σ1, . . . ,σq−1,σp + σq,σq+1, . . . ,σn〉

is a basis of Λ, we get ε ∼= η by Lemma 1.3. (a) and (b) are clear now.

Our first result is the following:

Theorem 1.10 Let ε be an n× n elementary quantum matrix. Then there exists l ≥ 0
such that ε ∼= hl,n where

hl,n =

l-times
︷ ︸︸ ︷

h× · · · × h×1n−2l and h =

(
1 −1
−1 1

)

.

Also, there exists a 〈σ1, . . . ,σn〉-grading of Fε such that the grading group of the centre

Z(Fε) is equal to

2Zσ1 + · · · + 2Zσ2l + Zσ2l+1 + · · · + Zσn.

Moreover, the number l is an isomorphism invariant of Fε.

Proof We prove this by induction on n. When n = 1, ε has to be (1), and so the
statement is clear. Let n > 1, ε = (εi j) and

Nk(ε) :=
∣
∣{i | εki = −1, 1 ≤ i ≤ n}

∣
∣

where | | is the number of elements of a set. (We will use this notation only for k = 1
and 2.) If N1(ε) = 0, then ε = (1)× ε ′ for an elementary quantum matrix ε ′ of size
n − 1. By induction, we have ε ′ ∼= hl,n−1 for some l ≥ 0. Then, by Lemma 1.5 (2),
we get

ε = (1)× ε ′ ∼= (1)× hl,n−1
∼= hl,n−1 × (1) = hl,n.

If N1(ε) > 1, then by Lemma 1.9 (a) for k = 1, there exists an elementary quan-
tum matrix ε ′ such that ε ∼= ε ′ and N1(ε ′) = N1(ε) − 1. Repeating this, we obtain
an elementary quantum matrix ν such that ε ∼= ν and N1(ν) = 1, i.e., only one
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entry, say the (1i0)-entry, is−1 in the first row of ν. If N1(ε) = 1, we also put ν = ε.
Then, by Lemma 1.5 (1), we get

ε ∼= ν(2i0) =: η = (ηi j) =










1 −1 1 · · · 1

−1
1 ∗
...

1










,

i.e., η12 = η21 = −1, the other η1i = ηi1 = 1 and ∗ is some elementary quantum
matrix of size n− 1.

If n = 2, we have η = h and we are done. We assume that n > 2. Note that

N2(η) ≥ 1 since η21 = −1. If N2(η) > 1, we can apply Lemma 1.9 (b) for any
q > 2 such that η2q = −1, and get an elementary quantum matrix η ′ such that
η ∼= η ′, N1(η′) = N1(η) = 1 and N2(η ′) = N2(η) − 1. Repeating this, we obtain
an elementary quantum matrix µ = (µi j) such that η ∼= µ, N1(µ) = N2(µ) = 1

and µ21 = µ12 = −1. Also, if N2(η) = 1, we put η = µ. Thus we have η ∼= µ =
h × µ′ for an elementary quantum matrix µ ′ of size n − 2. By induction, we have
µ′ ∼= hl ′,n−2 for some l ′ ≥ 0. Then, by Lemma 1.5 (2) (ii), we get µ = h × µ ′ ∼=
h× hl ′,n−2 = hl,n where l = l ′ + 1, and hence ε ∼= η ∼= µ ∼= hl,n.

The description of the centre follows from Lemma 1.3 and Lemma 1.8. For the

last statement, suppose that hl,n
∼= hl ′,n. Then, by Lemma 1.3, Fhl,n

∼=Λ Fhl ′ ,n
for some

toral gradings. Hence the grading groups of the centres of Fhl,n
and Fhl ′ ,n

coincide,
which implies l = l ′, by Lemma 1.8. Therefore, l is an isomorphism invariant of Fε.

2 Elementary Quantum Tori with Graded Involution

From now on, we always consider a quantum torus as a toral Λ-graded algebra. Let
Fq = Fq[t±1

1 , . . . , t
±1
n ] be the quantum torus determined by q = (qi j), and let τ be

a graded involution of Fq. Then we have τ (ti) = aiti for some ai ∈ F, i = 1, . . . , n.
Since ti = τ

2(ti) = a2
i ti , one gets ai = ±1 for all 1 ≤ i ≤ n. Moreover, one has

aia jqi jt jti = τ (qi jtit j) = τ (t jti) = aia jtit j = aia jq jit jti ,

and hence q−1
i j = q ji , i.e., qi j = ±1 for all 1 ≤ i, j ≤ n. Thus q has to be elementary.

Conversely, it is straightforward to check that for an elementary quantum tours
Fε = Fε[t

±1
1 , . . . , t

±1
n ] and each (a1, . . . , an), ai = ±1, there exists a unique involu-

tion of Fε such that τ (ti) = aiti for all 1 ≤ i ≤ n. We call this τ of type (a1, . . . , an),
denoted τ = (a1, . . . , an). The graded involution of type (1, . . . , 1) is called the main

involution, denoted ∗. Thus we have the following proposition, which is stated in [1]:

Proposition 2.1 Let Fq = Fq[t±1
1 , . . . , t

±1
n ] be a quantum torus over F. Then there

exists a graded involution τ of Fq if and only if q is elementary. In this case, τ has type

(a1, . . . , an), i.e., τ (ti) = aiti where ai = 1 or−1 for all 1 ≤ i ≤ n.
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Recall the notion of isomorphism in the class of algebras with involution. Namely,
for algebras with involution (A, τ ) and (B, ρ), an isomorphism of algebras with involu-

tion from (A, τ ) onto (B, ρ) is an isomorphism f from A onto B satisfying f τ = ρ f ,
and in this case we denote this by (A, τ ) ∼= (B, ρ). Moreover, if A and B are Λ-graded
algebras, τ and ρ are graded involutions and the f happens to be a graded isomor-
phism, we write (A, τ ) ∼=Λ (B, ρ). Finally, the centre Z(A, τ ) of (A, τ ) is defined as

Z(A, τ ) = Z(A) ∩ {a ∈ A | τ (a) = a},

where Z(A) is the centre of the algebra A.
One can prove the following lemmas similar to Lemmas 1.3 and 1.5. Since the

proofs can be done in the same manner, they will be left to the reader.

