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LIOUVILLE SEQUENCES*

JAROSLAV HANCL

Abstract. The new concept of a Liouville sequence is introduced in this
paper by mean of the related Liouville series. Main results are two criteria
for when certain sequences are Liouville. Several applications are presented.
A counterexample is included for the case that we substantially weaken the
hypotheses in the main results.

§1. Introduction

We can define the Liouville numbers in the following way. Let o be a
real number. If for every positive real number r there exist integers p and
g such that 0 < |a — p/q| < 1/¢" then the number « is Liouville.

There are many results concerning the Liouville numbers. Bundschuh
in [3] presents a Liouville-type estimate. This paper also contains a list of
references including [6] and [8] which present the criteria for algebraic inde-
pendence of certain Liouville series. A survey of these types of results can
be found in the book of Nishioka [7]. Also the result of Petruska [9] estab-
lishes several interesting criteria concerning the strong Liouville numbers.
The latter was first defined by Erdés in [4].

If the sequence {a,}>° of positive integers tends to infinity very fast
then the continued fraction [a1, as,as,...] is a Liouville number. The alge-
braic independence of certain Liouville continued fractions is to be found
in [1] or [2].

It is relatively easy to prove that the number » >, 1/(n!)™ is Liouville.
This suggests similar results for another infinite series. In 1975 Erdés [5]
proved a very interesting criterion for Liouville series.
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THEOREM 1.1. (Erdds) Let a; < az < az < --- be an infinite sequence
of integers satisfying
1
limsupaf’ = oo
n—oo
for every t > 0, and
an > n'te

for some fizred € > 0 and n > ng(e). Then

o0

1

n=1

is a Liouville number.

We define Liouville sequences and present two criteria for them in Theo-
rem 2.1 and Theorem 2.2. The former generalizes the above result of Erdés.
Several examples of Liouville series are included.

§2. Liouville sequences

DEFINITION 2.1.  Let {a,}32, be a sequence of positive real numbers.
If, for every sequence {c, }52, of positive integers, the sum Y > | 1/ancy is
a Liouville number, then the sequence is called Liouville.

THEOREM 2.1. Let €, €1 and €5 be three positive real numbers satisfy-
ing €1 < €/(14+¢€) = ea. Let s be a nonnegative integer, and {L;(x) jig
be a sequence of functions defined by Lo(x) = x, Ljy1(x) = logy(Lj(x)),
Jj =0,1,....5 + 1, for all sufficiently large positive real number x. Let
{an}22, and {b,}5°; be two sequences of positive integers such that {an o2,

s nondecreasing,

1
(1) limsup —Lgy2(a,) = oo,
n

n—o0o
S

@) an > ([T £s(m)) Le()

j=0
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and
3) by < L' (an)
hold for every sufficiently large positive integer n. Then the sequence

{an/bn}5% is Liouwville.

LEMMA 2.1. Lets, €, €2 and L;j(z), j =0,1,...,s+ 2 satisfy all con-
ditions stated in Theorem 2.1. Denote

y= 1@ = (T] o)) Z5(a).
§=0

Let x = F(y) be the inverse function for y = f(x). Then

(4) Fly) > yi+
and
(5) yLs(y) > F(y)

for every sufficiently large positive real number y.

Proof (of Lemma 2.1). Let s = 0. Then y = f(z) = '™ and = =
F(y) = y*/(+9, Thus (4) and (5) hold.
Assume s > 0. Then for sufficiently large z

@) = (T[ 1)) Ex(o) < 21+
j=0

From this we obtain

1
€

F(y) > y™

for sufficiently large y. Thus (4) holds.
From s > 0 and (4) we obtain that for every sufficiently large y there
is a constant b which does not depend on y such that

y > xLT(2) > bo LT (y) > L2 (y).

Hence (5) holds and the proof of Lemma 2.1 is completed. U
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LEMMA 2.2. Let R be a real number such that R > 1. Suppose that
{an}5% is a nondecreasing sequence of positive integers. Let k be a positive

integer such that ap > 2R Then there is a positive integer t not greater

than k such that 1 pttk
H an < 2ﬁR :

anSQRtJrk

Proof (of Lemma 2.2). Denote M the number of a,, such that a,, < 2R
Let P; (j =0,1,2,...,k) be the number of a,, such that a, € (2Rk,2Rj+k]
and denote Q; = j— Pj— M (j = 0,1,...,k). From this and the fact
that ap > 27" we obtain Qo = —M, Qj; is an integer, Qj11 — @Q; < 1
(j=0,1,...,k) and Qx = k — P, — M > 1. Then there is a least positive
integer t > M such that Q; =t — P, — M = 1. Thus Q;—1 = 0 and there is
no a, such that a,, € (2Rt_l+k,2Rt+k]. In addition, for every v = 1,2,...,t
the number of a, such that a, € (2Rt_v+k, 2Rt+k] is less than v, otherwise
the number ¢ will not be the least; and the number of a,, such that a, €
(2Rk7 2Rt+k] is equal to t — M — 1. It follows that

