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Abstract

High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also
known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct-electron detection. An electron
probe size down to 0.5 nm in diameter is used and the sample investigated is a gold–palladium nanoparticle catalyst. Computational analysis
of the 4D-STEM data sets is performed using a disk registration algorithm to identify the diffraction peaks followed by feature learning to
map the individual grains. Two unsupervised feature learning techniques are compared: principal component analysis (PCA) and non-
negative matrix factorization (NNMF). The characteristics of the PCA versus NNMF output are compared and the potential of the
4D-STEM approach for statistical analysis of grain orientations at high spatial resolution is discussed.
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Introduction

The last decade has borne witness to a surge in scanning trans-
mission electron microscopy (STEM) experiments implementing
scanning nanobeam electron diffraction (NBED), fueled by the
development of high-speed, high-efficiency, direct-electron detec-
tors, as well as advanced computational methods. In scanning
NBED, the electron probe is rastered over 2D spatial co-ordinates
(x, y) and an NBED pattern with 2D reciprocal space co-ordinates
(kx , ky) is acquired at every dwell point. The result is a data set
with co-ordinates in four dimensions, hence the alternate name
for the technique, “4D-STEM.” 4D-STEM data sets contain a
wealth of information that can be extracted by various means
for a range of analytical purposes (Ophus, 2019). For example,
virtual dark-field images can be reconstructed for any desired
combination of diffraction peaks, enabling a multitude of virtual
imaging experiments to be performed on the same data set post-
acquisition (Gammer et al., 2015). Virtual imaging by 4D-STEM
with atomic resolution has also been demonstrated (Kimoto &

Ishizuka, 2011). By analyzing the spacing between diffraction
peaks, measurements of crystal lattice strain can be made
(Béché et al., 2009), and by acquiring 4D-STEM data during in
situ deformation experiments, strain evolution can be probed
locally in time-discrete steps (Pekin et al., 2018). Converging
the electron beam such that the Bragg diffraction disks signifi-
cantly overlap enables electron ptychography experiments in
which phase information is retrieved from the beam interference
for resolution-enhanced imaging (Jiang et al., 2018). Electrostatic
field mapping around individual atoms in 2D monolayers has
also been demonstrated, via analysis of the center of mass of
the diffraction pattern intensity distributions (Fang et al., 2019).
In the work presented here, 4D-STEM is implemented in combi-
nation with fast electron detection to explore new possibilities for
high-throughput grain mapping at high spatial resolution.

Existing electron-beam-based grain mapping techniques are
primarily electron backscatter diffraction (EBSD) in the scanning
electron microscope (SEM) and scanning precession electron
diffraction (SPED) in STEM. EBSD is the method of choice for
grains in the micron size range and above, and by using a thin
sample and adopting a transmission geometry to instead collect
forward-scattered electrons (which emanate from a much smaller
interaction volume), mapping of grains down to 5–10 nm in size
can be achieved (Keller & Geiss, 2012; Sneddon et al., 2016). This
technique is also known as transmission Kikuchi diffraction
(TKD). A key benefit of EBSD in the SEM is the ability to rapidly
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scan and index over fields of view up to thousands of square
microns, and the utility of TKD for high-throughput grain orien-
tation mapping of nanoparticles and nanoprecipitates has been
demonstrated (Bhattacharya et al., 2019; Mariano et al., 2020).
However, the spatial resolution of SEM-based techniques is ulti-
mately limited by the electron probe size. Grain mapping at
high spatial resolution is, therefore, well-suited to STEM, where
a sub-nanometer electron probe can be employed. In the
precession-based SPED method (also a form of 4D-STEM), the
STEM probe is rotated about a pivot point on the sample through
a predefined tilt angle for each (x, y) co-ordinate in the scan.
Hence, SPED gives diffraction patterns averaged over a range of
orientations enabling robust indexing, albeit requiring long scan
times (Rouviere et al., 2013; Midgley & Eggeman, 2015). In contrast,
in 4D-STEM without precession, a single diffraction pattern is
acquired per dwell point, reducing the total scan time (and thus
total electron dose) considerably, in addition to greatly simplifying
the experimental setup. While 4D-STEM without precession cannot
offer the same level of indexing precision as SPED (in terms of the
enhanced interpretability of the intensities in the indexed spots due
to the quasi-kinematical nature of diffraction patterns), it has, for
example, been shown to be well-suited for grain orientation map-
ping of beam-sensitive materials (Panova et al., 2016). Moreover,
as we show here, 4D-STEM without precessing the beam presents
a powerful technique for grain orientation mapping when both
high throughput and high spatial resolution are required.
4D-STEM using an aperture to form multiple beams is now also
poised to enhance the technique even further (Hong et al., 2020).