Lemma 2.2 Let (Fε, τ ) and (Fη, ρ) be elementary quantum tori with graded involu-

tion. Let η = (ηi j)1≤i, j≤n and ρ = (a1, . . . , an). Then the following are equivalent:

(i) (Fε, τ ) ∼= (Fη, ρ),

(ii) for any toral grading of Fε, there exists a basis 〈σ1, . . . ,σn〉 of Λ and nonzero

homogeneous elements xi ∈ Fε of degree σi such that x jxi = ηi j xix j and τ (xi) =
aixi for all 1 ≤ i < j ≤ n,

(iii) for any toral grading of Fε, there exists a toral grading of Fη such that (Fε, τ ) ∼=Λ
(Fη, ρ). In that case, the grading subgroups of the centres Z(Fε, τ ) and Z(Fη, ρ)
coincide.

For graded involutions τ and ρ of type (a1, . . . , ar) and (b1, . . . , bs), respectively,
we denote the graded involution of type (a1, . . . , ar, b1, . . . , bs) by τ × ρ.

Lemma 2.3 Let (Fr, τ ), (Fs, ρ) and (Fη, ρ1) be elementary quantum tori with graded

involution. Assume that (Fs, ρ) ∼= (Fη, ρ1). Then:

(i) (Fr×s, τ × ρ) ∼= (Fs×r, ρ× τ ),

(ii) (Fr×s, τ × ρ) ∼= (Fr×η, τ × ρ1).

We start to classify elementary tori with graded involution. Let τ be a graded invo-
lution of an elementary quantum torus Fε. Then, by Theorem 1.10 and Lemma 1.3,
we have Fε ∼=Λ Fhl,n

for some l ≥ 0 and toral gradings, and hence (Fε, τ ) ∼=Λ (Fhl,n
, ρ)

for some graded involution ρ of Fhl,n
. Thus it is enough to classify Fhl,n

with graded in-

volutions. Besides the main involution ∗ = (1, . . . , 1), we define two specific graded
involutions of Fhl,n

, namely,

τ1 = (1, . . . , 1,−1, 1, . . . , 1),

where only the 2l + 1 position is−1, if n− 2l ≥ 1,

τ2 = (1, . . . , 1,−1,−1, 1, . . . , 1),

where only the 2l − 1 and 2l positions are −1, if l ≥ 1.

Remark By Lemma 1.8, ∗ and τ2 fix the centre Z of Fhl,n
but τ1 does not. It is easily

seen that the central closure Fhl,n
= Z ⊗Z Fhl,n

is a simple algebra over Z, where Z is
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the field of fractions of Z. Let τ = ∗, τ1 or τ2. By the universal property of the central
closure F

h(n)
l

, the natural extension τ of τ defined by τ(z ⊗ x) = τ (z) ⊗ τ (x) is an

involution of F
h(n)

l
. Since ∗ and τ2 fix Z, they are involutions of first kind, while τ1

does not, and so it is an involution of second kind.

Example 2.4 Recall the two elementary quantum matrices m3 and m4 defined in
Example 1.7. The isomorphisms m3

∼= h1,3 and m4
∼= h2,4 there give isomorphisms

of algebras with involution, namely,

(Fm3
, ∗) ∼= (Fh1,3

, τ1) and (Fm4
, ∗) ∼= (Fh2,4

, τ2).

Like Lemma 1.8, we have the following lemma about the centres:

Lemma 2.5 Let Fhl,n
= Fhl,n

[t±1
1 , . . . , t

±1
n ] be an elementary torus. Then

Z(Fhl,n
, ∗) = Z(Fhl,n

, τ2) = F[t±2
1 , . . . , t

±2
2l , t

±1
2l+1, . . . , t

±1
n ]

Z(Fhl,n
, τ1) = F[t±2

1 , . . . , t
±2
2l+1, t

±1
2l+2, . . . , t

±1
n ].

(For (Fhl,n
, τ2), we are always assuming l ≥ 1, but for the others, l can be 0.)

Hence for a 〈σ1, . . . ,σn〉-grading of Fhl,n
, the grading groups of Z(Fhl,n

, ∗) and

Z(Fhl,n
, τ2) are equal to

2Zσ1 + · · · + 2Zσ2l + Zσ2l+1 + · · · + Zσn,

and the grading group of Z(Fhl,n
, τ1) is equal to

2Zσ1 + · · · + 2Zσ2l+1 + Zσ2l+2 + · · · + Zσn.

Proof From Lemma 1.8, we already knows the description of the centre Z(Fhl,n
) of

Fhl,n
. So only the fixed elements of Z(Fhl,n

) under each ∗, τ1 and τ2 have to be calcu-
lated. This easy exercise is left to the reader.

For the classification of elementary tori with graded involution, we use the follow-
ing:

Lemma 2.6 Let ∗ be the main involution and τ1 the graded involution of Fhl,n
defined

above. Then:

(i)
(

Fh, (1,−1)
)
∼=
(

Fh, (−1, 1)
)
∼= (Fh, ∗),

(ii)
(

F12
, (−1,−1)

)
∼= (F12

, τ1),

(iii)
(

Fh1,3
, (−1,−1,−1)

)
∼= (Fh1,3

, τ1),

(iv)
(

Fh2,4
, (−1,−1,−1,−1)

)
∼= (Fh2,4

, ∗).

