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The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a
fluid layer heated from below and cooled from above – is how vertical heat flux depends
on the imposed temperature gradient in the strongly nonlinear regime where the flows are
typically turbulent. The quantitative challenge is to determine how the Nusselt number Nu
depends on the Rayleigh number Ra in the Ra → ∞ limit for fluids of fixed finite Prandtl
number Pr in fixed spatial domains. Laboratory experiments, numerical simulations and
analysis of Rayleigh’s mathematical model have yet to rule out either of the proposed
‘classical’ Nu ∼ Ra1/3 or ‘ultimate’ Nu ∼ Ra1/2 asymptotic scaling theories. Among the
many solutions of the equations of motion at high Ra are steady convection rolls that
are dynamically unstable but share features of the turbulent attractor. We have computed
these steady solutions for Ra up to 1014 with Pr = 1 and various horizontal periods. By
choosing the horizontal period of these rolls at each Ra to maximize Nu, we find that steady
convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat
than turbulent convection in experiments or simulations at comparable parameters. If heat
transport in turbulent convection continues to be dominated by heat transport in steady
rolls as Ra → ∞, it cannot achieve the ultimate scaling.

Key words: Bénard convection

1. Introduction

Rayleigh–Bénard convection (RBC) is the buoyancy-driven flow in a fluid layer heated
from below and cooled from above in the presence of gravity. The emergent convective
flow enhances heat flux from the warm bottom boundary to the cool top boundary beyond
the conductive flux from diffusion alone. This dimensionless enhancement factor – the
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ratio of bulk-averaged vertical heat flux from both conduction and convection to the flux
from conduction alone – defines the Nusselt number Nu. In Rayleigh’s mathematical
model (Rayleigh 1916) Nu depends on several dimensionless quantities characterizing the
problem at hand: (i) what we now call the Rayleigh number Ra, which is proportional to
the imposed temperature drop across the layer, (ii) the fluid’s Prandtl number Pr, which is
the ratio of kinematic viscosity to thermal diffusivity and (iii) details of the spatial domain,
often captured by an aspect ratio Γ that is a ratio of a horizontal length scale to the vertical
layer height.

Convection is coherent at Ra values not too far above the critical value Rac beyond
which the conductive no-flow state is linearly unstable. By coherent we mean flows
with few scales present; spatial scales might include a horizontal period and the vertical
thickness of boundary layers, and temporally the flow may be steady or time-periodic.
Meanwhile, convection is turbulent at the large Ra values pertinent to many engineering
and scientific applications. Turbulent flows are complex and contain a range of spatial and
temporal scales and, in the present context, have thermal and viscous boundary layers at
the top and bottom boundaries from which thermal plumes emerge and mix the bulk. In a
given domain it is expected that a scaling of Nu with respect to both Pr and Ra will emerge
in the Ra → ∞ limit (Kadanoff 2001).

After nearly a century of increasingly sophisticated mathematical analysis, increasingly
resolved direct numerical simulations (DNS) and increasingly refined laboratory
experiments, two quantitatively distinct conjectures remain in contention for the heat
transport scaling law at large Ra (Chillà & Schumacher 2012; Doering 2020). The
two conjectures follow from heuristic physical arguments that both seem plausible
but give incompatible predictions: the ‘classical’ scaling Nu ∼ Pr0Ra1/3 and the
‘ultimate’ scaling Nu ∼ Pr1/2Ra1/2, with the latter sometimes including logarithmic-in-Ra
modifications.

For RBC between flat, no-slip, isothermal boundaries, rigorous analysis of the governing
equations has yielded upper bounds of the form Nu ≤ O(Ra1/2) uniformly in Pr and Γ
(Howard 1963; Doering & Constantin 1996), but this still allows for either classical or
ultimate scaling. Upper bounds that rule out ultimate scaling by being asymptotically
smaller than O(Ra1/2) have been derived in the limit of infinite Pr (Doering, Otto &
Reznikoff 2006; Otto & Seis 2011; Whitehead & Doering 2012) and for two-dimensional
convection between stress-free boundaries (Whitehead & Doering 2011). For the no-slip
boundaries relevant to experiments, however, it remains an open question whether an upper
bound asymptotically smaller than Ra1/2 is possible.

