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LIOUVILLE SEQUENCES∗

JAROSLAV HANČL

Abstract. The new concept of a Liouville sequence is introduced in this
paper by mean of the related Liouville series. Main results are two criteria
for when certain sequences are Liouville. Several applications are presented.
A counterexample is included for the case that we substantially weaken the
hypotheses in the main results.

§1. Introduction

We can define the Liouville numbers in the following way. Let α be a

real number. If for every positive real number r there exist integers p and

q such that 0 < |α − p/q| < 1/qr then the number α is Liouville.

There are many results concerning the Liouville numbers. Bundschuh

in [3] presents a Liouville-type estimate. This paper also contains a list of

references including [6] and [8] which present the criteria for algebraic inde-

pendence of certain Liouville series. A survey of these types of results can

be found in the book of Nishioka [7]. Also the result of Petruska [9] estab-

lishes several interesting criteria concerning the strong Liouville numbers.

The latter was first defined by Erdös in [4].

If the sequence {an}∞n=1 of positive integers tends to infinity very fast

then the continued fraction [a1, a2, a3, . . . ] is a Liouville number. The alge-

braic independence of certain Liouville continued fractions is to be found

in [1] or [2].

It is relatively easy to prove that the number
∑∞

n=1 1/(n!)n is Liouville.

This suggests similar results for another infinite series. In 1975 Erdös [5]

proved a very interesting criterion for Liouville series.
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Theorem 1.1. (Erdös) Let a1 < a2 < a3 < · · · be an infinite sequence

of integers satisfying

lim sup
n→∞

a
1

tn

n = ∞

for every t > 0, and

an > n1+ε

for some fixed ε > 0 and n > n0(ε). Then

α =

∞
∑

n=1

1

an

is a Liouville number.

We define Liouville sequences and present two criteria for them in Theo-

rem 2.1 and Theorem 2.2. The former generalizes the above result of Erdös.

Several examples of Liouville series are included.

§2. Liouville sequences

Definition 2.1. Let {an}∞n=1 be a sequence of positive real numbers.

If, for every sequence {cn}∞n=1 of positive integers, the sum
∑∞

n=1 1/ancn is

a Liouville number, then the sequence is called Liouville.

Theorem 2.1. Let ε, ε1 and ε2 be three positive real numbers satisfy-

ing ε1 < ε/(1 + ε) = ε2. Let s be a nonnegative integer, and {Lj(x)}s+2
j=0

be a sequence of functions defined by L0(x) = x, Lj+1(x) = log2(Lj(x)),
j = 0, 1, . . . , s + 1, for all sufficiently large positive real number x. Let

{an}∞n=1 and {bn}∞n=1 be two sequences of positive integers such that {an}∞n=1

is nondecreasing,

(1) lim sup
n→∞

1

n
Ls+2(an) = ∞,

(2) an >
(

s
∏

j=0

Lj(n)
)

Lε
s(n)
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and

(3) bn < Lε1
s (an)

hold for every sufficiently large positive integer n. Then the sequence

{an/bn}∞n=1 is Liouville.

Lemma 2.1. Let s, ε, ε2 and Lj(x), j = 0, 1, . . . , s + 2 satisfy all con-

ditions stated in Theorem 2.1. Denote

y = f(x) =
(

s
∏

j=0

Lj(x)
)

Lε
s(x).

Let x = F (y) be the inverse function for y = f(x). Then

(4) F (y) ≥ y
1

1+ε

and

(5) yL−ε2
s (y) ≥ F (y)

for every sufficiently large positive real number y.

Proof (of Lemma 2.1). Let s = 0. Then y = f(x) = x1+ε and x =
F (y) = y1/(1+ε). Thus (4) and (5) hold.

Assume s > 0. Then for sufficiently large x

f(x) =
(

s
∏

j=0

Lj(x)
)

Lε
s(x) ≤ x1+ε.

From this we obtain
F (y) ≥ y

1
1+ε

for sufficiently large y. Thus (4) holds.
From s > 0 and (4) we obtain that for every sufficiently large y there

is a constant b which does not depend on y such that

y ≥ xL1+ε
s (x) ≥ bxL1+ε

s (y) ≥ xLε2
s (y).

Hence (5) holds and the proof of Lemma 2.1 is completed.
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Lemma 2.2. Let R be a real number such that R > 1. Suppose that

{an}∞n=1 is a nondecreasing sequence of positive integers. Let k be a positive

integer such that ak > 2R3k

. Then there is a positive integer t not greater

than k such that
∏

an≤2Rt+k

an ≤ 2
1

R−1
Rt+k

.