In the following, we apply 4D-STEM to an industrial catalyst
comprising gold–palladium nanoparticles embedded in a silica
support, using an aberration-corrected STEM equipped with a
high-speed direct-electron detector to map sample sets with
sub-nanometer resolution. 4D-STEM data sets are inherently
large, especially when surveying wide fields of view with a sub-
nanometer scan spacing. Hence, efficient methods for data
processing with high levels of automation are essential. In our
work, the diffraction peaks in the 4D-STEM data sets are first
identified with sub-pixel precision using a disk registration
algorithm developed previously (Pekin et al., 2017). Then, grain
classification according to orientation is achieved a priori by
unsupervised feature learning, using principal component analy-
sis (PCA) and non-negative matrix factorization (NNMF), sepa-
rately. The application of PCA to multi-dimensional (S)TEM
spectroscopic data sets for phase analysis (electron energy loss
and X-ray emission) has been demonstrated widely (Bosman
et al., 2006; Yaguchi et al., 2008; Parish & Brewer, 2010; Allen
et al., 2011). More recently, PCA of 4D-STEM data sets for strain
mapping has also been demonstrated (Han et al., 2018). PCA is
deterministic and computationally fast. However, a limitation of
PCA is that the orthogonal matrices comprising the output con-
tain both positive and negative values, which can make a physical
interpretation of the results challenging. In contrast, NNMF is
non-deterministic requiring many iterations to converge to a sol-
ution. This results in significantly longer computation times, yet a
key benefit of NNMF is that the algorithm prohibits negative val-
ues and thus yields directly interpretable results (Lee & Seung,
1999). To date, NNMF has been employed most widely by the
astrophysics community but is gaining momentum in the
(S)TEM field, having been demonstrated for electron energy-loss
spectrum-imaging (Nicoletti et al., 2013; Ringe et al., 2015; Shiga
et al., 2016), SPED (Eggeman et al., 2015; Sunde et al., 2018;
Martineau et al., 2019), and most recently also for 4D-STEM

(Savitzky et al., 2021; Uesugi et al., 2021). In this work, we com-
pare PCA and NNMF in the context of grain mapping by
4D-STEM and discuss the characteristics and relative benefits of
each classification approach.

Materials and Methods

4D-STEM Experiments

Samples of a fresh silica-based catalyst containing gold–palladium
nanoparticles were prepared by embedding a small amount of cat-
alyst powder with LR White resin (medium) and curing overnight
at 60°C. Samples were then sectioned at room temperature using
a diamond knife with a Reichart Ultracut S ultramicrotome to a
thickness of 60 nm. The sections were collected on a standard
copper TEM grid (300 mesh) with a lacey–carbon support (Ted
Pella 01883).

The 4D-STEM experiments were performed using a double
aberration-corrected modified FEI Titan 80-300 microscope
(TEAM I instrument at the Molecular Foundry, LBNL), equipped
with a Gatan K2 IS direct-electron detector operating at 400 frames
per second. The electron beam energy was 300 keV. For grain map-
ping at the highest spatial resolution, an electron probe with full
width at half maximum (FWHM) of 0.46 nm was selected (conver-
gence angle of 3 mrad, camera length of 230 mm) and a scan step
size of 0.25 nm was used. Larger fields of view were mapped using
a probe with a FWHM of 1.05 nm (convergence angle of 1.5mrad,
camera length of 285 mm) implementing a scan step size of
0.5 nm. Probe currents were ,200 pA. Beam-induced damage of
the nanoparticles was not observed. The largest data set comprised
32,000 diffraction patterns and surveyed an area of 80× 100 nm2

(acquisition time 80 s).
For reference, high-resolution high-angle annular dark-field

(HAADF) STEM images of a subset of nanoparticles were also
acquired using the TEAM I instrument at 300 keV. In addition, sam-
ple surveys using STEM-based X-ray energy-dispersive spectroscopy
(XEDS) were performed at Dow Chemical using a Thermo-Fisher
(FEI) Titan Themis operated at 200 keV using Bruker AXS XFlash
XEDS detectors with an energy resolution of 137 eV/channel.

