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ABSTRACT. Stellar acoustic oscillation frequencies will likely be accurately observed in the near 
future, in analogy to the well-known solar five-minute oscillation frequencies. Of course, we will 
never expect the wealth of solar data, which is a result of spatial resolution. We will therefore 
not be able to solve the inverse problem, that is to probe physical quantities as functions of 
depth, and the low number of anticipated observed frequencies will make an unambiguous mode 
identification difficult. Despite this restriction to the forward problem, however, observed stellar 
oscillation frequencies will become valuable constraints for the determination of stellar parameters. 
One should not forget that the present knowledge of stellar ages and compositions relies on the 
calibration of theoretical models (matching effective temperature and luminosity). Additional 
observational constraints will improve these calibrations, even if the theoretical models themselves 
are not questioned. We hope, however, that the observation of stellar oscillation frequencies will 
also lead to improvements in the physics of stellar models, in analogy to the solar case. Again, 
of course, stellar seismologists will be less ambitious than helioseismologists, since there are more 
open parameters in stellar models. However, stellar observations will allow tests of models with 
different age and composition. 

1. Introduction 

Helioseismology has been extremely successful in probing the solar interior. The precisely 
observed p-mode oscillation frequencies act as a window, enabling us to peep into the 
Sun (see e.g. Christensen-Dalsgaard, these proceedings; for reviews see e.g. Christensen-
Dalsgaard and Berthomieu 1990, Deubner and Gough 1984). The high spatial resolution 
of the solar disk has allowed to observe, and unambiguously identify, p modes in a range 
of angular degree I from zero (radial modes) to a few thousand. This in turn has lead to 
direct inversion of the oscillation frequencies to obtain physical quantitities (such as sound 
speed) as a function of depth - without recourse to models. 

It is clear that little of this beautiful picture will remain in the stellar case. The lack 
of spatial resolution will restrict the observable modes to those of low I (not greater than 3 
or 4), with higher-degree modes disappearing in the integrated light. It is worth mentioning 
that clever techniques exist, which are based on line profile variations (e.g. Smith 1985; 
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further references are found in Baade 1988a,b). They promise observation of some nonradial 
modes of somewhat higher angular degrees (/ up to 8 or perhaps 16). But even these few 
extra modes can never bring the wealth of solar seismological data (but never say never!). 

As a consequence there will be no direct inversions of stellar oscillations frequencies. 
Nevertheless, despite this lack of analogy, stellar seismology does have exciting prospects. 
The reason is that stars can offer something that the Sun can't: their large number. The 
Sun can be subjected to helioseismological tests as thoroughly as wanted, but as far as they 
are to test the theory of stellar evolution, they do it merely for the case of one mass, age, 
and chemical composition. In stars, however, we see these parameters differing from one 
object to another. Without seismology, the number of observable stellar quantities that 
can serve as tests of the theory of stellar evolution is not that large (one knows effective 
temperatures quite well, luminosities for nearby stars with known par all axe, and mass 
in the case of close binary system). Though the theory of stellar evolution has helped 
enormously to decipher the phenomenology of these observations, there are still sizeable 
uncertainties in the physics of the stellar models used. These uncertainties matter: our 
cosmic distance-scale, as well as the age determination of globular clusters, relies on good 
models of variable stars (Cepheids and RR Lyrae; for a recent review see van den Berg 
1989). 

Despite the considerable precision that solar models have attained one should not 
forget the underlying standard assumptions of stellar evolution, which are, e.g. , an 
initially chemically homogeneous gas cloud, nuclear reaction rates that are determined 
or extrapolated from laboratory values, opacities from elaborate theoretical calculations, 
plus a crude mixing-length formalism for convective heat transport. But the fact that 
solar standard models work quite well is no guarantee to use the same assumptions for 
stars with different parameters. Helioseismology does not equally strongly test all these 
assumptions. Indeed, solar physicists are happy about those uncertainties in the physics of 
the models that are not so important; these uncertainties do not obstruct the way towards 
constructing a 'good' solar model. As an example I mention opacity in the bulk of the solar 
convection zone. Since there the temperature gradient is to a very good approximation 
given by the thermodynamic adiabatic gradient, opacity doesn't play a role. This is good 
for solar modellers, but bad for those who test stellar opacitites. For certain stars the 
same opacities that have little importance for the Sun do matter. So, for instance, in the 
case of stars that are slightly more massive than the Sun, where the convection zone is 
much shallower, and where thus opacity at temperatures and densitites corresponding to 
the solar convection zone significantly influences the structure of the star. 