Proof (of Lemma 2.2). Denote M the number of an such that an ≤ 2Rk

.

Let Pj (j = 0, 1, 2, . . . , k) be the number of an such that an ∈ (2Rk

, 2Rj+k

]
and denote Qj = j − Pj − M (j = 0, 1, . . . , k). From this and the fact

that ak > 2R3k

we obtain Q0 = −M , Qj is an integer, Qj+1 − Qj ≤ 1
(j = 0, 1, . . . , k) and Qk = k − Pk − M ≥ 1. Then there is a least positive
integer t > M such that Qt = t − Pt − M = 1. Thus Qt−1 = 0 and there is
no an such that an ∈ (2Rt−1+k

, 2Rt+k

]. In addition, for every v = 1, 2, . . . , t

the number of an such that an ∈ (2Rt−v+k

, 2Rt+k

] is less than v, otherwise
the number t will not be the least; and the number of an such that an ∈
(2Rk

, 2Rt+k

] is equal to t − M − 1. It follows that

∏

an≤2Rt+k

an =
M
∏

n=1

an

∏

an∈(2Rk ,2Rt+k ]

an

≤
M
∏

n=1

an

t−1
∏

n=M+1

2Rn+k

≤
t−1
∏

n=0

2Rn+k

= 2
Rt+k

−Rk

R−1

≤ 2
1

R−1
Rt+k

.

The proof of Lemma 2.2 is complete.

Proof (of Theorem 2.1). Let {cn}∞n=1 be a sequence of positive integers.
Then the sequences {ancn}∞n=1 and {bn}∞n=1 also satisfy conditions (1)–(3)
and if in addition we reorder the sequence {ancn}∞n=1 to be nondecreas-
ing then the new sequence together with the relevant reordered sequence
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{bn}∞n=1 will satisfy (1)–(3) also. Thus it suffices to prove Theorem 2.1 for
nondecreasing sequence {an}∞n=1 and arbitrary sequence {bn}∞n=1 of pos-
itive integers satisfying (1)–(3). So it suffices to prove that the series
α =

∑∞
n=1 bn/an is a Liouville number. To establish this we find positive

integer n for every r > 2 such that

(6)
(

n
∏

j=1

aj

)r
∞
∑

j=1

bn+j

an+j
< 1.

Let R be a sufficiently large positive real number. Equation (1) implies
that there is the least positive integer k such that

Ls+2(ak) > 3k log2 R.

From this we obtain

(7) Ls(ak) > 2R3k

.

Lemma 2.2 and (7) imply that there is a positive integer t such that k ≥ t
and

(8)
∏

an≤2Rt+k

an ≤ 2
1

R−1
Rt+k

.

Now we have

(9)
∑

an>2Rt+k

bn

an
=

∑

ak>an>2Rt+k

bn

an
+

∞
∑

j=0

bk+j

ak+j
.

We will estimate both sums on the right hand side of equation (9).
Let us consider the first sum. Inequality (3) and ε1 < 1 imply

∑

ak>an>2Rt+k

bn

an
≤

∑

ak>an>2Rt+k

Lε1
s (an)

an
(10)

≤
∑

ak>an>2Rt+k

1

a1−ε1
n

≤ k2−Rt+k(1−ε1)

≤ 2−
1−ε1

2
Rt+k

.
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Now we will estimate the second sum.

(11)

∞
∑

j=0

bk+j

ak+j
=

∑

k+j≤F (ak)

bk+j

ak+j
+

∑

k+j>F (ak)

bk+j

ak+j
,

where F (y) is the inverse function of y = f(x) = (
∏s

j=0 Lj(x))Lε
s(x). Then

inequality (3), Lemma 2.1 and the fact that the function x−1Lε1
s (x) is de-

creasing imply

∑

k+j≤F (ak)

bk+j

ak+j
≤

∑

k+j≤F (ak)

Lε1
s (ak+j)

ak+j
(12)

≤ F (ak)L
ε1
s (ak)

ak

≤ akL
ε1
s (ak)

Lε2
s (ak)ak

=
1

Lε2−ε1
s (ak)

.