In view of the problem’s stubbornness, a new strategy is called for to determine – or at
least to bound – Nu as a function of Ra,Pr and Γ . Towards that end we have undertaken
an indirect approach consisting of two parts. The first part is to study coherent flows for
which one can reasonably hope to determine asymptotic heat transport, and the second
part is to investigate how transport by those coherent flows compares with transport by
turbulent convection. The simplest coherent flows are steady – i.e. time-independent –
solutions of the equations of motion. Many such states exist, although they are generally
unstable at large Ra. We focus on what might be called the simplest type of steady states:
two-dimensional convection rolls like the counter-rotating pairs shown in figure 1(a,b). In
horizontally periodic or infinite domains in two or three dimensions, such rolls bifurcate
supercritically from the conductive state in the linear instability identified by Rayleigh
(1916). A roll pair of any width-to-height aspect ratio Γ admitted by the domain exists for
sufficiently large Ra.

For steady rolls, the dependence of Nu on the parameters (Γ,Pr,Ra) at asymptotically
large Ra is accessible to computation. As for whether heat transport by steady rolls can be
933 R4-2
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Figure 1. Steady convection rolls at Ra = 109 and Pr = 1 with (a) Γ = 2 and (b) the value Γ ∗ ≈ 0.235
that maximizes Nu at these values of Ra and Pr. Colour indicates temperature, and streamlines are shown
for anticlockwise (solid) and clockwise (dash-dotted) motions. (c) Dependence of Nu on the horizontal
wavenumber k = 2π/Γ found by computing steady rolls of various aspect ratios (�, green). Highlighted points
are the two Γ shown in (a,b) along with the value Γ ∗

loc ≈ 0.0614 that locally maximizes Nu(Γ ). Cubic spline
interpolation (dashed line) is used to find Γ ∗ and Γ ∗

loc precisely.

connected to transport by turbulence, there are several reasons for optimism. Relationships
between turbulent attractors and the unstable coherent states embedded therein have been
established in models of wall-bounded shear flows (Graham & Floryan 2021), where
particular steady states, travelling waves and time-periodic states have been found that
closely reflect turbulent flows in terms of integral quantities as well as particular flow
structures. Analogous study of RBC began only recently but indeed suggests that certain
steady states capture qualitative aspects of turbulent convection (Sondak, Smith & Waleffe
2015; Waleffe, Boonkasame & Smith 2015; Kooloth, Sondak & Smith 2021; Motoki,
Kawahara & Shimizu 2021). Our findings add to this evidence. The desire to understand
and perhaps strengthen the mathematical bound Nu ≤ O(Ra1/2) is further motivation for
studying unstable states since bounds apply to all solutions of the governing equations
regardless of stability. It is an open question whether any solutions can achieve ultimate
scaling, let alone turbulent solutions.

Here we report numerical computations of steady convection rolls for a Pr = 1 fluid
contained between no-slip isothermal top and bottom boundaries. We reach sufficiently
large Ra values to convincingly reveal several asymptotic scalings of Nu, depending on
the horizontal periods of the rolls. These are the first clearly asymptotic scalings found
for any type of flow – steady, turbulent or otherwise – for RBC in the no-slip case.
Notably, the largest heat transport among steady rolls of all horizontal periods displays the
classical Nu ∼ Ra1/3 scaling. We further observe that Nu for these steady rolls is larger
than turbulent Nu from all laboratory experiments and two- or three-dimensional (2-D or
3-D) simulations at comparable parameters. This observation supports the conjecture that
steady states maximize Nu among all stable or unstable flows, as was recently verified for
a truncated model of RBC (Olson et al. 2021) using methods that are not yet applicable
to the full governing equations. If steady-roll transport continues to dominate turbulent
transport as Ra → ∞, then our finding of classical scaling for steady rolls would rule out
ultimate scaling of turbulent convection.