Proof Let Fhl,n
= Fhl,n

[t±1
1 , . . . , t

±1
n ] with an 〈ε1, . . . , εn〉-grading. Then we note

that ti1
· · · tir

has degree εi1
+ · · · + εir

.
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For (i), we have n = 2 and l = 1. Let τ = (1,−1). Then we have τ (t1) = t1 and
τ (t2) = −t2. Since (t1t2)t1 = −t1(t1t2) and τ (t1t2) = t1t2, and since 〈ε1, ε1 + ε2〉 is a

basis of Λ2, we get (Fh, τ ) ∼= (Fh, ∗) by Lemma 2.2. The case (−1, 1) can be proven
in the same way.

For (ii), we have n = 2 and l = 0. Let τ = (−1,−1). Then we have τ (t1) = −t1

and τ (t2) = −t2. Since (t1t2) = t1(t1t2) and τ (t1t2) = t1t2, and since 〈ε1, ε1 + ε2〉 is

a basis of Λ2, we get (F12
, τ ) ∼= (F12

, τ1) by Lemma 2.2.

For (iii), we have n = 3 and l = 1. Let τ = (−1,−1,−1). Then we have
τ (t1) = −t1, τ (t2) = −t2 and τ (t3) = −t3. Since (t2t3)(t1t2t3) = −(t1t2t3)(t2t3),
t3(t1t2t3) = (t1t2t3)t3, t3(t2t3) = (t2t3)t3, τ (t1t2t3) = t1t2t3 and τ (t2t3) = t2t3, and

since 〈ε1 + ε2 + ε3, ε2 + ε3, ε3〉 is a basis of Λ3, we get (Fh1,3
, τ ) ∼= (Fh1,3

, τ1) by
Lemma 2.2.

For (iv), we have n = 4 and l = 2. Let τ = (−1,−1,−1,−1). Then we have

τ (t1) = −t1, τ (t2) = −t2, τ (t3) = −t3 and τ (t4) = −t4. Put x1 := t1t2t4, x2 := t2t4,
x3 := t1t3 and x4 := t1t3t4. Then one can check that x jxi = ai jxix j where (ai j) = h2,4

and τ (xi) = xi for 1 ≤ i, j ≤ 4. Also, one can check that

〈ε1 + ε2 + ε4, ε2 + ε4, ε1 + ε3, ε1 + ε3 + ε4〉

is a basis of Λ4. Hence by Lemma 2.2, we get (Fh2,4
, τ ) ∼= (Fh2,4

, ∗).

Now we state one of our main theorems.

Theorem 2.7 Let τ be an arbitrary graded involution of an elementary quantum torus

Fε. Let ∗ be the main involution, and τ1 and τ2 the graded involutions of Fhl,n
defined

above. Then (Fε, τ ) is graded isomorphic to exactly one of







(Fhl,n
, ∗), or

(Fhl,n
, τ1) or

(Fhl,n
, τ2),

and for each of these l is an invariant of the isomorphism class. Moreover, we have

(i) (Fε, ∗) ∼= (Fhl,n
, τ1) =⇒ l ≥ 1;

(ii) (Fε, ∗) ∼= (Fhl,n
, τ2) =⇒ l ≥ 2;

(iii) (Fhl,n
, τ1) ∼=Λ (Fhl−1,n−3×m3

, ∗) for l ≥ 1;

(iv) (Fhl,n
, τ2) ∼=Λ (Fhl−2,n−4×m4

, ∗) for l ≥ 2, where m3 and m4 are the elementary

quantum matrices defined in Example 1.7.

In particular, (Fε, τ ) is graded isomorphic to exactly one of (Fh0,n
, τ1), (Fh1,n

, τ2) or

(Fη, ∗) for some elementary quantum matrix η.

Proof We have (Fε, τ ) ∼=Λ (Fhl,n
, ρ) for some graded involution ρ of Fhl,n

as men-
tioned above. So we classify (Fhl,n

, ρ) for ρ = (a1, . . . , an). Note that hl,n = hl,2l ×
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1n−2l. We consider
(

Fhl,2l
, (a1, . . . , a2l)

)
and
(

F1n−2l
, (a2l+1, . . . , an)

)
separately. By

Lemma 2.3 and Lemma 2.6 (i) and (iv), we have

(
Fhl,2l
, (a1, . . . , a2l)

)
∼=

{

(Fhl,2l
, ∗) or

(Fhl,2l
, τ2),

and by Lemma 2.6 (ii),

(
F1n−2l

, (a2l+1, . . . , an)
)
∼=

{

(F1n−2l
, ∗) or

(F1n−2l
, τ1).

Hence by Lemma 2.3, we get

(Fhl,n
, ρ) ∼=







(Fhl,n
, ∗), or

(Fhl,n
, τ1), or

(Fhl,n
, τ2), or

(
Fhl,n
, (1, . . . , 1,−1,−1,−1, 1, . . . , 1)

)
,

and the last one is isomorphic to (Fhl,n
, τ1) by Lemma 2.6 (iii). Hence, by Lemma 2.2,

we have obtained (Fε, τ ) ∼=Λ (Fhl,n
, ∗), (Fhl,n

, τ1) or (Fhl,n
, τ2).

By Lemma 2.5, we know the grading groups of the centres Z(Fhl,n
, ∗), Z(Fhl,n

, τ1)
and Z(Fhl,n

, τ2), and hence by Lemma 2.2, l is an invariant of the isomorphism classes.
Moreover, the grading groups of Z(Fhl,n

, ∗) and Z(Fhl,n
, τ2), are the same but different

from the one of Z(Fhl,n
, τ1). Thus, by Lemma 2.2, we get (Fhl,n

, ∗) � (Fhl,n
, τ1) and

(Fhl,n
, τ1) � (Fhl,n

, τ2). We postpone the proof of (Fhl,n
, ∗) � (Fhl,n

, τ2) until Section 4
(right after the proof of Lemma 4.1).