I «-o I o

The proof of Lemma 2.2 is complete. 0

Proof (of Theorem 2.1). Let {c,}22; be a sequence of positive integers.
Then the sequences {anc,}02, and {b,}22; also satisfy conditions (1)—(3)
and if in addition we reorder the sequence {anc,}52; to be nondecreas-
ing then the new sequence together with the relevant reordered sequence
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{bn}22, will satisfy (1)—(3) also. Thus it suffices to prove Theorem 2.1 for
nondecreasing sequence {a,}>>; and arbitrary sequence {b,}>2; of pos-
itive integers satisfying (1)—(3). So it suffices to prove that the series
a =Y, by/a, is a Liouville number. To establish this we find positive
integer n for every r > 2 such that

n r o0 bn .
(6) (ITw) > <
j=1 j=1 "I

Let R be a sufficiently large positive real number. Equation (1) implies
that there is the least positive integer k such that

Lgyo(ag) > 3klogy R.

From this we obtain

(7) Ls(ak) > 2R3k.

Lemma 2.2 and (7) imply that there is a positive integer ¢ such that k > ¢
and

(8) I an<2=""

(ln§2Rt+k

Now we have

® Yooy keye

a - a 1
an>2Rt+k " ak>an>2Rt+’C " J=0 ki

We will estimate both sums on the right hand side of equation (9).
Let us consider the first sum. Inequality (3) and €; < 1 imply

(10) Z Z_Z < Z Lgla(an)

IN
M:
I»—~

ak>an>2Rt+k
< kQ—Rt+k(1—61)

_l-e1 pitk
<2 = BT
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Now we will estimate the second sum.

(1) Sha oy b oy b

. a
7=0 "R <Ry P k> F(ay) T

where F(y) is the inverse function of y = f(z) = ([[}_, L;(z))L5(2). Then
inequality (3), Lemma 2.1 and the fact that the function x 'L (z) is de-
creasing imply

(12) Z bk+] < Lgl(a’k'i‘j)
gty A4 j
kti<F(ar) 7 k+j<F(ax) J
< F(ag)Lg (ar)
ay
apLg (ag)
~ L (ak)ag
1

- ng—q(ak)'

Inequalities (2), (3) and Lemma 2.1 imply

(13) Z %S Z LS (ak+;)

kti>Fag) T k>R R
c oy R Ll )G 5)
ket F(ay) (Hizo Lz(k+]))Ls(k+J)

BLS ) (1 4 j)
<2 Moo L))

= 2 —

k> F(ar) Lo Li(k + J))LSJFE)(EQ_Q)(/‘C +7)

<C/ o) H ))L(1+6)(62 61)( )

Lgl+€)(€2—€1) (F(G/k))
E
< e ENE
- L§2*61 (ak)
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where B, C', D and F are suitable positive real constants depending only

on s, € and €;. From (11), (12) and (13) we obtain

o0
b+ EF+1
(14) > ot <o
oo Wi LT (ag)

Now (7), (9), (10), (14) and the fact that R is sufficiently large imply

D e N

€2—€q

an>2RUE n L™ (ar)
l-c E+1

<95 1 pt+k n +

- 2(62—61)R3k
< 2_1—361 Rt-‘rk.
From this and (8) we obtain
T Rt+k
r b 2R-1
a ez
H n Z Ar — ol=CL Rttk
akSQRHk an>2Rt+k n 273
_ 2_(1—361 —ﬁ)Rt+k'

This implies (6) for a sufficiently large R. The proof of Theorem 2.1 is
complete. 0

COROLLARY 2.1. Let €, €1 be two positive real numbers satisfying €1 <
/(1 +¢€), and {an}>, and {by}>2, be two sequences of positive integers
such that {an}22, is nondecreasing,

log log a,,

limsup ————— = oo,
n—o00 n

an >n'te

and
by, < a;}

hold for every sufficiently large positive integer m. Then the sequence
{an/bn}o is Liouville.
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Corollary 2.1 is an immediate consequence of Theorem 2.1. It is enough
to put s = 0.