The asymptotic scaling of steady rolls is already known in the case of stress-free velocity
conditions at the top and bottom boundaries, which were considered for mathematical
convenience in Rayleigh’s original work. In that case Nu ∼ Ra1/3 as Ra → ∞ at fixed Pr
and Γ , and the aspect ratio of the roll pair maximizing Nu at each Ra and Pr approaches
Γ ≈ 1.9 (Chini & Cox 2009; Wen et al. 2020). Recent computations of steady rolls in the
no-slip case for preasymptotic Ra values up to 109 revealed significant differences from the
stress-free problem (Sondak et al. 2015; Waleffe et al. 2015). The dependence Nu(Γ ) for
no-slip rolls at fixed Ra and Pr can have multiple local maxima, as shown in figure 1(c),
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and the aspect ratio Γ ∗ that globally maximizes Nu(Γ ) approaches zero rather than a
constant as Ra → ∞. Steady rolls of Nu-maximizing aspect ratios Γ ∗ were reported in
Sondak et al. (2015) for Ra ∈ [5 × 106, 3 × 108] at Pr = 1, yielding fits of Γ ∗ ∼ Ra−0.217

and Nu(Γ ∗) ∼ Ra0.31. This heat transport scaling is faster than with Γ fixed: computations
in Waleffe et al. (2015) for Ra ∈ [5 × 105, 5 × 106] at Pr = 7 with Γ = 2 fixed yield the
fit Nu ∼ Ra0.28. These best-fit scaling exponents are, however, not asymptotic.

Steady convection rolls are dynamically unstable at large Ra and cannot be found by
standard time integration, so we employed a purpose-written code that iteratively solves
the time-independent equations. We computed rolls with Γ = 2 fixed for Ra � 2 × 1010

and with the parameter-dependent aspect ratios Γ ∗ and Γ ∗
loc (cf. figure 1) that globally and

locally maximize Nu(Γ ), respectively, for Ra ≤ 1014. These Ra values are evidently large
enough to reach asymptotia: the results reported below strongly suggest that fixed-Γ rolls
asymptotically transport heat like Nu ∼ Ra1/4 while the ever-narrowing rolls of aspect
ratio Γ ∗ achieve the classical Nu ∼ Ra1/3 scaling.

2. Computation of steady-convection-roll solutions

Following Rayleigh (1916), we model RBC using the Boussinesq approximation to the
Navier–Stokes equations with constant kinematic viscosity ν, thermal diffusivity κ and
coefficient of thermal expansion α. We non-dimensionalize lengths by the layer height h,
temperatures by the fixed difference Δ between the boundaries, velocities by the free-fall
scale Uf = √

gαhΔ, and time by the free-fall time h/Uf . Calling the horizontal coordinate
x and the vertical coordinate z, the gravitational acceleration of magnitude g is in the −ẑ
direction. The evolution equations governing the dimensionless velocity vector u = (u,w),
temperature T and pressure p are then

∂tu + u · ∇u = −∇p + (Pr/Ra)1/2 ∇2u + T ẑ, (2.1a)

∇ · u = 0, (2.1b)

∂tT + u · ∇T = (PrRa)−1/2 ∇2T, (2.1c)

where

Ra = gαh3Δ

κν
and Pr = ν

κ
. (2.2a,b)

The dimensionless spatial domain is (x, z) ∈ [0, Γ ] × [0, 1], and all variables are
horizontally periodic. The top and bottom boundaries are isothermal with T = 0 and
T = 1, respectively, while no-slip conditions require u to vanish on both boundaries. The
conductive state (u, T) = (0, 1 − z) becomes unstable when Ra increases past the critical
value Rac ≈ 1708 (Jeffreys 1928), at which a roll pair with horizontal period Γ ≈ 2.016
bifurcates supercritically. As Ra → ∞ the horizontal period of the narrowest marginally
stable roll pair decreases as O(Ra−1/4), while the horizontal period of the fastest-growing
linearly unstable mode decreases more slowly as O(Ra−1/8).