(i) Suppose that (Fh0,n
, τ1) ∼= (Fε, ∗). We have h0,n = 1, which forces ε = 1, and

hence ∗ is the identity map. This is a contradiction since τ1 is not the identity map.
Therefore, we get (Fh0,n

, τ1) � (Fε, ∗).

(ii) Suppose that (Fh1,n
, τ2) ∼= (Fε, ∗). Let Fh1,n

= Fh1,n
[t±1

1 , . . . , t
±1
n ] with an

〈ε1, . . . , εn〉-grading. By Lemma 2.2, there exists a basis 〈ρ1, . . . ,ρn〉 of Λ such that
a nonzero element xi ∈ Fh1,n

of degree ρi are fixed by τ2 for all i = 1, . . . , n. Let

ρi = αi1ε1 + · · · + αinεn for αi j ∈ Z. Then one can take xi = tαi1

1 · · · t
αin
n . Since

τ2 = (−1,−1, 1, . . . , 1), we have, by the multiplication rule (1.1) of a quantum
torus,

τ2(xi) = (−1)αi1+αi2tαin

1 · · · t
αi1
n = (−1)αi1+αi2+αi1αi2 xi = xi .

Hence αi1 and αi2 are both even for all i = 1, . . . , n. This implies that the deter-

minant of the matrix (αi j ) is even. This is absurd since 〈ρ1, . . . ,ρn〉 is a basis of Λ.
Therefore, we get (Fh1,n

, τ2) � (Fε, ∗).

For (iii) and (iv), let Fhl,n
= Fhl,n

[t±1
1 , . . . , t

±1
n ]. Let U be the subalgebra of (Fhl,n

, τ1)

generated by t±1
2l−1, t±1

2l and t±1
2l+1, and let V be the subalgebra of (Fhl,n

, τ2) generated

by t±1
2l−3, t±1

2l−2, t±1
2l−1 and t±1

2l . Then we have (U , τ1|U ) ∼= (Fh1,3
, τ1) ∼= (Fm3

, ∗) and
(U , τ2|V ) ∼= (Fh2,4

, τ2) ∼= (Fm4
, ∗) (see Example 2.4). Therefore, by Lemma 2.3 we

obtain (iii) and (iv).
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3 Semilattices

We review semilattices (see [1]). Let E be a Euclidean space. A subset S of E is called
a semilattice in E if

(S1) 0 ∈ S,
(S2) S− 2S ⊂ S,
(S3) S spans E,
(S4) S is discrete in E.

Also, a subset S of a free abelian group of finite rank is called a semilattice inΛ if (S1),
(S2) and

(S3) ′ S spans Λ.

If S is a semilattice in E, then the group 〈S〉 generated by S is a lattice in E and S is
a semilattice in 〈S〉. Also, if S is a semilattice in Λ, then S can be considered as a

semilattice in some E. Note that 2S is not a semilattice in 〈S〉, but a semilattice in E.
We define the rank of a semilattice S in E (resp. in Λ) as the dimension of E (resp. the
rank of Λ). Two semilattices S and S ′ in E (resp. in Λ) are said to be isomorphic if
there exists ϕ ∈ GL(E) (resp. ϕ ∈ Aut Λ, the group of automorphisms of Λ) so that

ϕ(S) = S ′, and denoted S ∼= S ′. Semilattices S and S ′ in E are said to be similar if
there exists ϕ ∈ GL(E) (resp. ϕ ∈ Aut Λ) so that ϕ(S + σ) = S ′ for some σ ∈ S, and
we then write S ∼ S ′. The relations ∼= and∼ are equivalence relations.

Example 3.1 Let Fε =
⊕

α∈Λ Ftα be an elementary quantum torus. We fix a toral

〈σ1, . . . ,σn〉-grading of Fε. Let τ be a graded involution of Fε, and let

S(ε, τ ) := {α ∈ Λ | τ (tα) = tα}.

Then S(ε, τ ) satisfies (S1) and (S2), and so S(ε, τ ) is a semilattice in some E. In [1,

p. 83], there is a description of S(ε, τ ) in terms of the coordinates of Λ relative to
the basis 〈σ1, . . . ,σn〉, namely, for α = α1σ1 + · · · + αnσn ∈ Λ, ε = (εi j ) and
τ = (a1, . . . , an),

S(ε, τ ) =
{

α ∈ Λ
∣
∣
∣

∑

i∈Iτ

αi +
∑

(i, j)∈ Jε

αiα j ≡ 0 mod 2
}

where Iτ = {i | ai = −1} and Jε = {(i, j) | εi j = −1}.
Now, if S(ε, τ ) satisfies (S3) ′, it is a semilattice in Λ. For example, S(ε, ∗) is a

semilattice in Λ since σ1, . . . ,σn ∈ S(ε, ∗). Let

Λ
(t)
= 2Zσ1 + · · · + 2Zσt + Zσt+1 + · · · + Zσn.

Then one can see that

S(1, τ1) = Λ(1) and S(h1,n, τ2) = Λ(2),
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which are lattices, and so semilattices in some Euclidean space but not semilattices
in Λ.

If (Fε, τ ) ∼= (Fε ′ , τ
′), then by Lemma 1.2, there exists the induced automorphism

p of Λ, and clearly we have p
(

S(ε, τ )
)
= S(ε ′, τ ′). Therefore, by Theorem 2.7:

Corollary 3.2

S(ε, τ ) ∼=







Λ
(1), or

Λ
(2), or

S(η, ∗) as semilattices in Λ

for some elementary quantum matrix η.

We will need the following fundamental property of semilattices, which is shown
in [1, II.1.4].

Lemma 3.3 Suppose that S is a semilattice in a lattice Λ. Then

2Λ ⊂ S ⊂ Λ and 2Λ + S ⊂ S.(3.4)

Conversely, any generating subset S of Λ satisfying (3.4) is a semilattice in Λ.