In the spirit of this interdisciplinary conference, I will stress the common mathematical 
language with other physical disciplines. Review articles that are more astrophysically 
slanted are found elsewhere (e.g. Christensen-Dalsgaard 1984, or Dappen et al. 1988). 
One of the goals of this article is to show that computing stellar oscillation frequencies 
is a relatively easy part of stellar seismology, while the hard work is being done in the 
computation of equilibrium models of evolved stars, where the nonlinear partial differential 
equations of stellar evolution must be solved. Furthermore, to interrogate the physics 
of stellar interiors by oscillation frequencies, one usually has to compare models that 
are the same up to the physical quantity to be tested (notice that we are restricted to 
the forward problem). Again, computing the series of similar evolutionary sequences 
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is time-consuming. In contrast, the physical description of the pulsation itself remains 
unchanged, as long as one is content with the adiabatic approximation, which is sufficient 
for interpreting oscillation frequencies. Of course the situation becomes more complicated 
if other pulsational features are examined, such as exitation, life-time, or amplitudes. 

2. Modelling Stellar Oscillations 

In this section, I present three different approaches. Since I do not consider nonlinearities 
here, the problem of stellar oscillations is equivalent to finding all normal modes. The 
first approach will be an outline of the complete numerical solution. The similarity with 
other eigenvalue problems in mathematical physics is stressed (e.g. vibrating strings, bound 
states in quantum mechanics). The second approach will be based on a simplified wave 
equation and on propagation diagrams that reflect local conditions in a star. This approach 
is best suited for a qualitative discussion of the frequency spectrum of modes. Further 
characteristics of the modes, like their type (p mode or g mode, see below) or penetration 
depth are also directly visible in propagation diagrams. Finally, I will present yet an other 
approach to represent oscillation frequencies, namely asymptotic theory for high-order 
modes. Its advantage is a relatively easy, quantitative link between the observed frequency 
spectrum and the mass and age of the star. 

Before discussing these three different approaches, I begin with some very basic facts 
from stellar evolution, because it is clear that one needs some ideas about the equilibrium 
solution before one can study the deviations from it. 

2.1. SOME ELEMENTARY PREREQUISITES FROM STELLAR EVOLUTION 

The basic framework to model stellar oscillations is given by the hydrodynamic equations 
of motion for the stellar fluid moving around its equilibrium. This equilibrium solution 
is assumed as given; it results from a calculation of stellar structure and evolution. A 
still excellent introduction to the basic principles of stellar evolution is the book by 

i Schwarzschild (1958) (though the book can't of course cover all the fascinating progress that 
i has been made possible since, especially thanks to a greatly increased computing power). 
i For our purposes we need to know that stars in the equilibrium are self-gravitating gas balls, 

with a pressure gradient balancing the local gravitational force, and with a temperature 
gradient associated to the heat flux going from the nuclear-burning central regions to the 
(much cooler) outside. These two gradients are at the base of the nonlinear stellar structure 
equations. 

As long as the star still lives from its hydrogen supply in the center, things happen 
very slowly (the Sun, e.g. , has been around for about 5 109 years, with now about half of 
its hydrogen fuel used). More massive stars have a much shorter life, because their energy 
output (i.e. their luminosity) increases with at least the third power of the mass of the 
star; therefore the hydrogen-burning phase of a 100 solar-mass star is only of the order of 
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106 years. Less massive stars make much more economical use of their resources; their life 
time easily exceeds the currently assumed age of the universe. 

During this hydrogen-burning phase stars are on the so-called main sequence, which is 
a phenomenological name, originating in the fact that if stellar luminosity is plotted against 
surface (effective) temperature (in the so-called Hertzsprung-Russel diagram), then most 
stars lie on a line, i.e. the main sequence. It was an important success of the theory of stellar 
evolution to identify this observational fact with hydrogen burning. Another important 
result of the theory of stellar evolution is that during the hydrogen-burning phase a star 
moves the main sequence slightly upwards (the Sun is generally thought to have been 
about 25% less luminous at the begin of its main-sequence life). Stars thus climbing up 
the main sequence look practically the same as more massive but younger ones, if the 
only discriminating observables are temperature and luminosity. It is precisely one of the 
goals of stellar seismology to lift this degeneracy by providing additional observables (see 
section 3). 