In terms of the dimensionless solutions to (2.1), the Nusselt number is

Nu = 1 + (PrRa)1/2 〈wT〉, (2.3)

where 〈·〉 denotes an average over the spatial domain and infinite time. For steady states
no time average is needed.

To compute rolls at Ra values large enough to reach the asymptotic regime, we
developed a numerical scheme by adapting the approach of Wen et al. (2020) and Wen &
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Chini (2018) to the case of no-slip boundary conditions. In these numerics the temperature
is represented using the deviation θ from the conductive profile, meaning T = 1 − z + θ ,
and the velocity is represented using a stream function ψ , where u = ∂zψ x̂ − ∂xψ ẑ so that
the (negative) scalar vorticity is ω = ∂xw − ∂zu = −∇2ψ . In terms of these variables,
steady (∂t = 0) solutions of (2.1) satisfy

∂zψ∂xω − ∂xψ∂zω = (Pr/Ra)1/2 ∇2ω + ∂xθ, (2.4a)

∇2ψ = −ω, (2.4b)

∂zψ∂xθ − ∂xψ∂zθ = −∂xψ + (PrRa)−1/2 ∇2θ (2.4c)

with fixed-temperature and no-slip boundary conditions

θ |z=0,1 = 0, ψ |z=0,1 = 0 and ∂zψ |z=0,1 = 0. (2.5a–c)

The equality of ψ values between each boundary restricts to solutions whose horizontal
velocities average to zero over every vertical section.

To compute solutions of the time-independent equations (2.4) and (2.5a–c) by an
iterative method, we do not need to impose all boundary conditions precisely on each
iteration – the conditions need to hold only for the converged solution. Thus we do not
impose (2.5c) exactly, instead using approximate boundary conditions on ω for equation
(2.4a). These are derived by Taylor expanding ψ about the top and bottom boundaries to
find

ψ |z=1−δ = ψ |z=1 − ∂zψ |z=1 δ + ∂2
zψ

∣∣∣
z=1

δ2

2
− ∂3

zψ

∣∣∣
z=1

δ3

6
+ O(δ4), (2.6a)

ψ |z=δ = ψ |z=0 + ∂zψ |z=0 δ + ∂2
zψ

∣∣∣
z=0

δ2

2
+ ∂3

zψ

∣∣∣
z=0

δ3

6
+ O(δ4), (2.6b)

where δ > 0 is small. Combining (2.4b) with (2.5b,c) and neglecting O(δ4) terms in (2.6)
give the approximate boundary conditions

∂zω|z=1 − 3
δ
ω|z=1 − 6

δ3 ψ |z=1−δ = 0, −∂zω|z=0 − 3
δ
ω|z=0 − 6

δ3 ψ |z=δ = 0.

(2.7a,b)

In computations we set δ to be the distance between the boundary and the first interior
mesh point.

The time-independent equations (2.4) are solved numerically subject to boundary
conditions (2.5a,b) and (2.7) using a Newton–GMRES (generalized minimal residual)
iterative scheme. The spatial discretization is spectral, using a Fourier series in x and
a Chebyshev collocation method in z (Trefethen 2000). All of our computations had at
least 20 collocation points in the viscous and thermal boundary layers. At Ra just above
the linear instability, iterations starting from the unstable eigenmode converge to the
steady rolls we seek. At larger Ra, already-computed steady rolls from nearby Ra and
Γ values were used as the initial iterate. Every two to four Newton iterations, we change
the boundary values of the iterate to match the ∂zψ = 0 boundary condition exactly. Prior
to convergence this makes the boundary values slightly inconsistent with the governing
equations, but the converged solutions satisfy the equations and the no-slip boundary
conditions to high precision. Newton iterations were carried out until the Lebesgue
L2-norm of the residual of the governing steady equations had a relative magnitude less
than 10−10. To accurately locate Γ ∗ and Γ ∗

loc, rolls were computed at several nearby Γ ,
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Figure 2. (a) Compensated plot of Nu − 1 vs Ra for steady rolls with Pr = 1 and aspect ratios of Γ = 2,
Γ ∗ and Γ ∗