4D-STEM Data Analysis

Preprocessing
Analysis of the 4D-STEM data sets was performed in MATLAB
(version R2019a). This involved a number of data preprocessing
steps using custom scripts as outlined below, followed by grain
classification by PCA and NNMF as described in the subsequent
section. The MATLAB scripts are available from the authors upon
request.

The data preprocessing steps are summarized in Figure 1. First,
the original data acquired in proprietary .dm4 (or .dm3) Gatan
Digital Micrograph format was read into MATLAB giving a 4D
data stack with two dimensions defining the scanned areas and
two dimensions defining the diffraction patterns. The diffraction
patterns were binned by a factor of two in order to reduce file size
and thus speed up the subsequent computations (note that this
does not affect the spatial resolution of the grain maps, since
only the NBED patterns are binned). Next, the 4D stacks were
converted into 3D stacks by merging the scan co-ordinates to
give a number sequence of diffraction patterns.

In order to quickly visualize the nanoparticle distribution in any
given surveyed area, a virtual dark-field image was reconstructed by
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summing the intensity values in each NBED pattern and plotting
the result for each corresponding dwell point in the scan.
Similarly, a quick overview of the diffraction data can be obtained
by creating a single NBED pattern comprising the maximum
intensity measured at each pixel (or alternatively, the mean).

The next step is disk registration, to automatically locate all the
Bragg disks in the data set. For this, an intense Bragg disk was first
cropped from the NBED pattern, corresponding to the brightest
pixel in the virtual dark-field image, and used to create a template.
Next, we implemented a disk registration algorithm developed
previously, using a hybridized standard cross-correlation and
phase correlation approach with a predefined cross-correlation

threshold, followed by Fourier upsampling (Pekin et al., 2017),
to determine the positions of all Bragg disks in the stack with sub-
pixel precision. For data sets acquired using a beam stop to block
the intense nondiffracted central disk, a mask was used to crop
out bright spots emerging from the sides of the beam stop before
passing the data through the disk registration algorithm so as to
prevent the registration of erroneous peaks. Each Bragg disk
detected was then reduced to a point, thus significantly reducing
the effects of variations in disk shape and structure due to dynam-
ical effects from the subsequent analysis. Plotting all resulting
Bragg peaks in a single image, the center of the diffraction pattern
was determined by computing the center of mass of opposite peak
clusters to enable re-centering of the NBED stack to (kx , ky) = 0.
Any elliptical distortion of the diffraction pattern arising from the
lens system of the microscope was then measured and corrected.

In the final preprocessing step, the NBED stack was rasterized
in diffraction space to generate an output array for the subsequent
PCA/NNMF routines. For the rasterization, a square mesh grid
was defined of appropriate mesh size (typically one quarter of
the original Bragg disk diameter) and the intensity from each
Bragg peak was distributed to the nearest four corners of its cor-
responding mesh square, weighted according to the distance. A
2D data matrix X was then generated, with m rows corresponding
to the number sequence of diffraction patterns and n columns
corresponding to the number sequence of rasterized NBED
mesh points (essentially binned locations in diffraction space).

Grain Classification by PCA and NNMF
For grain classification by PCA and NNMF, MATLAB in-built
functions were used. Various custom scripts were used for plot-
ting and analyzing the output.

The basic principle of PCA is to reduce the dimensionality of a
data set by finding a linear combination of uncorrelated variables
which successively maximize statistical variance (Jolliffe & Cadima,
2016). Typically, the input data matrix (in our case Xm×n) is first
centered at the mean, allowing PCA to be performed by singular
value decomposition; these two steps are the default computations
performed by the MATLAB pca function. The result of the matrix
factorization can be written as

Xm×n = Sm×nVT
n×n,

where Sm×n = Um×m Sm×n.
(1)

U and V are square matrices with columns and rows composed of
orthogonal unit vectors, T denotes a matrix transpose, and S is a
rectangular diagonal matrix, effectively a scaling matrix. The princi-
pal components (basis vectors) are the columns of S listed in
descending order of variance. The elements of S are known as the
scores and the elements of V are known as the loadings (or coeffi-
cients). Due to the orthogonality constraint, the scores and loadings
can have both positive and negative values—this can make interpre-
tation of the individual components challenging, since negative
values are nonphysical in diffraction patterns.