2.2. OUTLINE OF NUMERICAL COMPUTATIONS OF STELLAR OSCILLATIONS 

The purpose of this subsection is to convince the reader that calculations of stellar 
oscillations are a relatively simple affair, if reasonable assumptions and simplifications 
are made. As briefly mentioned before, it is the problem of finding the stellar equilibrium 
solution that is the difficult part. 

Assuming the existence of a stable and constant equilibrium configuration, to discuss 
the pulsational motion of a star we start out from the hydrodynamic equations for 
compressible fluids 

— + v V v = — V p + V x p . (1 
at p 

Here, v is the (Eulerian) velocity field, p and p pressure and density, respectively, and 
ip is the (self-) gravitational potential. For simplicity, we have disregarded viscosity. To 
this equation, one must add the usual equation of continuity and also an energy equation, 
which - in the simplest case - is replaced by a condition of adiabaticity, normally expressed 
in the form of constant co-moving specific entropy (per mass). Under the assumption 
of adiabaticity, stellar pulsation is frictionless and energy conserving. It is clear that 
this assumption precludes a discussion of mode excitation (or damping), necessary to 
understand why we see this pulsation mode but not the other. Nevertheless, this hypothesis 
of adiabaticity still leads to many important results by telling, e.g. , what the linear 
eigenfrequencies are. Virtually the whole success of helioseismology has been so far in the 
framework of adiabatic pulsations; only very recently have serious attempts been made to 
go beyond and to address questions like mode excitation, damping, and amplitudes (for a 
review see Cox et al. 1990). 

In the following I discuss a few of the key steps used in manipulating Equation (1). I 
will be very brief, but details can be found, e.g. , in the book by Unno et al. (1979). We 
restrict ourselves to a simple, but still relevant case, in which the equilibrium configuration 
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is assumed to be at rest (i.e. no rotation) and spherically symmetric. The gravitational 
potential is assumed to be static, i.e. its distortions due to the stellar pulsation itself is 
neglected (this is the so-called Cowling approximation, see Unno et al. 1979). Restricting 
even more to small perturbations, we introduce linearization of Eq. (1). 

The static equilibrium and the linearized equations allow the separation of the time 
dependence in the form of exp(iu)i). The spherically symmetric equilibrium configuration 
allows expressing the field variables (displacement vector, pressure, and density ) as a 
series of spherical harmonics Y,m of angular degree / and azimuthal order m, so that 
each term in the series is itself a solution of the equations. The adiabatic assumption 
is used to link pressure and density fluctuation with the help of a thermodynamical 
quantity (the adiabatic exponent), which is a given quantity of the equilibrium model. One 
arrives therefore at a fourth-order system for the (independent) three displacement-vector 
components and the pressure fluctuation. The Cowling approximation allows yet another 
simplification; with it, the tangential part of the displacement field becomes proportional 
to the tangential component of the gradient of the (Eulerian) pressure fluctuation, and thus 
the only independent fields remaining are the radial component of the displacement vector 
and the pressure fluctuation. Their amplitudes are governed by the following (schematic) 
system of ordinary differential equations 

-r- = fn{r)yi + fi2(r;i,v2)y2 

^ = fn(r;^)yl + f22(r)y2 (2) 

J/i = — 
r 

P1 

y2 = . 
grp 

Here, the functions fij(r;u>2) are expressions involving quantities of the equilibrium model 
(like pressure, density, local gravity, sound-speed, etc.). As is standard practice, the labels 
/ and u> are dropped in the t/j's. The prime ' denotes the Eulerian (first-order) displacement 
from equilibrium, (and not a derivative as everywhere else in the paper). 