loc, where the Ra-dependent values Γ ∗ and Γ ∗
loc are where Nu(Γ ) has global and local maxima,

respectively (cf. figure 1). Values of Nu at Γ ∗ from Sondak et al. (2015) and Waleffe (personal communication
2020) are also shown (�, green). Scaling fits (dashed lines) over the last decade of each data set yield
exponents of 0.33, 0.29 and 0.25. (b) Finite-difference approximations of the local scaling exponent βn =
d(log Nu)/d(log Ra). Exponents of 1/3, 2/7 and 1/4 are shown to guide the eye (grey dotted lines).

and then Nu(Γ ) was interpolated with cubic splines like those in figure 1(c). Details
of computational results, including resolutions used, are included in the supplementary
material available at https://doi.org/10.1017/jfm.2021.1042.

3. Results

We computed steady Pr = 1 rolls for aspect ratios Γ encompassing the three distinguished
values indicated by figure 1(c): the fixed value Γ = 2 and the Ra-dependent values Γ ∗
and Γ ∗

loc that globally and locally maximize Nu over Γ . As previously observed by Sondak
et al. (2015), the Nu(Γ ) curve has a single maximum when Ra is small and develops a
second local maximum at smaller Γ when Ra increases past roughly 2 × 105. The value
of Nu at this second local maximum remains less than the value at the first, so the picture
remains as in figure 1(c) with Γ ∗ on the left and Γ ∗

loc on the right, in contrast to the
Pr = 10 and 100 cases (Sondak et al. 2015). For most Ra values we did not compute
rolls over a full sweep through Γ as in figure 1(c), instead searching over Γ only as
needed to locate Γ ∗ and Γ ∗

loc. The rest of this section reports Nusselt number and Reynolds
number scalings for the computed steady rolls, and the supplementary material provides
tabulated data.

3.1. Asymptotic heat transport
Figure 2 shows the dependence of Nu on Ra for steady rolls with aspect ratios Γ = 2, Γ ∗
and Γ ∗

loc. In figure 2(a) Nu − 1 is compensated by Ra1/3, so the horizontal line approached
by rolls of the Nu-maximizing aspect ratios Γ ∗ corresponds to classical 1/3 scaling. The
downward slopes of the data for aspect ratios 2 and Γ ∗

loc correspond to scaling exponents
smaller than 1/3. Values of Nu at Γ ∗ computed previously for Ra ≤ 109 (Sondak et al.
2015; Waleffe, personal communication 2020) are shown in figure 2 also, and they agree
with our computations very precisely – e.g. the Ra = 109 data point agrees with our value
of Nu to within 0.0008 %.
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Figure 3. (a) Compensated plot of the fundamental horizontal wavenumber k = 2π/Γ vs Ra for the aspect
ratios Γ ∗ and Γ ∗

loc that maximize Nu(Γ ) globally and locally, respectively, at Pr = 1. Scaling fits (dashed
lines) to 2π/Γ ∗ over Ra ∈ [1010, 1014] and 2π/Γ ∗

loc over Ra ∈ [1013, 1014] yield exponents of 0.20 and 0.25,
respectively. (b) Finite-difference approximations of the local exponent βk = d(log k)/d(log Ra). The values
1/4 and 1/5 (grey dotted lines) agree with the scaling fit exponents to two digits.

Figure 2(b) shows the Ra-dependent local scaling exponent βn = d(log Nu)/d(log Ra)
of the Nu–Ra relation for Γ = 2, Γ ∗ and Γ ∗

loc. This quantity educes small variations not
visible in figure 2(a). In particular, for rolls of aspect ratios Γ ∗, the exponent βn exhibits
a small but rapid change just below Ra = 109, beyond which it smoothly approaches
the classical 1/3 exponent that appears to be the Ra → ∞ asymptotic behaviour. This
rapid change seems to coincide with the velocity becoming vertically uniform outside
the boundary layers, as reflected in the streamlines of figure 1(b); further details of the
rolls’ structure will be reported elsewhere. Rolls with Γ = 2 fixed undergo a similarly
rapid change around Ra ≈ 2 × 107 and then approach Nu ∼ Ra1/4 scaling that appears
to be asymptotic. Rolls of aspect ratio Γ ∗

loc show intermediate Nu scaling whose best-fit
exponent over the last decade of data is 0.29.