COROLLARY 2.2. Let e > 0 be a real number, s be a nonnegative inte-
ger, Lj(x) be as in Theorem 2.1, and {an};2, be a nondecresing sequence
of positive integers such that

L
lim sup 7S+2(an) =00
n—oo n

and
on > (T1 L) Zxf)
=0

hold for every sufficiently large positive integer n. Then the sequence
{an}52 is Liouwville.

Corollary 2.2 is an immediate consequence of Theorem 2.1. It is enough
to put b, = 1 for every positive integer n.

THEOREM 2.2. Let a, b and c be three real numbers satisfying 0 < a <
1 and 0 < ¢ < b. Let {an}22, and {b,};2, be two sequences of positive
integers, {an}°2  is nondecreasing, such that

1
(15) lim sup — log, logy a,, = o0,
n—oo T
(16) an > n2blos2n)*
and
(17) b, < 2¢(ogzan)®

hold for every sufficiently large positive integer n. Then the sequence
{an/bn}o2 is Liouville.
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LEMMA 2.3. Let a and b be two positive real numbers such that 0 <
a < 1. Denote y = g(x) = 22°0°822)" | Let & = G(y) be the inverse function
of y = g(x). Then for every real number d < b

(18) y2-Wo829)" 5 G(y) > y2blos29)"

hold for every sufficiently large positive real number y.

Proof (of Lemma 2.3). In fact,
Gly) =y

with y > x (z > 1) implies the right hand side of inequality (18). On the
other hand, by using the fact that y < 219 with an arbitrary given § > 0
holds for every sufficiently large z,

Gly) = y2 0w’
< y2~(1H+9)“bllogy y)*

which implies the left hand side of inequality (18). 0

Proof (of Theorem 2.2). As in Theorem 2.1 it suffices to prove that the
series v = Y7 | by /ay, is a Liouville number for the nondecreasing sequence
{an}22, of positive integers. To establish this we find a positive integer n
for every r > 2 such that (6) holds.

Let R be a sufficiently large positive real number. Equation (15) implies

that there is the least positive integer k such that
3
log, log, ax, > ak log, R.

From this we obtain

3
(19) ai > ofte™,
Lemma 2.2 and (19) imply that there is a positive integer ¢ such that k > ¢
and
(20) I an<2="".

an S2Rt+k
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As in the proof of Theorem 2.1 we have

(21) > Z—": > b—"+i%.

a - a ;
@y >oRTF n ap>an>2R n §=0 k+j

From (17) we obtain

by, gc(logs an)®
22 < -
=) Y oke o xo oM
ap>an>2RTE ap>an>2RF
k
f9clog, (2R7F))e
2Rt+k
k26R(t+k)a
= 2Rt+k

Now we will estimate the second sum of the right-hand side of equation (21).

oo

(23) Sodn_oy M o5 B

- a a a
=0 R pi<Gtan) P kt>Glar) CET

where G(y) is the inverse function of y = g(x) = 22°0°829)" Then (17),
Lemma 2.3 and the fact that the function ~12¢(0°82%)* ig decreasing imply

9c(logy ak5)*

(21) DR

kri<Glap) * kaj<Glar)
- G (ay,)2¢(log2 ar)”

Aot

ag
a2~ E< (logy ax )™ 9c(log, ax)®

ay

— 9= 5% (logy ax)*

Inequalities (16), (17) and Lemma 2.3 imply

oc(logy ak+5)°

(5 Y <

a a 1
k+i>CGlar) T ki>Glar) ket
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S

k+j>G(ay)

9c(logy ((k+j)2bUor2(k+)® ) ya
(k + 7)2b0ogs (k+5))*

1
(loga (k+3)* (log, (K + 7)1~

IN

b—c

ket j>Glag) B+ )22

0 dz
S J/ b—c a
Glar) 22 2 10829)"(log, )10
L
S 5w
575 (log, Glax))*
1

= 9P3(logy a)®

where J and L are suitable positive real constants. From (23), (24) and

(25) we obtain

o0
b ] —C a
(26) y ﬂ < 9.9~ 5 (logy ak)”
=0 Af+5

Now (19), (21), (22) and (26) imply

3 bn  o-dRE L o 9= (g, ap)”

an>2Rt+k
1 pttk b—c Rk,
<9 2R L 9. 9= 75" (logy 27 )
1 b—
< 275Rt+k 4+9.9” 3CR3k
<2 3R

From this and (20) we obtain

r b T pt+k 1 pttk
( [ an) Yo t<orafgmeR
k g dn
an§2Rt+ an>2RHT

— 27(%7R21)Rt+k_

This implies (6) for a sufficiently large R and the proof of Theorem 2.2 is
complete.
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§3. Examples and comments

Remark 3.1. Put b, = 1 for every positive integer n in Corollary 2.1
or s = 0 in Corollary 2.2. Then we obtain the Erdés theorem.

