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QCD2, coset models and BRST quantization

15.1 Introduction

In Chapter 9 we realized that the structure of the bosonized non-abelian massless
QCD2 is that of a gauged WZW model with an additional F 2 term of the gauge
fields. Apart from the pure gauge term, this is therefore a special form of a
two-dimensional coset model, discussed in Section 4.6. This naturally calls for
a treatment of the system similar to that for a coset model. Using the form of
the gauge fields in terms of scalars f and f̄ as A = if−1∂f , Ā = if̄ ∂̄f̄−1 with
f(z, z̄), f̄(z, z̄) ∈ Hc , the complexification of H ≡ SU(NC), leads to a convenient
formulation of the model.1 The main advantage of this approach is that one can
then easily decouple the “matter” and the gauge degrees of freedom.

In this chapter we point out that the F 2 term requires a special treatment.
The formulation of pure YM theory in terms of the f variables seems naively to
contain unexpected “physical” massive color singlet states. This result is obvi-
ously neither in accordance with our ideas of the degrees of freedom of the model
nor with the lattice and continuum solution of the theory. We show that similar
“naive” manipulations in the case of QED2 do reproduce the Schwinger model
results. Using a coupling constant renormalization we show that in the limit of no
matter degrees of freedom the coupling constant is renormalized to zero. In this
case the unexpected states turn into unphysical massless “BRST” exact states.
In the flavored QCD2 case a similar analysis shows the existence of physical
flavorless states of mass m2 = NF

2π e2
c .

This chapter is based on [96].

15.2 The action

The bosonized version of QCD2 was shown in Chapter 9 to be described by the
action,

SQC D2 = S1(u)− 1
2π

∫
d2zTr(iu−1∂uĀ + iu∂̄u−1A + Āu−1Au−AĀ)

+
m2

2π

∫
d2z : TrG [u + u−1 ] : +

1
e2
c

∫
d2zTrH

[
F 2] , (15.1)

1 This parameterization of the gauge field was previously introduced in [9].
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280 QCD2 , coset models and BRST quantization

where u ∈ U(NF ×NC), Sk (u) is a level k WZW model,

Sk (u) =
k

8π

∫
d2xTr(∂μu∂μu−1)+

k

12π

∫
B

d3yεijkTr(u−1∂iu)(u−1∂ju)(u−1∂ku),

(15.2)

A and Ā take their values in the algebra of H ≡ SU(NC), F = ∂̄A− ∂Ā +
i[A, Ā], m2 equals mqμC, where μ is the normal ordering mass and C = 1

2 eγ

with γ, Euler’s constant. Apart from the last two terms which correspond to the
quark mass term and the YM term, the rest of the action is a level-one G

H coset
model with G = U(NF ×NC).

We now introduce the following parameterization for the gauge fields
A = if−1∂f, Ā = if̄ ∂̄f̄−1 with f(z, z̄), f̄(z, z̄) ∈ SU(NC)c . These type of vari-
ables were used frequently in dealing with gauged WZW actions, for instance
in computing the effective action of QCD2 and in the G

G models discussed in
Section 4.7. They may be interpreted as Wilson lines along the z and z̄ direc-
tions. The gauged WZW part of the action, first line of (15.1), takes the form,

S1(u,A) = S1(fuf̄)− S1(ff̄).

The Jacobian of the change of variables from A to f introduces a dimension
(1, 0) system of anticommuting ghosts (ρ, χ) in the adjoint representation of H.2

The WZW part of the action thus becomes

S1(u,A) = S1(fuf̄)− S1(ff̄) +
i

2π

∫
d2zTrH [ρD̄χ + ρ̄Dχ̄], (15.3)

where Dχ = ∂χ− i[A,χ]. Our integration variables in the functional integral
are if−1df and if̄df̄−1 . This action involves an interaction term of the form
TrH (ρ̄[f−1∂f, χ̄]) and a similar term for ρ, χ. By performing a chiral rotation,
like those of Chapter 14, ρ̄→ f−1 ρ̄f and χ̄→ f−1 χ̄f with ρ→ f̄ρf̄−1 and χ→
f̄χf̄−1 , one achieves a decoupling of the whole ghost system. The price of this
is an additional S

(H )
−2NC

(ff̄) term in the action (here trace over H only) resulting
from the corresponding anomaly. This result can be derived by using a non-
abelian bosonization of the ghost system. A different bosonization of a (1,0)
ghost system was described in Section 6.5.

In this language the ghost action takes the form,

Sgh = SN c (l1 , A, Ā) + SN c (l2 , A, Ā) + Stwist(l1) + Stwist(l2),

where l1 and l2 are in the adjoint representation and Stwist is a twist term given,

Stwist = −Nc

2π

∫
d2zTr[l∂̄l−1f−1∂f ]. (15.4)

2 The ghost action was introduced in [8].
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Now using the Polyakov–Wiegmann formula we get,

Sb
gh = SN c (fl1 f̄)− SN c (ff̄) + Stwist(l1) + SN c (fl2 f̄)− SN c (ff̄) + Stwist(l2)

= −S2N c (ff̄) +
i

2π

∫
d2zTrH [ρ̄′∂χ̄′ + ρ′∂̄χ′], (15.5)

where the last line has been transferred back to the ghost language. Notice that
unlike the ghost fields in (15.3) the new ghost fields ρ′ and χ′ are gauge invariant.
It is interesting to note that the action given in (15.5) is non-local in terms of
the local degrees of freedom A and Ā. Note that had we done the right and left
rotations separately, we would have got S−2N c (f) + S−2N c (f̄), which however is
not vector gauge invariant, but rather a left–right symmetric scheme.