Suppose that S is a semilattice in a lattice Λ. Then, by (3.4) above, one can write

S =

m⊔

i=0

(σi + 2Λ) (disjoint union) for some σi ∈ S.

We call the integer m + 1 the index of S and write it as I(S), though Azam first defined
the index as m (see [4, Definition 1.5, p. 3]). We have found our definition more
convenient. Let n := rank Λ. Then one can check that n + 1 ≤ I(S) ≤ 2n. Azam

showed that the index is a similarity invariant (see [4, Lemma 1.7, p. 3]).

4 Classification of S(ε, ∗)

Recall the notation S(ε, τ ) = {α ∈ Λ | τ (tα) = tα} for a quantum torus (Fε, τ )
with graded involution, where ε is any elementary quantum matrix and τ is any
graded involution (Example 3.1). Also, we defined the main involution ∗ of Fε for
any elementary quantum matrix ε, and two special graded involutions τ1 and τ2 of

Fhl,n
for the special elementary quantum matrix hl,n in Section 2. Note that n ≥ 2l

and l ≥ 0. Also, τ1 is defined when n > 2l and τ2 is defined when l ≥ 1.
We will classify S(ε, ∗) in this section. By Theorem 2.7, we already know that

S(ε, ∗) ∼=







S(hl,n, ∗)

S(hl,n, τ1) (l ≥ 1)

S(hl,n, τ2) (l ≥ 2).

For simplicity, we put
S(n, l, τ ) := S(hl,n, τ ).
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Let Fhl,n
= Fhl,n

[t±1
1 , . . . , t

±1
n ] with a 〈σ1, . . . ,σn〉-grading. Let

I
(

S(n, l, τ )
)

:=
{

(κ1, . . . , κn) ∈ {0, 1}n
∣
∣ κ1σ1 + · · · + κnσn ∈ S(n, l, τ )

}

=
{

(κ1, . . . , κn) ∈ {0, 1}n
∣
∣ τ (tκ1

1 · · · t
κn
n ) = tκ1

1 · · · t
κn
n } and

I
(

S(n, l, τ )
)−

:= {0, 1}n \ I
(

S(n, l, τ )
)

=
{

(κ1, . . . , κn) ∈ {0, 1}n
∣
∣ τ (tκ1

1 · · · t
κn
n ) = −tκ1

1 · · · t
κn
n

}
.

So

2n
= |{0, 1}n| =

∣
∣ I
(

S(n, l, τ )
) ∣
∣ +
∣
∣ I
(

S(n, l, τ )
)−∣
∣ .(0)

We note that
∣
∣ I
(

S(n, l, τ )
) ∣
∣ is the index of the semilattice S(n, l, τ ) inΛ if S(n, l, τ ) =

S(n, l, ∗), S(n, l, τ1) for l ≥ 1 or S(n, l, τ2) for l ≥ 2. Thus, if
∣
∣ I
(

S(n, l0, ∗)
) ∣
∣ ,

∣
∣ I
(

S(n, l1, τ1)
) ∣
∣ and

∣
∣ I
(

S(n, l2, τ2)
) ∣
∣ are all distinct for any l0, l1, l2, then the

S(n, l, ∗), S(n, l, τ1) and S(n, l, τ2) are pairwise non-similar. In fact, we can prove
the following:

Lemma 4.1 In the notation above, we have the index formulas
∣
∣ I
(

S(n, l, ∗)
) ∣
∣ = 2n−1 + 2n−l−1 (l ≥ 0),

∣
∣ I
(

S(n, l, τ1)
) ∣
∣ = 2n−1 (l ≥ 0 and n > 2l)

∣
∣ I
(

S(n, l, τ2)
) ∣
∣ = 2n−1 − 2n−l−1 (l ≥ 1).

In particular, for arbitrary l0, l1 ≥ 0 and l2 ≥ 1 such that n ≥ 2l0, 2l2 and n > 2l1,
∣
∣ I
(

S(n, l0, ∗)
) ∣
∣ >
∣
∣ I
(

S(n, l1, τ1)
) ∣
∣ >
∣
∣ I
(

S(n, l2, τ2)
) ∣
∣ .

Proof For κ = (κ1, . . . , κn) ∈ {0, 1}n and tκ := tκ1

1 · · · t
κ2l

2l tκ2l+1

2l+1 · · · t
κn
n , we have

(tκ)∗ = (tκ2

2 tκ1

1 )(tκ4

4 tκ3

3 ) · · · (tκ2l

2l t
κ2l−1

2l−1 )tκ2l+1

2l+1 · · · t
κn
n = (−1)

∑l
i=1 κ2i−1κ2i tκ.

Note that

tκ2i

2i t
κ2i−1

2i−1 =

{

t
κ2i−1

2i−1 tκ2i

2i if (κ2i−1, κ2i) = (0, 0), (0, 1) or (1, 0)

−t
κ2i−1

2i−1 tκ2i

2i if (κ2i−1, κ2i) = (1, 1).

Hence, for

l̄ =

{

l− 1 if l is even

l if l is odd,

we obtain, by counting the pairs (κ2i−1, κ2i) = (1, 1),

∣
∣ I
(

S(n, l, ∗)
) ∣
∣ = 2n − 2n−2l

((
l

1

)

3l−1 +

(
l

3

)

3l−3 + · · · +

(
l

l̄

)

3l−l̄

)

= 2n − 2n−2l(22l−1 − 2l−1)

= 2n−1 + 2n−l−1,

(1)
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by comparing the binomial expansions of (3 + 1)l and (3− 1)l.
Next we show

∣
∣ I
(

S(n, l, τ1)
) ∣
∣ = 2n−1 for any l ≥ 0. Let A0 :=

{
κ ∈ {0, 1}n

∣
∣

κ2l+1 = 0
}

and A1 :=
{
κ ∈ {0, 1}n

∣
∣ κ2l+1 = 1

}
so that

I
(

S(n, l, τ1)
)
=

(

I
(

S(n, l, τ1)
)
∩ A0

)

t
(

I
(

S(n, l, τ1)
)
∩ A1

)

.