ExAMPLE 3.1. The sequences

P L 5
nm" n:1’ n! n:17 3371 n:1’

{3”"4—1}00 {5"!4—1}00
23" n=1’ 4n!+1 n=1

(G
2n! n=1

and

are Liouville.

ExXAMPLE 3.2. Let a; = 2,

92? 22° 292
ar =22 +k—2, k=23,...,222 =ny — 1,
Q. :22n1 ' —|—/~c—n1, k’:nl,...,Qin 1272”‘1”1 :??,2—1,
af :22n2 ’ —|—k:—n2, k:ng,...,22n2 22_2n2n2 :n3—1

and so on. Then the sequence {a, }7>; is Liouville.

Remark 3.2. Let {a,}52; be a sequence of positive real numbers such
that 22021 an, = oo and lim, o a, = 0. Then, for every positive real
number z, there is a subsequence {B,} >, of the sequence {a,}°°; such
that z = Y2 | By,. Indeed, let us put zo = 0 and

In if apy1 + a0 > @,
Tp4+1 = .
T+ any1r  if appr +op <
Then {z,}7%, is a nondecreasing sequence. From » ° a, = o0,
lim,_.oca, = 0 and the definition of the sequence {z,}2>; we obtain

lim, oo zn = x. Let {B,}72, consist of positive terms of the sequence
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{xn —xp—1}52 ;. Then {B,}’2, is a subsequence of the sequence {a,}>°
and

ZB = > (o)

n=1

= lim x, — xg
n—oo

=X.

EXAMPLE 3.3. Let a1 = 2 and

2
ap = max (222 + k — 2, [k(log, k) log, log, k]),
k‘:2,...,7’L1—1,

where [z] is the greatest integer not greater than x and n; is the least
positive integer such that Z?;Il 1/a; > 1. (Such n; must exist because

ZZ" 1 1/(k(logg k) logg logy k) = oc.) Let

ak = max(22nln1 + k — ny, [k(logy k) logy logy k]) ,

k=ny,n+1,...,n9 — 1,

where ng is the least positive integer such that 272 Y1/ a; > 2 and so on.
The series Y .o°, 1/a, is divergent but limsup,_ . ((1/n)log,logyan) =
co. This and Remark 3.2 imply that the sequence {a,}°, contains a
subsequence {d,}°2 such that > >, 1/d, is a rational number. On the
other side d,, > n(logy n)logylogyn and limsup,,_, . ((1/n)log, log, d,) =
0.

OPEN PROBLEM 3.1. [t is not known if the infinite sequence {(2"" +
)2”'/2”” o, is Liouville or not. Let us note that the infinite series
S0 27 /(27" 4 1)2™ converges very rapidly.

n=1

ExaMpPLE 3.4. Let hy =1 and hyq1 = 2(hn)? for every positive integer
n. Put ap = k2" for every k = hp,hp +1,... ,hpy1 —land n =1,2,....
Denote r(n) the number of primes which divide n. Let j be a positive
integer. Then the sequence {a, /r7(n)}°°, is Liouville. It is a great surprise

because there are infinitely many n such that > 72 1/a; > 1/(2n2V logamy,
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ExXAMPLE 3.5. Let {G,}72; be the linear recurrence sequence of the
k-th order such that G1,Ga,...,Gg, by, ..., b, are positive integers and for
every positive integer n, Gy = Gpbo + Gpy1b1 + -+ + Gpagp—1bi—1. If
the roots aq, ..., as of the equation ok =bg+ bz + -+ bp_zF! satisfy
lai| > |ag| > -+ > |as|, Jau| > 1 and aq /e is not the root of unity for
every j =2,3,...,s, then the sequence {G,n/Gn1}02, is Liouville.

This is an immediate consequence of Corollary 2.1 and the inequality
a1 "9 < Gy, < |y [P0FE)

which can be found in [10], for instance.

Remark 3.3. Put b, = 1 in Theorem 2.2. Then we obtain the Erdos
theorem with the weaker condition a,, > n2U0g2m)" instead of an > n'tc. On
the other hand Example 3.3 demonstrates that we cannot greatly improve
condition (2) in Theorem 2.1, or condition (16) in Theorem 2.2, to give
a negative answer to the Erdos problem if it is possible to substantially
weaken the condition a, > nl*¢. For more details see [5], for instance.

I would like thank Professor Nigel Backhouse of the Department of
Mathematical Sciences, Liverpool University for his help with this article.
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