Once the matrix factorization has been performed, a truncated
number of components, k, can then be selected and used to com-
pute a reconstructed data matrix to approximate the original, that is,

Xm×n ≈ Sm×kV
T
k×n, with k , n. (2)

A common method used to guide the choice of the reduced num-
ber of components k is to plot the variance (given by the squares

Fig. 1. Data preprocessing, starting from the 4D data stack acquired in the experi-
ment and ending with a 2D data matrix, with m rows corresponding to the number
sequence of NBED patterns and n columns corresponding to the number sequence of
rasterized NBED mesh points.
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of the eigenvalues of S, or equivalently the eigenvalues of the
covariance matrix of X ) versus the component index. This is
also known as a scree plot. Generally, there is first a sharp down-
wards trend and then the plot levels out, with the transition
between these two regions representing the transition between
statistically significant components and higher-order components
corresponding to random noise. The value of k is often selected
to include a subset of the first “noise” components, so as not to
lose statistically significant information in the reconstruction.
However, there is no general consensus on how exactly this selec-
tion should be performed, that is, how far beyond the elbow the
series of components should be truncated. An alternative
approach is to compute the percentage of the total variance
accounted for by each component. This is also called the “per-
centage variance explained.” The set of components for the recon-
struction can then be selected based on a predefined amount of
the cumulative variance explained.

The key distinction of dimensionality reduction by NNMF is
that the initial data matrix X, which must only contain positive
values, is approximated by a matrix product whose elements are
also constrained to be positive (Lee & Seung, 1999), that is,

Xm×n ≈ Wm×cHc×n, with W, H ≥ 0. (3)

W and H are essentially equivalent to the S and V matrices of
PCA, containing the basis vectors from the original data and
their weights (also known as encoding coefficients), respectively,
for each class identified. The rank c gives the total number of clas-
ses (corresponding to the components of PCA) and satisfies
0 , c , min (m, n). The factorization proceeds iteratively, seek-
ing to minimize the residual between X and WH. In the
MATLAB nnmf function, the residual is quantified by computing
the Frobenius norm (square root of the sum of the squares of the
matrix elements) of X −WH. Since the factorization may
converge to a local minimum, a predefined number of repeat
factorizations (known as replicates) are run with different initial
values. The replicate that gives the smallest residual is selected
for the final result. After experimenting with different numbers
of replicates, 12 replicates were typically used for our analysis.
An initial number of classes for the matrix factorization, c,
must also be selected. We chose c to be two to five times greater
than that expected for the data in hand, based on inspection of the
scree plot obtained by PCA. A first pass of NNMF was then per-
formed, using an alternating least-squares algorithm and random
initial values for W and H (these are the default parameters in the
MATLAB function).

The number of classes c was then reduced and subsequent
passes of NNMF were performed as follows. First, the MATLAB
corr function was used to compute a correlation matrix for W
andHT , respectively, comprising the linear correlation coefficients
(ranging from−1 to +1) for each pair of columns, that is, for each
class. The correlation matrices were then combined and the classes
merged for the cases where the correlation factors exceeded a pre-
defined value (typically 0.4–0.5). Finally, the merged classes were
used to compute new values for W and H and NNMF was rerun
using these for the initial input values together with the new
value for c. This sequence of merging classes and rerunning
NNMF was repeated until the successive decrease in the number
of classes leveled out to a plateau. For the data sets presented
here, up to 18 passes of NNMF were performed.

The PCA and NNMF results were visualized by reshaping the
product matrices from equations (2) and (3) to give image pairs

for each method comprising a real-space image highlighting a
particular region of the sample (i.e., a grain, calculated from S
and W, respectively) and a diffraction-space image of the corre-
sponding pattern of Bragg peaks (calculated from V and H,
respectively). To aid interpretation of the peak patterns, a virtual
central beam spot was added during the plotting sequence to
compensate for the absence of a central disk due to the use of
the beam stop during the data acquisition. The basis vectors
from S and W were also used to compute a weighted average
NBED pattern for each grain identified.