Note that τ1(t2l+1) = −t2l+1 and t2l+1 commutes with all ti , and so
∣
∣
∣

(

I
(

S(n, l, τ1)
)
∩

A0

)∣
∣
∣ =

∣
∣ I
(

S(n − 1, l, ∗)
)∣
∣ and

∣
∣
∣

(

I
(

S(n, l, τ1)
)
∩ A1

)∣
∣
∣ =

∣
∣ I
(

S(n − 1, l, ∗)
)−∣
∣ .

Thus, by (0), we get

∣
∣ I
(

S(n, l, τ1)
) ∣
∣ =
∣
∣ I
(

S(n− 1, l, ∗)
)∣
∣ +
∣
∣ I
(

S(n− 1, l, ∗)
)−∣
∣ = 2n−1.

Recall that τ2 is defined only for l ≥ 1, and so we can consider a partition of
{0, 1}n by the following four subsets Bk, k = 1, 2, 3, 4, namely,

B1 :=
{
κ ∈ {0, 1}n

∣
∣ κ2l−1 = κ2l = 0

}
,

B2 :=
{
κ ∈ {0, 1}n

∣
∣ κ2l−1 = 1, κ2l = 0

}
,

B3 :=
{
κ ∈ {0, 1}n

∣
∣ κ2l−1 = 0, κ2l = 1

}
,

B4 :=
{
κ ∈ {0, 1}n

∣
∣ κ2l−1 = κ2l = 1

}
,

so that

I
(

S(n, l, τ2)
)
=

4⊔

k=1

(

I
(

S(n, l, τ2)
)
∩ Bk

)

.

Since τ2(t2l−1) = −t2l−1, τ2(t2l) = −t2l and τ2(t2l−1t2l) = −t2l−1t2l, and since t2l−1,

t2l and t2l−1t2l commute with all ti for i 6= 2l−1, 2l, we have
∣
∣
∣

(

I
(

S(n, l, τ2)
)
∩B1

)∣
∣
∣ =

∣
∣ I
(

S(n− 2, l − 1, ∗)
) ∣
∣ and

∣
∣
∣

(

I
(

S(n, l, τ2)
)
∩ Bk

)∣
∣
∣ =
∣
∣ I
(

S(n − 2, l − 1, ∗)
)−∣
∣ for

k = 2, 3, 4. Thus we get

∣
∣ I
(

S(n, l, τ2)
) ∣
∣ =
∣
∣ I
(

S(n− 2, l− 1, ∗)
) ∣
∣ + 3
∣
∣ I
(

S(n− 2, l− 1, ∗)
)−∣
∣

= 2n−2 + 2
∣
∣ I
(

S(n− 2, l− 1, ∗)
)−∣
∣ by (0)

= 2n−2 + 2
(

2n−2 − (2(n−2)−1 + 2(n−2)−(l−1)−1)
)

by (0) and (1)

= 2n−1 − 2n−l−1.

Thus, by the inequalities in Lemma 4.1, the three semilattices

S(n, l, ∗), S(n, l, τ1) (l ≥ 1) and S(n, l, τ2) (l ≥ 2) are pairwise non-similar in Λ.

End of Proof of Theorem 2.7 If (Fhl,n
, ∗) ∼= (Fhl,n

, τ2), then S(n, l, ∗) ∼= S(n, l, τ2)
as semilattices in Λ. Hence as a corollary of Lemma 4.1, we get (Fhl,n

, ∗) � (Fhl,n
, τ2)
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for l ≥ 2. That is, we get one of the assertions in Theorem 2.7 whose proof was
postponed there.

Moreover, by the index formulas in Lemma 4.1,

l is a similarity invariant for the semilattices S(n, l, ∗) and S(n, l, τ2) (l ≥ 2) in Λ.

To show that l is a similarity invariant for S(n, l, τ1), we would like to have a new
similarity invariant since the index of S(n, l, τ1) is constant for l ≥ 1. Thus we define
the following:

Definition 4.2 Let S be a semilattice in a lattice Λ. For γ ∈ S, if γ + σ ∈ S for all
σ ∈ S, then γ is called a saturated element of S. We denote the subset of saturated
elements of S by Σ(S). Then Σ(S) is a subgroup of Λ containing 2Λ. We define the

saturation number s = s(S) of S as

|Λ/Σ(S)| = 2s.

Lemma 4.3

(i) Σ(S) = Σ(S + σ) for any semilattice S in Λ and any σ ∈ S.

(ii) The saturation number is a similarity invariant.

Proof (i) Let γ ∈ Σ(S). Then γ − σ ∈ S for any σ ∈ S, and so Σ(S) ⊂ S + σ.
Moreover, for the semilattice S + σ and any ρ + σ ∈ S + σ, we have γ + ρ + σ ∈ S + σ
since γ + ρ ∈ S. Hence Σ(S) ⊂ Σ(S + σ) for any σ ∈ S. Since −2σ ∈ S, we have
−σ ∈ S + σ. Hence Σ(S + σ) ⊂ Σ(S), which shows (i).

(ii) By (i), we have s(S) = s(S + σ) for any σ ∈ S. Hence we only need to
show that the saturation number is an isomorphism invariant. Suppose p(S) = S ′

for some p ∈ Aut Λ. Then one can easily see that p
(
Σ(S)
)
= Σ(S ′). Therefore,

|Λ/Σ(S)| =
∣
∣Λ/p

(
Σ(S)
) ∣
∣ = |Λ/Σ(S ′)|, i.e., s is an isomorphism invariant.

Remark One can easily show that Σ(S) =
⋂

σ∈S(S + σ).

Corollary 4.4 Let l ≥ 1. Then Σ
(

S(n, l, τ1)
)
= Λ

(2l+1), and hence l is a similarity

invariant for the semilattices S(n, l, τ1) in Λ.