Figure 3(a) shows the Ra-dependence of the wavenumber k = 2π/Γ for Γ ∗ and Γ ∗
loc,

compensated by Ra1/5. The compensated wavenumbers for Γ ∗ approach a horizontal line,
suggesting that the Nu-maximizing rolls narrow according to the power law Γ ∗ ∼ Ra−1/5.
This narrowing of Γ ∗ is slow relative to the case of RBC in a porous medium, where
Γ ∗ ∼ Ra−1/2 (Wen, Corson & Chini 2015).

Figure 3(b) shows the Ra-dependence of the local scaling exponent βk =
d(log k)/d(log Ra). For k = 2π/Γ ∗ the local scaling exponent remains close to 1/5 after
the transition around Ra = 109. For k = 2π/Γ ∗

loc the exponent seems to approach 1/4,
suggesting that Γ ∗

loc has the same Ra−1/4 scaling as the narrowest marginally stable mode.
Variations in βk beyond Ra = 1012 for Γ ∗ are evident, but these might be due to numerical
imprecision: Nu depends very weakly on Γ around the maximum of Nu(Γ ), as seen in
figure 1(c), so the value of Γ ∗ cannot be determined nearly as precisely as the value of
Nu(Γ ∗).

3.2. Asymptotic kinetic energy
Another emergent quantity central to RBC is the bulk Reynolds number based on
root-mean-squared velocity, which in terms of dimensionless solutions
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Figure 4. (a) Compensated plot of Re vs Ra for steady rolls with Pr = 1 and aspect ratios Γ = 2, Γ ∗ and
Γ ∗

loc. Scaling fits yield Re ∼ Ra0.50 for Γ = 2 and Re ∼ Ra0.40 for Γ ∗
loc over the last decade of each data set,

and Re ∼ Ra0.47 for Γ ∗ over Ra ∈ [1010, 1014] (dashed lines). (b) Finite-difference approximations to the local
exponent βr = d(log Re)/d(log Ra). Exponents of 1/2 and 2/5 are shown to guide the eye (grey dotted lines).

to (2.1) is

Re =
(

Ra
Pr

)1/2

〈|u|2〉1/2. (3.1)

Figure 4 depicts the dependence of Re on Ra for the steady rolls of aspect ratios Γ = 2,
Γ ∗ and Γ ∗

loc. Figure 4(a) shows Re compensated by Ra1/2 while figure 4(b) shows the
local scaling exponent βr = d(log Re)/d(log Ra). Rolls with the fixed aspect ratio Γ = 2
approach the asymptotic scaling Re ∼ Ra1/2 that corresponds to the root-mean-squared
velocity being proportional to the free-fall velocity Uf . For rolls with Nu-maximizing
aspect ratios Γ ∗, the scaling fit over Ra ∈ [1010, 1014] is Re ∼ Ra0.47, which is quite close
to the Re ∼ Ra0.46 scaling observed in recent 3-D DNS up to Ra = 1015 at Pr = 1 in a
slender cylinder with a height 10 times its diameter (Iyer et al. 2020). For the Γ ∗

loc rolls, the
scaling exponent of Re is indistinguishable from 2/5. The measured exponents (0.50, 0.47,
0.40) are unchanged if Re is defined using the pointwise maximum velocity rather than
using the root-mean-squared velocity as in (3.1). All three aspect ratios result in smaller
speeds than steady rolls between stress-free boundaries, where Re ∼ Ra2/3 for any fixed
Pr and Γ (Wen et al. 2020).