Since NNMF does not use eigen-decomposition, a PCA-like
scree plot of component variance versus component index cannot
be generated. Thus, in order to compare the ability of PCA and
NNMF to capture the essence of the original data, we chose to
plot the sum of squares of the residuals X − SVT and X −WH
versus the component/class index instead. In the case of PCA,
the reconstructed matrix SVT for increasing numbers of compo-
nents can simply be computed by sequentially truncating the
product matrices (which are already ordered in decreasing order
of statistical importance). In contrast, in NNMF, the number of
classes is one of the parameters of the factorization, thus the algo-
rithm has to be rerun for each desired number of classes. One
approach to obtain the reconstructed WH matrix for each
NNMF class index is to run NNMF sequentially, increasing the
value of c each time and using the product matrices from the pre-
vious run as the starting values for the next (Ren et al., 2018).
However, in our analysis, multiple passes of NNMF were already
performed as part of the class merging sequence described above,
each NNMF pass being for a reduced number of classes as deter-
mined using the correlation function. Hence for the NNMF por-
tion of our matrix residual comparison, the sparse data points
from the merging sequence were plotted. In addition, single
passes of NNMF spanning the range of classes up to c = 100
were also performed. As will be seen, these data points for the
single NNMF passes follow the same trend as for the NNMF
merging sequence.

Results and Discussion

Sample Overview

Figure 2a shows a low-magnification HAADF-STEM image of the
gold–palladium nanoparticles (bright contrast) embedded in silica
that were used in this study. A part of the lacey carbon TEM grid
support is also visible. A set of high-resolution HAADF-STEM
images of individual nanoparticles is shown in Figure 2b. In the
high-resolution images, we see that certain regions (or grains)
appear brighter than others, due to diffraction contrast dictated
by the orientation of the crystal lattice planes with respect to the
incident electron beam. However, the precise locations of grain
boundaries within particles are challenging to discern. Elemental
maps obtained by STEM-XEDS show gold- as well as palladium-
rich nanoparticles, but with no clear distinction between individual
grains under the electron dose and dwell times used for these
experiments (see Supplementary Figure S1). With these observa-
tions in mind, and given that both gold and palladium have the
same crystal structure (fcc) and very similar lattice constants, it
becomes clear that an alternative method to efficiently map the
grains in this sample is needed, that is, 4D-STEM.

A schematic summarizing the 4D-STEM data acquisition
method used in this study is presented in Figure 3a, indicating
the collection of an NBED pattern for every scan point on the
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sample. Plotting the maximum intensity measured per diffraction
pixel across the data set gives an NBED pattern representing the
entire acquisition, as shown in Figure 3b. This data is for a single
nanoparticle cluster scanned using a step size of 0.25 nm over a
field of view of 15× 13 nm2 (probe FWHM of 0.5 nm). The cor-
responding virtual dark-field image, computed by plotting the
summed NBED intensity measured per scan point, is shown in
Figure 3c. The three crosshairs in the virtual dark-field image
mark individual scan points, with the respective NBED patterns
recorded for these positions shown in Figure 3d. In the following,
the grain mapping analysis for this small nanoparticle cluster
is presented, followed by the results for a larger field of view
capturing many clusters.

Grain Classification by PCA and NNMF

Single Nanoparticle Cluster
PCA and NNMF grain classification results for the single nano-
particle cluster are shown in Figures 4a and 4b, respectively,
obtained following the data preprocessing and matrix factoriza-
tion procedures described in the section “4D-STEM Data
Analysis.” The top row (i) of each subfigure shows the basis vec-
tors (re-shaped) for the first eight classes identified, plotted in
order of decreasing statistical significance. These images map
the spatial regions of the nanoparticle corresponding to each
class. The second row (ii) shows the respective coefficients
(re-shaped) representing the diffraction “fingerprints” obtained
for each class. The Bragg peaks appear as points rather than the
original disks, since the disks were reduced to points prior to
the disk registration in the data preprocessing step to enable
grain mapping without influence from dynamical effects. To aid
interpretation of the diffraction patterns, which were collected
using a beam stop to mask the intense central beam, a virtual cen-
tral beam spot has been added to these images. Finally, in the
third row (iii), the reconstructed NBED pattern corresponding

to each component/class is plotted, obtained using the basis vec-
tors to compute weighted sums from the NBED patterns in the
original 4D-STEM data stack. We show the results for a total of
eight components/classes, since this was the number of classes
obtained after the NNMF class merging sequence (the initial
number of classes had been set to 16). The scree plot analysis
of the PCA results (Supplementary Figure S2) also indicates
that eight components are a reasonable number.