Adding boundary conditions to equation (2) leads to an eigenvalue problem. The 
one at the centre is the usual regularity condition due to the singular nature of Eq. (2). 
From the specific nature of the coefficients one knows (see Unno 1979) that Eq. (2) has a 
regular-singular point at r = 0, and so there is a regular and a singular solution. Picking the 
regular one gives the boundary condition (this is explicitly done by a standard power-series 
development). The outer boundary condition is not so simple. In principle, one would have 
to put a good stellar atmosphere (for which there are elaborate models) at the outer end, 
and impose smooth matching as the outer boundary condition. Until now, nobody has 
succeeded in doing that, and simpler approaches must be chosen. Often an isothermal 
atmosphere is assumed, and the outer boundary condition is determined by a discussion 
of propagation and reflection of sound waves in a stratified atmosphere analogous to Lamb 
(1932) (we come to that in 2.3.). Here, we can afford something even simpler, namely 
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a mechanical boundary condition of the form Sp = 0 where 6 stands for the Lagrangian 
displacement. Such a boundary condition is the three-dimensional analogon of a frictionless 
lid. In terms of our variables yi and y%, the condition 6p — 0 is given by 3/1 + yi = 0. 

I hope that I have convinced everyone that computing stellar oscillation frequencies 
is the easy part of seismology, if one can borrow a good equilibrium model from a friend. 
Finding the eigenvalues of Eq. (2) is really not much harder than those of a vibrating string, 
whose equation is d?y/dx2 + w2y = 0 with boundary conditions y — 0 at two different x 
values. The only complication in Eq. (2) comes from the nonconstant coefficents, but 
numerically it is still an easy task. The hard part is therefore finding the equilibrium 
solution which delivers the coefficients for Eq. (2). In studies of the parameter dependence 
of oscillation frequencies one generates series of similar evolutionary models, with slightly 
different stellar parameters (age, mass, composition, or quantities from basic physics like 
the opacity). This can be time consuming, especially if rather evolved stars are considered, 
where many time steps are required for the solution. 

2.3. QUALITATIVE DISCUSSION USING PROPAGATION PROPERTIES 

We adopt the asymptotic discussion of Deubner and Gough (1984), which itself is similar 
to the treatment of acoustic waves by Lamb (1932) [see also Christensen-Dalsgaard (1986)]. 
For wavelengths much shorter than the solar radius, normal oscillation modes can be quite 
accurately discussed using the simplified wave equation 

# " + tf2(r)# = 0 . (3) 

Here, \P = y/pc2div(tfR), where p and c are density and sound speed of the equilibrium 
configuration, and 6TL is the fluid displacement vector. The local wave number is given by 

*v)=^+*+ii(£-)- ,4) 

with the acoustic cut-off frequency defined by 

(5) 
t i i - ur 

and the Brunt-Vaisala frequency N by 

2 C2 , 
u>2 = ( 1 -

Nby 

* ' - . < £ • 

-»f>-

-?»• (6) 

where H is the density scale height and g the local gravity. From the form of Eq. (3) (to 
which upper and lower boundary conditions must be added), one immediately realizes that 
in propagation zones necessarily K2 > 0. 

Our present qualitative discussion of the influence of mass and evolution on oscillation 
frequencies aims at showing the maximum of effects with a minimum of curves. Here, we 
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restrict ourselves to the role of JV2 and u>2 in K. For finer details we refer the reader to 
Deubner and Gough (1984), Christensen-Dalsgaard (1984) or Gough (1985). 

With the convenient definition of the Lamb frequency 

Sf = 
1(1+1) 

(7) 

we obtain the simplified necessary conditions for propagation of an acoustic wave, u> > uic 

and u> > Si. Additionally, in order to have a trapped standing wave, it is also necessary 
that in some surface layer wc becomes greater than u>. This happens indeed; the height of 
this (outer) u>c mountain is the greater, the cooler the local temperature at the edge of the 
star is [this is seen from Eq. (5)]. 'Mathematical' stars with zero temperature at the outer 
boundary have an infinitely high wc mountain; they can therefore trap modes of arbitrary 
high frequency. Real stars have an 'inversion' temperature (just above the photosphere); 
further up temperature begins to rise again. The maximum p-mode frequency 'measures' 
this inversion temperature. 

In propagation zones (if a constant adiabatic exponent of 5/3 is assumed), a further 
simplification follows from the fact that w > g/c implies w > u>c. And finally, we choose the 
approximation of identifying (the absolute value of) gjc with N, which certainly gives the 
correct order of magnitude in radiative zones (but would be entirely wrong in convection 
zones, where N « 0). The advantage of this choice is that the same curves will give 
information about g modes, too. 

i—i—r 

Figure 1. Critical frequencies as functions of the fractional radius r /R. The solid line 
denotes the Brunt-Vaisala frequency N, the dashed line the Lamb frequency 5; for / = 1. 
The model parameters are: hydrogen abundance X = 0.70, heavy-element abundance 
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Z = 0.01, and the mixing-length parameter l/Hp - 1.5. Stellar age is indicated by the 
central hydrogen abundance Xc. 
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Figure 2. Same as Figure 1, but for a more evolved model. 