Inequalities (2), (3) and Lemma 2.1 imply

∑

k+j>F (ak)

bk+j

ak+j
≤

∑

k+j>F (ak)

Lε1
s (ak+j)

ak+j
(13)

≤
∑

k+j>F (ak)

Lε1
s ((

∏s
i=0 Li(k + j))Lε

s(k + j))

(
∏s

i=0 Li(k + j))Lε
s(k + j)

≤
∑

k+j>F (ak)

BL
ε1(1+ε)
s (k + j)

(
∏s

i=0 Li(k + j))Lε
s(k + j)

=
∑

k+j>F (ak)

B

(
∏s

i=0 Li(k + j))L
(1+ε)(ε2−ε1)
s (k + j)

≤ C

∫ ∞

F (ak)

dx

(
∏s

i=0 Li(x))L
(1+ε)(ε2−ε1)
s (x)

≤ D

L
(1+ε)(ε2−ε1)
s (F (ak))

≤ E

Lε2−ε1
s (ak)

,
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where B, C, D and E are suitable positive real constants depending only

on s, ε and ε1. From (11), (12) and (13) we obtain

(14)

∞
∑

j=0

bk+j

ak+j
≤ E + 1

Lε2−ε1
s (ak)

Now (7), (9), (10), (14) and the fact that R is sufficiently large imply

∑

an>2Rt+k

bn

an
≤ 2−

1−ε1
2

Rt+k

+
E + 1

Lε2−ε1
s (ak)

≤ 2−
1−ε1

2
Rt+k

+
E + 1

2(ε2−ε1)R3k

≤ 2−
1−ε1

3
Rt+k

.

From this and (8) we obtain

(

∏

ak≤2Rt+k

an

)r ∑

an>2Rt+k

bn

an
≤ 2

r
R−1

Rt+k

2
1−ε1

3
Rt+k

= 2−(
1−ε1

3
− r

R−1
)Rt+k

.

This implies (6) for a sufficiently large R. The proof of Theorem 2.1 is
complete.

Corollary 2.1. Let ε, ε1 be two positive real numbers satisfying ε1 <
ε/(1 + ε), and {an}∞n=1 and {bn}∞n=1 be two sequences of positive integers

such that {an}∞n=1 is nondecreasing,

lim sup
n→∞

log log an

n
= ∞,

an > n1+ε

and

bn < aε1
n

hold for every sufficiently large positive integer n. Then the sequence

{an/bn}∞n=1 is Liouville.
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Corollary 2.1 is an immediate consequence of Theorem 2.1. It is enough

to put s = 0.

Corollary 2.2. Let ε > 0 be a real number, s be a nonnegative inte-

ger, Lj(x) be as in Theorem 2.1, and {an}∞n=1 be a nondecresing sequence

of positive integers such that

lim sup
n→∞

Ls+2(an)

n
= ∞

and

an >
(

s
∏

j=0

Lj(n)
)

Lε
s(n)

hold for every sufficiently large positive integer n. Then the sequence

{an}∞n=1 is Liouville.

Corollary 2.2 is an immediate consequence of Theorem 2.1. It is enough

to put bn = 1 for every positive integer n.

Theorem 2.2. Let a, b and c be three real numbers satisfying 0 < a <
1 and 0 < c < b. Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive

integers, {an}∞n=1 is nondecreasing, such that

(15) lim sup
n→∞

1

n
log2 log2 an = ∞,

(16) an > n2b(log2 n)a

and

(17) bn < 2c(log2 an)a

hold for every sufficiently large positive integer n. Then the sequence

{an/bn}∞n=1 is Liouville.
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Lemma 2.3. Let a and b be two positive real numbers such that 0 <
a < 1. Denote y = g(x) = x2b(log2 x)a

. Let x = G(y) be the inverse function

of y = g(x). Then for every real number d < b

(18) y2−d(log2 y)a

> G(y) > y2−b(log2 y)a

hold for every sufficiently large positive real number y.

Proof (of Lemma 2.3). In fact,

G(y) = y2−b(log2 x)a

with y ≥ x (x ≥ 1) implies the right hand side of inequality (18). On the
other hand, by using the fact that y < x1+δ with an arbitrary given δ > 0
holds for every sufficiently large x,

G(y) = y2−b(log2 x)a

< y2−(1+δ)−ab(log2 y)a

,

which implies the left hand side of inequality (18).

Proof (of Theorem 2.2). As in Theorem 2.1 it suffices to prove that the
series α =

∑∞
n=1 bn/an is a Liouville number for the nondecreasing sequence

{an}∞n=1 of positive integers. To establish this we find a positive integer n
for every r > 2 such that (6) holds.