The color bars inserted alongside the coefficients in Figure 4
show the range of intensity values that the coefficients possess.
A comparison of these ranges for PCA (Fig. 4a) and NNMF
(Fig. 4b) highlights one of the key distinguishing features of the
two factorization techniques, that is, that the output from PCA
can have both positive and negative values, whereas in the case
of NNMF, only positive values are allowed. In this example, we
see that the negative (blue) peaks in the PCA coefficients of
Figure 4a row (ii) increasingly appear for the third component
onwards. Negative output is also obtained for the PCA basis vec-
tors, but for simplicity, only the positive values were used to create
the PCA basis vector maps shown in the figure. The occurrence of
both positive and negative values in PCA is a direct consequence
of the orthogonal factorization constraint, which can yield non-
physical results. That is, in diffraction data and in imaging in
general, the physical measurement values are by nature all
positive, hence interpretation of negative coefficients (in our
case, negative Bragg peaks) is challenging. However, the weighted
NBED patterns in Figure 4a row (iii) show diffraction patterns
that are all “real,” with positive peaks, since these were con-
structed by weighting the original NBED data.

A further direct consequence of the orthogonal factorization of
PCA is the tendency to produce mixed phases in the output (gen-
erally for the higher-order components), since in reality phases do
not necessarily have to be linearly uncorrelated. For example, the
weighted NBED pattern for the fourth PCA component in
Figure 4a row (iii) clearly comprises two patterns indexing to

Fig. 2. (a) Low-magnification HAADF-STEM of gold–palladium nanoparticles embed-
ded in silica. (b) High-resolution HAADF-STEM of individual nanoparticles.

Fig. 3. (a) Schematic outlining 4D-STEM data acquisition scheme used in this work.
(b) Summed NBED pattern from a 4D-STEM scan of a single nanoparticle cluster,
plotting the maximum intensity recorded per pixel. (c) Corresponding virtual dark-
field image with pixels in three main regions marked. (d) NBED patterns for each
of the three marked pixels.
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the same lattice reflection with a slight rotational offset. It is worth
noting that phase mixing in our results can also be real, resulting
from overlapping grains in the beam direction. Indeed, both PCA
and NNMF are sensitive to detecting mixed phases if present,
since the reconstructed data are represented as a superposition
of basis vectors, as for example shown in the analysis of various
spectral data sets (Long et al., 2009; Kannan et al., 2018) and of
SPED data sets (Sunde et al., 2018). However, in our example,
the weighted NBED patterns from the NNMF analysis do not
indicate overlapping phases to the same extent as is seen in the
PCA results. Hence, the phase mixing observed in the PCA output
would appear to largely be an artifact from the orthogonality-
constrained PCA factorization. In the case of simple systems
with no (or minimal) phase mixing, this artifact can be removed
using methods like Varimax rotation after the PCA algorithm
(Keenan, 2009), applying an orthogonal rotation in the spatial
domain resulting in a relaxing of the orthogonal constraint in
the diffraction domain. The Varimax rotation matrix is found
by maximizing the contrast between the individual spatial features
(Smentkowski et al., 2009), based on the assumption that each
pixel in the scanned region corresponds to a single phase.

The NNMF results shown in Figure 4b give a similar classifica-
tion of grains to the PCA results, but there are some important dis-
tinctions. First, the NNMF coefficients (and basis vectors) by
definition contain positive values only, as reflected by the color
bar in row (ii), that is, no negative peaks. Thus, each re-shaped coef-
ficient matrix represents a real diffraction pattern. Second, upon
inspection of the NNMF coefficients and weighted NBED patterns,
we see that they are largely discrete for each class, with satellite peaks
and overlapping disks less prevalent than in the PCA results. This
highlights the ability of NNMF to identify discrete components
with less tendency to capture mixed phases in a single class. We
also note that theweightedNBED patterns for the first and fifth clas-
ses corresponding to the left-hand side of the cluster are very similar,
suggesting that there may be two grains overlapping in depth with
only a slight misorientation between them. Rather than classifying
these as a mixed phase, NNMF discerned them as separate phases.