Proof Recall our notation S(n, l, τ1) = S(hl,n, τ1) = {α ∈ Λ | τ1(tα) = tα}
for the quantum torus Fhl,n

= Fhl,n
[t±1

1 , . . . , t
±1
n ] with a 〈σ1, . . . ,σn〉-grading. By

Lemma 2.5, the grading group of the centre Z(Fhl,n
, τ1) is equal to Λ(2l+1). Thus it

is clear from this that Σ
(

S(n, l, τ1)
)
⊃ Λ(2l+1). For the other inclusion, suppose

Σ
(

S(n, l, τ1)
)
\ Λ(2l+1) 6= ∅. Then there exists κ := κ1σ1 + · · · + κ2l+1σ2l+1 ∈

Σ
(

S(n, l, τ1)
)

, where κi = 0 or 1 but not all κ1, . . . , κ2l are 0. Then for κ j 6= 0 with
j ≤ 2l, we have σk ∈ S(n, l, τ1) where

k =

{

j + 1 if j is odd

j − 1 if j is even,
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and κ + σk /∈ S(n, l, τ1) since τ1(tκ1

1 · · · t
κ2l+1

2l+1 tk) = tktκ1

1 · · · t
κ2l+1

2l+1 = −tκ1

1 · · · t
κ2l+1

2l+1 tk.

This is a contradiction. Hence Σ
(

S(n, l, τ1)
)
= Λ

(2l+1). Thus s

(
S(n, l, τ1)

)
= 2l + 1,

and hence l is a similarity invariant by Lemma 4.3.

Remarks 4.5

(i) One can also check that Σ
(

S(n, l, ∗)
)
= Σ
(

S(n, l, τ2)
)
= Λ

(2l). So this is an-
other reason why l is a similarity invariant for S(n, l, ∗) or S(n, l, τ2).

(ii) S(n, l, τ1) for l ≥ 1 give us [ n
2

] semilattices in Λ which have the same index but
are not similar, where [ n

2
] is the greatest integer less than or equal to n

2
.

We summarize the results about the semilattices above as a theorem.

Theorem 4.6 Let S(ε, ∗) be the semilattice in Λ defined in Example 3.1. Then S(ε, ∗)
is isomorphic to







S(hl,n, ∗) (l ≥ 0), or

S(hl,n, τ1) (l ≥ 1), or

S(hl,n, τ2) (l ≥ 2),

and any two of these three semilattices are not similar. Moreover, for each of these l is a

similarity invariant.

In particular, the number of similarity classes of S(ε, ∗) is







3
[

n
2

]
if n ≥ 4

2 if n = 2, 3

1 if n = 1.

Proof We only need to show the last statement. Since l ≤
[

n
2

]
, there are

[
n
2

]
+ 1

similarity classes from S(hl,n, ∗) for n ≥ 1,
[

n
2

]
classes from S(hl,n, τ1) for n ≥ 2 and

[
n
2

]
− 1 classes from S(hl,n, τ2) for n ≥ 4. Summing them up, we get the results.

Remark 4.7 The number of similarity classes of semilattices in Λ is at least 2n − n,
which is bigger than the number above if n ≥ 3. Thus if n is not too small, one can
say that the semilattices S(ε, ∗) are far from exhausting all semilattices in Λ.

5 Extended Affine Root Systems of Type C

We review the description of extended affine root systems of type Cr for r ≥ 3 fol-
lowing [1, p. 34]. Let Λ be a lattice and S be a semilattice in a Euclidean space E so

that

S + 2Λ ⊂ S and Λ + S ⊂ Λ.(5.1)

Then an extended affine root system R of type Cr (r ≥ 3) contains an irreducible root
system∆ = ∆sht∆lg of type Cr, where∆sh (resp.∆lg) is the set of short (resp. long)
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roots, so that

R = R(Λ, S) = Λ t
( ⊔

µ∈∆sh

(µ + Λ)
)

t
( ⊔

µ∈∆lg

(µ + S)
)

.(5.2)

The rank of the lattice Λ is called the nullity of R.
If (Λ, S) and (Λ ′, S ′) are pairs of a lattice and a semilattice in E satisfying (5.1),

we say that (Λ, S) and (Λ ′, S ′) are isomorphic, written (Λ, S) ∼= (Λ ′, S ′), if there

exists ϕ ∈ GL(E) such that ϕ(Λ) = Λ ′ and ϕ(S) = S ′. Also, we say that (Λ, S)
and (Λ ′, S ′) are similar, written (Λ, S) ∼ (Λ ′, S ′), if there exists λ ∈ S such that
(Λ, S + λ) ∼= (Λ ′, S ′). Note that (Λ, S + λ) is a pair of a lattice and a semilattice
satisfying (5.1) (see [1, Definition 4.8, p. 45]). The relations ∼= and∼ are equivalence

relations. It is shown in [1, Theorem 3.1, p. 39] that the root systems R(Λ, S) and
R(Λ ′, S ′) are isomorphic if and only if (Λ, S) ∼ (Λ ′, S ′).

In general, (5.1) implies that 2Λ ⊂ S ⊂ Λ, and so 2Λ ⊂ 〈S〉 ⊂ Λ. Thus we have

|Λ/〈S〉| = 2t , where 0 ≤ t ≤ n.

The integer t = t(Λ, S) is called the twist number of the pair (Λ, S). The twist number
is a similarity invariant of the pair (see [1, Definition 4.11, p. 46]), and so the twist
number is an isomorphism invariant of the root system R(Λ, S).

Example 5.3 Let Λ be a lattice with basis {σ1, . . . ,σn}. Then the pair (Λ,Λ(t))
satisfies (5.1) with twist number t , where Λ(t) is defined in Example 3.1. Moreover,
for any semilattice S ′ in Zσt+1 + · · ·+Zσn, the pair (Λ, 2Zσ1 + · · ·+2Zσt +S ′) satisfies

(5.1) with twist number t [1, Proposition 4.17, p. 47].