4. Comparison with turbulent convection

To compare heat transport by steady rolls with that by turbulent thermal convection, we
compiled Nusselt number data from high-Ra DNS with Pr = 1 or 0.7 and laboratory
experiments where the estimated Pr is between 0.7 and 1.3. Figure 5 shows these Nu
values compensated by Ra1/3, along with Nu values of steady convection rolls at the
Nu-maximizing aspect ratios Γ ∗. Strikingly, heat transport by the Nu-maximizing 2-D
steady rolls is larger than transport by turbulent convection in all cases.

The turbulent data shown in figure 5, as detailed in the figure caption, include DNS in
horizontally periodic 2-D and 3-D domains, wherein 2-D steady rolls solve the equations
of motion, as well as 3-D DNS and laboratory experiments in cylinders that do not admit
2-D rolls. Values of Nu for steady rolls with Γ = 2 fixed are omitted from figure 5 for
clarity, but they lie below all turbulent values once Ra approximately exceeds 2 × 109
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Figure 5. Nu compensated by Ra1/3 for steady rolls of Nu-maximizing aspect ratios Γ ∗ at Pr = 1, along with
Nu from turbulent 2-D and 3-D DNS and experiments with estimated Pr ∈ [0.7, 1.3]. For horizontally periodic
domains, 2-D DNS with (Γ,Pr) = (2, 1) were done by Johnston & Doering (2009) and Zhu et al. (2018), and
3-D DNS with Γ ≥ 8 and Pr = 1 were done by Vieweg & Schumacher (personal communication 2020) and
Krug, Lohse & Stevens (2020). For DNS in cylinders of diameter-to-height ratio Γc, Iyer et al. (2020) used
(Γc,Pr) = (0.1, 1) and Scheel & Schumacher (2017) used (Γc,Pr) = (1, 0.7). For laboratory experiments in
cylinders, where the plotted data are truncated according to Pr ∈ [0.7, 1.3], the domains and estimated Pr
ranges are Γc = 0.5 and Pr ∈ [0.7, 1.3] for Chavanne et al. (2001), Γc = 4 and Pr ∈ [0.7, 1.27] for Niemela
& Sreenivasan (2006), Γc = 0.5 and Pr ∈ [0.79, 0.86] for He et al. (2012), and Γc = 1 and Pr ∈ [0.95, 1.17]
for Urban et al. (2014). Experiments used working fluids of low-temperature helium gas (Chavanne et al. 2001;
Niemela & Sreenivasan 2006; Urban et al. 2014) or sulphur hexafluoride (He et al. 2012).

(cf. figure 2), and this gap would only widen at larger Ra if their Nu ∼ Ra1/4 scaling
persists. The laboratory data sets in figure 5 have unavoidably varying Pr values that
can be hard to estimate, as well as non-Oberbeck–Boussinesq effects (Urban, Musilová
& Skrbek 2011; Urban et al. 2012, 2014). The figure includes only a narrow range of
estimated Pr values in order to avoid significant non-Oberbeck–Boussinesq effects. When
data over a wider range of estimated Pr is included, a few data points from the experiments
of Chavanne et al. (2001) lie above the Nu(Γ ∗) values of steady rolls, as shown in the
supplementary material.

Our finding that steady rolls of Nu-maximizing aspect ratios apparently display classical
Nu ∼ Ra1/3 asymptotic scaling does not ineluctably imply anything about turbulent
convection. Taking a dynamical systems point of view, however, steady solutions admitted
by the domain are fixed points of (2.1), so they and their unstable manifolds are part
of the global attractor. Turbulent trajectories may linger near these fixed points and so
inherit some quantitative features (Kooloth et al. 2021), as has been found for unstable
coherent states in shear flows (Nagata 1990; Waleffe 1998; Wedin & Kerswell 2004;
Gibson, Halcrow & Cvitanović 2008; Suri et al. 2020; Graham & Floryan 2021). Indeed,
figure 5 shows scaling similarities between steady and turbulent convection. Further
exploration of the global attractor calls for study of 3-D steady flows. Recently computed
‘multi-scale’ 3-D steady states (Motoki et al. 2021) give larger Nu values than all 2-D rolls
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at moderate Ra, but their scaling at large Ra is unknown. Simpler 3-D steady convection
patterns remain to be computed as well. Analytically, it is an open challenge to construct
approximations of 2-D or 3-D steady flows that are asymptotically accurate as Ra → ∞,
as has been done for 2-D rolls between stress-free boundaries (Chini & Cox 2009; Wen
et al. 2020). Such constructions could be used to verify that Nu ∼ Ra1/3 is indeed the exact
asymptotic scaling for the Nu-maximizing rolls we have computed, as well as to determine
the precise Re–Ra scaling relations for rolls of both Nu- and Re-maximizing aspect ratios.