In terms of computation time (using a 2017 MacBook Pro
Intel Core i5, 8 GB RAM), the PCA algorithm took 4 min to com-
plete, whereas the NNMF algorithm, including the class merging
sequence (8 merges) took 40 min. The size of the input 4D-STEM
data set was 1 GB.

Fig. 4. Grain classification results for a single nanoparticle cluster using (a) PCA and (b) NNMF to analyze the 4D-STEM data. (i) Basis vectors (re-shaped) for the first
eight components/classes. (ii) Respective coefficients (re-shaped) with color bars indicating the intensity values. (iii) Weighted NBED patterns reconstructed for
each component/class.
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Finally, we found that the NNMF classification was much
more sensitive to the mesh spacing that was chosen to rasterize
the diffraction patterns in the data preprocessing step (described
in the “Preprocessing” section). For example, mesh spacings of
5 or 6 pixels consistently yielded NNMF results in which the
first (highest variance) component was the grain on the left-hand
side of the cluster (i.e., the red grain in Figs. 4a and 4b), whereas
using a mesh spacing of 7 or 8, the order in the NNMF output
changed and the orange grain became the most statistically
important. In contrast, in the PCA case, the order of components
was not affected by these changes. This again points to the
enhanced sensitivity of NNMF to subtle differences in the input

data set. For the data analysis presented here, a rasterization
mesh size of 6 pixels was used in all cases.

Distribution of Nanoparticles
The virtual dark-field image and the corresponding 4D-STEM
NBED stack for the region of the sample surveyed over a larger
field of view (80× 100 nm2) are shown in Figures 5a and 5b,
respectively. For this data set, a scan step size of 0.5 nm and
probe size of 1 nm (FWHM) were selected. The PCA and NNMF
grain classification results are presented in Figure 6, showing com-
posite maps of the (numbered) basis vectors in Figures 6a(i) and 6b
(i), the individual coefficients for each component/class in Figures
6a(ii) and 6b(ii), and the weighted NBED patterns in Figures 6a(iii)
and 6b(iii). The number of components/classes plotted is 21, since
this was the number of classes obtained after the NNMF class
merging sequence (the initial number of classes had been set to
100). The scree plot analysis of the PCA results (Supplementary
Figure S3) also indicates that �20 is a reasonable estimate for the
number of distinct phases present in the surveyed area.

Comparing the PCA and NNMF results of Figure 6, it can be
seen that essentially the grain maps in each case are very similar.
There is some variation in the number order of the grains, and in
the PCA case, there is a certain degree of phase mixing (most evi-
dent in the composite map, where the labels for the overlapping
grains are comma-separated). These differences reflect those
previously discussed in the PCA/NNMF analysis of the small
nanoparticle cluster.

Fig. 5. (a) Virtual dark-field image for a distribution of nanoparticles surveyed in a
4D-STEM scan. (b) Summed NBED pattern plotting the maximum intensity recorded
per pixel.

Fig. 6. Grain classification results for a distribution of nanoparticles using (a) PCA and (b) NNMF to analyze the 4D-STEM data. (i) Composite maps of the basis
vectors obtained (numbered), (ii) coefficients for each component/class with color bars indicating the intensity values, and (iii) weighted NBED patterns recon-
structed and color-coded for each component/class.
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In order to further compare the PCA and NNMF results, plots
of the sum of squares of the residual matrices, ((initial data
matrix) − (reconstructed data matrix)) versus the component/
class index have been generated, as shown in Figure 7 and
described at the end of the section “Grain Classification by
PCA and NNMF.” The PCA data points (blue circles) have
been obtained by sequentially truncating the reconstructed PCA
matrix in increments of one component, whereas the data points
for NNMF have been obtained from individual passes of NNMF
using a different number of input classes without subsequent
merging (red circles), and also using the c = 100 data set and
plotting the data points corresponding to each class merging
step (black circles). Similar analysis of the PCA and NNMF out-
put for a 4D-STEM data set has been performed in recent work by
Uesugi et al. (2021). Figure 7 shows that as the number of com-
ponents increases, the matrix residuals rapidly decrease. This con-
firms that a larger number of components allows the PCA/NNMF
reconstructions to capture the original data more effectively.
Furthermore, as the NNMF classes are merged (moving from
right to left in the plot), the residuals gradually increase. This is
because each merging step introduces a small error (by definition
the classes being merged were not perfect matches, but rather
satisfied a predefined correlation threshold).