Let us now consider Si (we choose the representative case 1 = 1) and N in a model of a 
1 M® star (Figure 1). Due to the rather deep convection zone, N cannot represent the 
increase of u>c close to the surface, and so the diagram does not show the upper turning 
point that is caused by the large spatial inhomogeneity near the surface. In Figure 1, Si 
defines the penetration depth of the I = 1 modes; for I > 1 the corresponding curves would 
be shifted to the right. 

Figure 1 also shows how to distinguish p modes from g modes. The distinction is only 
asymptotic. Modes with u> —• oo would become true p modes (but they cease to be trapped 
above a certain frequency, see above). Modes with u> —> 0 become true g modes [they have 
a large K2 due to N/u, see Eq. (4)]. Outside the asymptotic regime one still speaks of p 
modes and g modes, but they are not 'pure', though most of them are of a dominant type. 
Only in highly evolved stars do genuine dual-status modes appear (see section 3.). 

2.4. ASYMPTOTIC THEORY OF OSCILLATION FREQUENCIES 

The simplest theoretical analysis of oscillation frequencies is asymptotic theory (Tassoul 
1980), which - to second order - yields the following expression for the frequencies vn,i 
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"n.i = {n + 1/2 + a)u0 + en,, . (8) 

Here, IT is a constant of order unity, vo will be defined below (Eq.lO), and en,; is 
small compared with «/„,;. (This expression is found by manipulating Eq. (2), exploiting 
the simplifications due to the high-order modes with short wave-length). Given a set 
of observed oscillation frequencies, the constants appearing in Equation (8) can be 
determined. As shown below, they are related to integral quantities of the star. 

At this point it is useful to introduce two definitions pertaining to the structure in the 
periodogram of high order pulsators. 

(i) Large frequency-separation: 

Dn,l = "n+1,1 - "n,! • (9) 

To first order asymptotic theory it is well known that 

Dn.r1 « vo~l = 2 / -dr , 
Jo c 

(10) 

with c denoting local sound speed and R the radius of the star. In simplified stellar models 
(polytropes) it is easy to show that 

9 GM „ 1 1 

(ii) Small frequency-separation: 

dn,l = {Vn,l+1 - Vn,l) ~ -{vn+l,l - Vn,l) • (12) 

The small separation serves to cancel the first-order term of Eq. (8), and thus reveals 
second-order details. The ratio between small and large separation pertains to the central 
regions of the star, and is, to second-order asymptotic theory, given by (Tassoul 1980) 

i t „ ( > + » - ) / * * • * . ( u ) 
D n i V 2 * "n i / Jo drr 

This equation is somewhat simplified; for a more thorough discussion see Gabriel (1990). 
Since sound speed increases steeply from the surface to the centre of a star, Dnj probes 
more the surface regions and dn<i more the central regions. 
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3. Determination of Stellar Age and Mass from Seismology 

3.1. QUALITATIVE DISCUSSION 

The two Figures 1-2 show the principal effects of evolution and mass on oscillation 
frequencies, thus demonstrating the power of the qualitative tools of section 2.3. The 
first effect of evolution is an increase of the inner 'N-mountain', caused by the growing 
spatial chemical inhomogeneity in the central regions. The inner mountain is capable 
eventually to prevent radial modes from penetrating to the center. Note that this might 
sound paradoxical, because Eq. (4) tells us that N does not influence modes with / = 0. 
But recall that in our simplified figures we also use N to represent the (inner) u>c mountain, 
which is of the same order as N. 

In evolved stars, modes with I > 1 can acquire 'dual status', i.e. they become gravity 
modes in the core and remain acoustic modes in the envelope. Thus they penetrate deeper 
into the interior, while simultaneously their frequency spectrum becomes denser. The main 
effect of mass (in the range around and slightly above 1 M Q ) on the frequency spectrum 
is related to the disappearance of the convective envelope and the forming of a convective 
core. This has a major influence on g-mode propagation. 