The root systems of extended affine Lie algebras are extended affine root systems.
However, it was conjectured in [1] that an extended affine root system is not neces-
sarily the root system of an extended affine Lie algebra. Allison and Gao have shown

in [2] that the twist numbers of root systems of extended affine Lie algebras of type
Cr (r ≥ 3) do not exceed 3. Precisely, they showed that such a root system R is given
by

R
(
Λ, S(ε, τ )

)
if r ≥ 4,

where S(ε, τ ) is the semilattice of (Fε, τ ) for any elementary quantum matrix ε and

any graded involution τ defined in Example 3.1 and Λ is a toral grading of Fε. If
r = 3, then

R
(
Λ, S(ε, τ )

)
or R(Λ,Λ(3)),

where the second one comes from the octonion torus with standard involution (see

[2, List 6.1, p. 46, and Proposition 4.25, p. 20]). Then they calculated the twist num-
ber of

(
Λ, S(ε, τ )

)
, and showed that such numbers do not exceed 2 (see [2, Theo-

rem 6.2 (b), p. 46]). This fact also follows from our Corollary 3.2. Namely, we have

(
Λ, S(ε, τ )

)
∼=







(Λ,Λ(1)), or

(Λ,Λ(2)), or
(
Λ, S(η, ∗)

)
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for some elementary quantum matrix η, and so

t
(
Λ, S(η, ∗)

)
= 0, t(Λ,Λ(1)) = 1 and t(Λ,Λ(2)) = 2.

Note that in general, even if t = t(Λ, S) = 1, 2 or 3, there are many non-isomorphic

semilattices S with the same twist number if n is not too small, as we suggested in
Example 5.3. In fact, if n ≥ 5, then there are at least two non-isomorphic semilattices
S (exactly two if t = 3). However, in the pairs arising from root systems of extended
affine Lie algebras, there is only one, up to isomorphism, in each case, i.e., Λ(1) for

t = 1, Λ(2) for t = 2 and Λ(3) for t = 3.

As a corollary of Theorem 4.6, we get:

Corollary 5.4 Let R = R(Λ, S) be the root system of an extended affine Lie algebra of

type Cr (r ≥ 3). Then if r ≥ 4, R is isomorphic to







R
(
Λ, S(hl,n, ∗)

)
(l ≥ 0), or

R
(
Λ, S(hl,n, τ1)

)
(l ≥ 0), or

R
(
Λ, S(hl,n, τ2)

)
(l ≥ 1),

and if r = 3, R is isomorphic to







R
(
Λ, S(hl,n, ∗)

)
(l ≥ 0), or

R
(
Λ, S(hl,n, τ1)

)
(l ≥ 0), or

R
(
Λ, S(hl,n, τ2)

)
(l ≥ 1), or

R(Λ,Λ(3)).

Any two of these root systems are not isomorphic. Moreover, for each of these l is an

isomorphic invariant.

In particular, the number of isomorphism classes of R for r ≥ 4 (resp. r = 3) is







3
[

n
2

]
+ 2 (3

[
n
2

]
+ 3) if n ≥ 4

4 (5) if n = 3

4 (4) if n = 2

2 (2) if n = 1.

Finally, by Remark 4.7, we have:

Corollary 5.5 Let r ≥ 3. Let Rt be the set of isomorphism classes of root systems of

type Cr with nullity n and twist number t, and let LRt be the subset of Rt consisting of

isomorphism classes of the root systems of extended affine Lie algebras of type Cr with

nullity n and twist number t. Then LRt = ∅ for all t > 3. Moreover, for t = 0, 1, 2 or

3, LRt is a proper subset of Rt if n ≥ 5.

https://doi.org/10.4153/CMB-2002-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-063-0


Classification of Quantum Tori with Involution 731

References

[1] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root
systems. Mem. Amer. Math. Soc. (603) 126, Amer. Math. Soc., Providence, RI, 1997.

[2] B. Allison and Y. Gao, The root system and the core of an extended affine Lie algebra. Selecta Math.
(N.S.) 7(2001), 1–64.

[3] B. Allison, G. Benkart and Y. Gao, Lie algebras graded by the root systems BC r , r ≥ 2. To appear.
[4] S. Azam, Nonreduced extended affine root systems of Nullity 3. Comm. Algebra (11) 25(1997),

3617–3654.
[5] S. Berman, Y. Gao and Y. Krylyuk, Quantum tori and the structure of elliptic quasi-simple Lie

algebras. J. Funct. Anal. 135(1996), 339–389.
[6] K. R. Goodearl and E. S. Letzter, Quantum n-space as a quotient of classical n-spaces. Trans. Amer.

Math. Soc. (12) 352(2000), 5855–5876.
[7] T. Krajewski and R. Wulkenhaar, Perturbative quantum gauge fields on the noncommutative torus.

Internat. J. Modern Phys. A (7) 15(2000), 1011–1029.
[8] J. C. McConnell and J. J. Pettit, Crossed products and multiplicative analogs of Weyl algebra.

J. London Math. Soc. (2) 38(1988), 47–55.
[9] B. Parshall and J.-P. Wang, Quantum linear groups. Mem. Amer. Math. Soc. (439) 89, Amer. Math.

Soc., Providence, RI, 1991.
[10] M. A. Rieffel, Non-commutative tori—a case study of non-commutative differential manifolds.

Contemp. Math. 105(1990), 191–211.
[11] Y. Yoshii, Coordinate algebras of extended affine Lie algebras of type A1. J. Algebra 234(2000),

128–168.

Department of Mathematical Sciences

University of Alberta

Edmonton, Alberta

T6G 2G1

email: yoshii@math.ualberta.ca

https://doi.org/10.4153/CMB-2002-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-063-0