Up to c ≈ 20, the PCA and NNMF traces in Figure 7 essen-
tially overlap, indicating close similarity between the reconstruc-
tions obtained using each technique up to this point (as also
indicated by the comparison of PCA and NNMF output shown
in Fig. 6). Then, for c . 20, where components start to represent
noise, the two traces start to deviate with the PCA trace progres-
sively reaching lower residual values than the NNMF trace. This
can be explained by the tendency of PCA to overfit the data
compared with NNMF (Ren et al., 2018).

Due to the file size of the large field of view data set (67 GB),
these computations were performed using a workstation with two
Intel Xenon Silver 4114 CPUs with 512 GB RAM. For the PCA
algorithm, the computation time was 55 s, whereas for the
NNMF algorithm, including the class merging sequence (16
merges), it was close to 44 h. In order to speed up the NNMF
computation, the size of the input data set could be reduced by

using more binning and/or by using thresholding to create a
2D probability distribution of all grains and then clustering the
detected Bragg disks, for example, using Voronoi cells (Savitzky
et al., 2021).

Conclusions

We have shown that 4D-STEM using a sub-nanometer probe with
a beam overlap of 50% combined with fast direct-electron detec-
tion enables efficient grain mapping at high spatial resolution.
Since relatively large fields of view (by STEM standards) can be
probed in seconds to minutes, high-resolution mapping while
maintaining minimal sample drift can be achieved. Beam and
sample alignments for the 4D-STEM method used here are also
greatly simplified compared with precession-based methods.

Developments in direct-electron detector technology continue
to transform the field, with data acquisition speeds greater than
ten thousand frames per second now realized (Ercius et al., 2020;
Nord et al., 2020), that is, two orders of magnitude faster than
the direct-electron detector used in this work. With this significant
advance, 4D-STEM is now poised to enable efficient grain map-
ping over fields of view approaching the sizes surveyed by EBSD
in the SEM, but with the spatial resolution provided by STEM.
Thus, fast high-resolution grain mapping over large fields of view
for high-throughput sub-nanometer grain analysis becomes possi-
ble. For the analysis of nanoparticle catalysts such as those surveyed
in this work, this paves the way toward statistical analysis of catalyst
grain size distributions and orientations through the screening of
thousands of particles before and after use, providing crucial
insight into the factors affecting catalyst efficiency and lifetime.
Future work can also make use of multibeam electron diffraction,
using an aperture to formmultiple probes that increase the angular
range surveyed per scan point and thus enable robust indexing due
to the richer diffraction patterns obtained (Hong et al., 2020), as
well as automated indexing based on template matching using
image libraries of simulated diffraction patterns for all orientations
of each crystal structure (Rauch & Véron, 2014).

Ever increasing data acquisition speeds mean ever increasing
file sizes. Consequently, high levels of automation for parameter
optimization in the data analysis routines will be essential. In
the present work, we have demonstrated several critical semi-
automated data preprocessing routines and shown how parameter
choice can affect the final classification results. In the future, var-
ious open-source software routines that are currently being devel-
oped will be well-positioned to increase automation for enhanced
multiparameter optimization (Savitzky et al., 2019; Clausen et al.,
2020; Johnstone et al., 2021). Further benefit can be drawn from
the use of patterned probes generated using a binary mask in the
probe-forming aperture in order to facilitate the subsequent disk
registration (Zeltmann et al., 2020). Finally, we have shown that
feature learning using PCA offers fast classification of phases
and is thus well-suited for a first pass analysis. NNMF computa-
tion is much more time-intensive, but offers direct interpretation
of the matrix output due to the non-negativity constraint, delivers
results free from orthogonality-induced phase-mixing, and is also
more sensitive to subtle variations in the input data.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927621011946.
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