Let R be a sufficiently large positive real number. Equation (15) implies
that there is the least positive integer k such that

log2 log2 ak >
3

a
k log2 R.

From this we obtain

(19) ak > 2R
3
a k

.

Lemma 2.2 and (19) imply that there is a positive integer t such that k ≥ t
and

(20)
∏

an≤2Rt+k

an ≤ 2
1

R−1
Rt+k

.
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As in the proof of Theorem 2.1 we have

(21)
∑

an>2Rt+k

bn

an
=

∑

ak>an>2Rt+k

bn

an
+

∞
∑

j=0

bk+j

ak+j
.

From (17) we obtain

∑

ak>an>2Rt+k

bn

an
≤

∑

ak>an>2Rt+k

2c(log2 an)a

an
(22)

≤ k2c(log2(2Rt+k
))a

2Rt+k

=
k2cR(t+k)a

2Rt+k

≤ 2−
1
2
Rt+k

.

Now we will estimate the second sum of the right-hand side of equation (21).

(23)

∞
∑

j=0

bk+j

ak+j
=

∑

k+j≤G(ak)

bk+j

ak+j
+

∑

k+j>G(ak)

bk+j

ak+j
,

where G(y) is the inverse function of y = g(x) = x2b(log2 x)a

. Then (17),
Lemma 2.3 and the fact that the function x−12c(log2 x)a

is decreasing imply

∑

k+j≤G(ak)

bk+j

ak+j
≤

∑

k+j≤G(ak)

2c(log2 ak+j)
a

ak+j
(24)

≤ G(ak)2c(log2 ak)a

ak

≤ ak2
−

b+c
2

(log2 ak)a

2c(log2 ak)a

ak

= 2−
b−c
2

(log2 ak)a

.

Inequalities (16), (17) and Lemma 2.3 imply

∑

k+j>G(ak)

bk+j

ak+j
≤

∑

k+j>G(ak)

2c(log2 ak+j )
a

ak+j
(25)
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≤
∑

k+j>G(ak)

2c(log2((k+j)2b(log2(k+j))a))a

(k + j)2b(log2(k+j))a

≤
∑

k+j>G(ak)

1

(k + j)2
b−c
2

(log2(k+j))a
(log2(k + j))1−a

≤ J

∫ ∞

G(ak)

dx

x2
b−c
2

(log2 x)a
(log2 x)1−a

≤ L

2
b−c
2

(log2 G(ak))a

≤ 1

2
b−c
3

(log2 ak)a
,

where J and L are suitable positive real constants. From (23), (24) and

(25) we obtain

(26)
∞

∑

j=0

bk+j

ak+j
≤ 2 · 2− b−c

3
(log2 ak)a

.

Now (19), (21), (22) and (26) imply

∑

an>2Rt+k

bn

an
≤ 2−

1
2
Rt+k

+ 2 · 2− b−c
3

(log2 ak)a

≤ 2−
1
2
Rt+k

+ 2 · 2− b−c
3

(log2 2R
3
a k

)a

≤ 2−
1
2
Rt+k

+ 2 · 2− b−c
3

R3k

≤ 2−
1
3
Rt+k

.

From this and (20) we obtain

(

∏

an≤2Rt+k

an

)r ∑

an>2Rt+k

bn

an
≤ 2

r
R−1

Rt+k

2−
1
3
Rt+k

= 2−( 1
3
− r

R−1
)Rt+k

.

This implies (6) for a sufficiently large R and the proof of Theorem 2.2 is
complete.
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§3. Examples and comments

Remark 3.1. Put bn = 1 for every positive integer n in Corollary 2.1
or s = 0 in Corollary 2.2. Then we obtain the Erdös theorem.

Example 3.1. The sequences

{2nn

+ 1

nn

}∞

n=1
,
{2n! + 1

n!

}∞

n=1
,
{2n! + 1

33n

}∞

n=1
,

{3nn

+ 1

23n

}∞

n=1
,
{5n! + 1

4n! + 1

}∞

n=1

and
{3n! + 1

2n!

}∞

n=1

are Liouville.

Example 3.2. Let a1 = 2,

ak = 2222

+ k − 2, k = 2, 3, . . . , 2222

2−2·22
= n1 − 1,

ak = 22n1
n1

+ k − n1, k = n1, . . . , 2
2n1

n1
2−2n1

n1 = n2 − 1,

ak = 22n2
n2

+ k − n2, k = n2, . . . , 2
2n2

n2
2−2n2

n2 = n3 − 1

and so on. Then the sequence {an}∞n=1 is Liouville.