More generally, figure 5 highlights the absence of reproducible evidence for ultimate
Nu ∼ Ra1/2 scaling, and it raises the intriguing possibility that steady rolls with
Nu ∼ Ra1/3 might transport more heat than turbulent convection as Ra → ∞. We know
of no counterexamples to this hypothesis, including in the case of stress-free boundaries
(Wen et al. 2020). Heat transport by solutions of (2.1) with no-slip isothermal boundaries
has been mathematically proved to be limited by Nu ≤ O(Ra1/2) (Howard 1963; Doering
& Constantin 1996), but it remains unknown whether any solutions attain the ultimate
scaling of this upper bound. One avenue for pursuing a stronger mathematical statement is
to study two conjectures suggested by our computations: that steady convection maximizes
Nu among all solutions of (2.1) regardless of their stability or time-dependence, and
that steady solutions of (2.1) are subject to an upper bound of the form Nu ≤ O(Ra1/3).
Therefore, although numerically computed flows can never determine Ra → ∞ scaling
definitively, our results suggest a new mathematical approach that may be able to finally
resolve the question of asymptotic Nu scaling in turbulent convection.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.1042.

Acknowledgements. After this manuscript was written our senior author, C.R. Doering, passed away too
soon. Beyond his many contributions to the present study, we are forever indebted to him for his mentorship,
to say nothing of his many lasting contributions to the field of fluid dynamics. He will be deeply missed by us
and many others. We also want to acknowledge helpful discussions about the present work with L.M. Smith,
D. Sondak and F. Waleffe.

Funding. This work was supported by US National Science Foundation awards (DMS-1515161,
DMS-1813003), Canadian NSERC Discovery Grants Program awards (RGPIN-2018-04263, RGPAS-2018-
522657, DGECR-2018-00371) and computational resources provided by Advanced Research Computing at the
University of Michigan.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Baole Wen https://orcid.org/0000-0003-2073-1508;
David Goluskin https://orcid.org/0000-0003-3109-0830;
Charles R. Doering https://orcid.org/0000-0003-2769-8026.

REFERENCES

CHAVANNE, X., CHILLA, F., CHABAUD, B., CASTAING, B. & HEBRAL, B. 2001 Turbulent
Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 1300–1320.

CHILLÀ, F. & SCHUMACHER, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys.
J. E 35, 58.

CHINI, G.P. & COX, S.M. 2009 Large Rayleigh number thermal convection: heat flux predictions and strongly
nonlinear solutions. Phys. Fluids 21, 083603.

DOERING, C.R. 2020 Turning up the heat in turbulent thermal convection. Proc. Natl Acad. Sci. USA
117, 9671–9673.

DOERING, C.R. & CONSTANTIN, P. 1996 Variational bounds on energy dissipation in incompressible flows.
III. Convection. Phys. Rev. E 53, 5957–5981.

933 R4-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
42

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1042
https://orcid.org/0000-0003-2073-1508
https://orcid.org/0000-0003-2073-1508
https://orcid.org/0000-0003-3109-0830
https://orcid.org/0000-0003-3109-0830
https://orcid.org/0000-0003-2769-8026
https://orcid.org/0000-0003-2769-8026
https://doi.org/10.1017/jfm.2021.1042


Steady Rayleigh–Bénard convection between no-slip boundaries

DOERING, C.R., OTTO, F. & REZNIKOFF, M.G. 2006 Bounds on vertical heat transport for
infinite-Prandtl-number Rayleigh–Bénard convection. J. Fluid Mech. 560, 229–241.
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