3.2. QUANTITATIVE DISCUSSION 

The small separation (Eq. 12) carries an important signature of stellar age, because as 
hydrogen is converted into helium in the stellar core, the mean molecular weight increases, 
which causes a decrease of sound speed and its gradient, thus reducing the small separation. 
An excellent diagnostic diagram that extracts the information contained in the small and 
large separation has been invented by Christensen-Dalsgaard (1984) (for a more detailed 
calculation see Christensen-Dalsgaard 1988). In this diagram [hereinafter JCD diagram 
(for J0rgen Christensen-Dalsgaard)], contours of constant stellar mass and age are plotted 
against the theoretically computed large and small separations. Since the mass and age 
contours are rather perpendicular than parallel to each other, they reveal the considerable 
diagnostic potential of these diagrams. 

Going a step further, Gough (1987) discussed the accuracy of seismological mass 
and age determination, using JCD diagrams and stellar models computed by Ulrich 
(1986, 1988). Gough's discussion was purely formal: taking the theoretical model for 
granted, he computed the uncertainty in the mass and age determination, assuming given 
errors for the observed stellar parameters (effective temperature, luminosity, heavy-element 
abundance, large and small frequency separation). Gough's (1987) result is that mass and 
age determination are so sensitive to the heavy-element abundance that they cannot be 
carried out in this way, unless other stellar parameters are known by independent means. 
If, for instance, in the case of a binary system we can determine mass, or if we can estimate 
it from surface gravity, then the large separation can reveal the evolutionary information 
contained in the deviation from the simple relation (11) (otherwise the large separation 
mainly fixes M/R3). Thus a more accurate age determination could become possible (see 
Gough 1987). 
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Figure 3. The location of a ZAMS (zero-age main sequence) (solid line) and of a 1 M© 
evolutionary sequence (dashed line) in a (DQ,UQ) JCD diagram. Here, VQ is as in Eq. (8), 
and Do is a suitably defined average over small separations dni; (for details see Christensen-
Dalsgaard 1984, from which this figure is taken). 

4. The Observational Situation: Procyon, a Centauri, and e Eridani 

Gelly et al. (1986) have reported p modes in Procyon and a Centauri. Only the large 
separation has been observed. Noyes et al. (1984) have reported three individual p-mode 
frequencies and the large separation for e Eridani. To illustrate the potential, and the 
difficulties, of such observations for testing stellar structure and evolution, consider the 
recent controversial theoretical articles dealing with Noyes et al. 's (1984) observations. 
While Guenther and Demarque (1986) have concluded that a model of a very old star (12 
Gyr) fits the data best (though they are aware of indications of stellar activity that speak 
against such a high age), Soderblom and Dappen (1989) conclude that a model of a very 
young star ( IGyr) is equally well suited, provided that one accepts the unusually small 
value of the mixing-length parameter of 0.45. The discrepancy of the two interpretations is 
well in line with the aforementioned error analysis by Gough (1987). However, an erroneous 
frequency determination could also have been the source of these difficulties. More and 
better resolved frequencies will be needed. 
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Figure 4. Power spectrum of Procyon, obtained during 6 nights of observation. Power is 
in arbitrary units, the corresponding velocities are indicated in the figure. 
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Figure 5. Same as Figure 4, but for the Sun (5 days of observation). 
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We end this section with a recent very promising result. Brown, Gilliland, Noyes, and 
Ramsey (private communication) have carried out Doppler velocity measurements of 
Procyon and obtained a clear signal around and below 1 mHz (Figures 4 and 5). 

5. P r o s p e c t s 

Despite little analogy with the solar case, and despite the fact that not much has been 
achieved yet, stellar seismology has excellent prospects. Together with new observational 
techniques (like high S/N spectroscopy, astrometrical space missions), which will allow 
better determinations of stellar parameters (age, mass, chemical composition), the expected 
seismological information will put additional constraints on theoretical models of stellar 
evolution. The observational data will enable us to develop better physical models for the 
theory of stellar evolution (equation of state, convection, opacity, nuclear reactions, etc.). 
Since many of the diagnostically powerful small frequency-separations lie around 10 /uHz, 
which is close to the diurnal frequency (11.6 /^Hz), it will greatly help to go to space or to 
coordinate several ground-based telescopes. 

ACKNOWLEDGMENTS: I am grateful to Tim Brown, Ron Gilliland, Robert Noyes, and 
Lawrence Ramsey for their permission to show the results on Procyon. 
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