Remark 3.2. Let {an}∞n=1 be a sequence of positive real numbers such
that

∑∞
n=1 an = ∞ and limn→∞ an = 0. Then, for every positive real

number x, there is a subsequence {Bn}∞n=1 of the sequence {an}∞n=1 such
that x =

∑∞
n=1 Bn. Indeed, let us put x0 = 0 and

xn+1 =

{

xn if an+1 + xn ≥ x,

xn + an+1 if an+1 + xn < x.

Then {xn}∞n=1 is a nondecreasing sequence. From
∑∞

n=1 an = ∞,
limn→∞ an = 0 and the definition of the sequence {xn}∞n=1 we obtain
limn→∞ xn = x. Let {Bn}∞n=1 consist of positive terms of the sequence
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{xn − xn−1}∞n=1. Then {Bn}∞n=1 is a subsequence of the sequence {an}∞n=1

and

∞
∑

n=1

Bn =
∞
∑

n=1

(xn − xn−1)

= lim
n→∞

xn − x0

= x.

Example 3.3. Let a1 = 2 and

ak = max
(

2222

+ k − 2, [[k(log2 k) log2 log2 k]]
)

,

k = 2, . . . , n1 − 1,

where [[x]] is the greatest integer not greater than x and n1 is the least
positive integer such that

∑n1−1
j=1 1/aj > 1. (Such n1 must exist because

∑∞
k=1 1/(k(log2 k) log2 log2 k) = ∞.) Let

ak = max
(

22n1
n1

+ k − n1, [[k(log2 k) log2 log2 k]]
)

,

k = n1, n1 + 1, . . . , n2 − 1,

where n2 is the least positive integer such that
∑n2−1

j=1 1/aj > 2 and so on.
The series

∑∞
n=1 1/an is divergent but lim supn→∞((1/n) log2 log2 an) =

∞. This and Remark 3.2 imply that the sequence {an}∞n=1 contains a
subsequence {dn}∞n=1 such that

∑∞
n=1 1/dn is a rational number. On the

other side dn > n(log2 n) log2 log2 n and lim supn→∞((1/n) log2 log2 dn) =
∞.

Open Problem 3.1. It is not known if the infinite sequence {(2nn

+
1)2n!/2nn}∞n=1 is Liouville or not. Let us note that the infinite series
∑∞

n=1 2nn

/(2nn

+ 1)2n! converges very rapidly.

Example 3.4. Let h1 = 1 and hn+1 = 2(hn!)2 for every positive integer
n. Put ak = k2hn! for every k = hn, hn + 1, . . . , hn+1 − 1 and n = 1, 2, . . . .
Denote r(n) the number of primes which divide n. Let j be a positive
integer. Then the sequence {an/rj(n)}∞n=1 is Liouville. It is a great surprise

because there are infinitely many n such that
∑∞

j=n 1/aj > 1/(2n2
√

log2 n).
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Example 3.5. Let {Gn}∞n=1 be the linear recurrence sequence of the
k-th order such that G1, G2, . . . , Gk, b0, . . . , bk are positive integers and for
every positive integer n, Gn+k = Gnb0 + Gn+1b1 + · · · + Gn+k−1bk−1. If
the roots α1, . . . , αs of the equation xk = b0 + b1x + · · · + bk−1x

k−1 satisfy
|α1| ≥ |α2| ≥ · · · ≥ |αs|, |α1| > 1 and α1/αj is not the root of unity for
every j = 2, 3, . . . , s, then the sequence {Gnn/Gn!}∞n=1 is Liouville.

This is an immediate consequence of Corollary 2.1 and the inequality

|α1|n(1−ε) < Gn < |α1|n(1+ε)

which can be found in [10], for instance.

Remark 3.3. Put bn = 1 in Theorem 2.2. Then we obtain the Erdös
theorem with the weaker condition an > n2(log2 n)a

instead of an > n1+ε. On
the other hand Example 3.3 demonstrates that we cannot greatly improve
condition (2) in Theorem 2.1, or condition (16) in Theorem 2.2, to give
a negative answer to the Erdös problem if it is possible to substantially
weaken the condition an > n1+ε. For more details see [5], for instance.

I would like thank Professor Nigel Backhouse of the Department of

Mathematical Sciences, Liverpool University for his help with this article.
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Dvořákova 7, 701 03 Ostrava 1

Czech Republic

hancl@osu.cz

https://doi.org/10.1017/S0027763000008680 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008680