The full gauge invariant action including the anomaly contribution of the anti-
commuting part now reads,

SQC D2 = S1(u) +
1
e2
c

∫
d2zTrH

[
F 2]+

m2

2π

∫
d2z : TrG

[
f−1uf̄−1 + f̄u−1f

]
:

+
[
S

(H )
−(NF +2NC )(ff̄) +

i

2π

∫
d2zTrH

[
ρ̄′∂χ̄′ + ρ′∂̄χ′]] . (15.6)

In deriving eqn. (15.6) we used a redefinition fuf̄ → u. This does not require an
extra determinant factor. Also, as S(H )(ff̄) involves TrH rather than the TrG

in S1(ff̄) of eqn. (2.4), a factor of Nf appears. Note that had we introduced
the special parameterization of the gauge fields in the fermionic formulation of
QCD2 , we would have arrived at the same action after decoupling the fermionic
currents from the gauge fields, by performing chiral rotation and then bosoniz-
ing the free fermions. Equation (15.6) was derived without paying attention to
possible renormalizations. The latter will be treated in Section 15.7.

At this point one may choose a gauge. A convenient gauge choice is
Ā = if̄ ∂̄f̄−1 = 0. Notice that since the underlying space-time is a plane this
is a legitimate gauge. The gauge fixed action can be written down using the
BRST procedure, namely,

SGF = SQC D2 + S(gf ) + S(gh) = SQC D2 + δBRST (bĀ) =

= SQC D2 + TrH [BĀ] + TrH [bD̄c], (15.7)

where SGF , S(gf ) and S(gh) are, respectively, the gauge fixed action, the gauge
fixing term and the ghost action. The (b, c) fields are yet another (1, 0) ghost
system and B is a dimension-one auxiliary field, all in the adjoint representation
of SU(NC ). The integration over B introduces a delta function of the gauge
choice to the measure of the functional integral. In addition we integrate over
the ghosts b and c.

It is interesting to note that the QCD2 action can be related to a “perturbed”
topological H

H coset model. To realize this face of QCD2 we parameterize u as

ghle
i
√

4 π
N C N F

φ and rewrite (15.7) accordingly. The Polyakov–Wiegmann relation
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282 QCD2 , coset models and BRST quantization

implies,

S[u] = S[ghl] +
1
2

∫
d2x∂μφ∂μφ,

S[ghl] = S[g] + S[l] + S[h] +
1
2π

∫
d2xTr(g†∂+gl∂−l† + h†∂+hl∂−l†). (15.8)

Since l is a dimension-zero field with an associated zero central charge we have
S[l] = 0 and thus,

SGF = SNF (h) + S
(H )
−(NF +2NC )(f) +

i

2π

∫
d2zTrH [ρ̄∂χ̄ + ρ∂̄χ]

+ SNC (g) +
1
2π

∫
d2z[∂φ∂̄φ]

+
m2

2π

∫
d2zTrG :

[
f−1ghle

i
√

4 π
N C N F

φ + e−i
√

4 π
N C N F

φ
l−1h−1g−1f

]
:

+
1
e2
c

∫
d2zTrH [(∂̄(f−1∂f))2 ]. (15.9)

It is now easy to recognize the first line in the action as the action of SU (NC )
SU (NC )

topological theory.
It is interesting to note that a WZW term S−2NC

(f) appears in the action
even without the introduction of quarks. We therefore digress to an analysis of
the pure YM theory in the formulation introduced above.

15.3 Two-dimensional Yang–Mills theory

Pure Yang–Mills theory has attracted much attention recently along the lines of
an underlying string theory. Here we restrict our discussion to the 2D Minkowski
or Euclidean space-time, where the rich structure of the model on a compact
Riemann surface does not show up. In terms of the parameterization introduced
in eqn. (15.6) the gauge invariant action of the pure YM theory is,

SY M 2 = S−(2NC )(ff̄) + i
2π

∫
d2zTrH [ρ̄∂χ̄ + ρ∂̄χ]

+ 1
e2

c

∫
d2zTrH [F 2 ]. (15.10)

Here again we remind the reader that the coupling constant undergoes a mul-
tiplicative renormalization. This will be discussed in Section 15.7. Let us first
discuss the corresponding equations of motion for f and f̄ ,

δf : ∂̄A−DĀ +
2

m2
A

DD̄F =
(

1 +
2

m2
A

DD̄

)
F = 0,

δf̄ : ∂Ā− D̄A− 2
m2

A

D̄DF = −
(

1 +
2

m2
A

D̄D

)
F = 0, (15.11)

where D = ∂ − i[A, ·], mA = ec

√
NC
π and �� = 2∂∂̄. In fact these two equations

are identical, as [D, D̄]F = 0. The equation is that of a massive gauge field with
self interaction. Note that in this approach, unlike the equations that follow from
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varying the action with respect to the gauge fields, one gets two derivatives of
F. In deriving the above, it is convenient to remember that,

δSW ZW (f) =
1
2π

Tr
{
(f−1δf)∂̄(f−1∂f)

}
.

The YM action equation (15.10) is obviously invariant under the original gauge
transformations,

f → fv(z, z̄) f̄ → v−1(z, z̄)f̄ ,

with v ∈ SU(NC). In addition the action is invariant separately under the holo-
morphic and anti-holomorphic “color” transformations,

f → u(z̄)f f̄ → f̄w(z),

where u,w ∈ SU(NC). These are “spurious” transformations since they leave
A and Ā invariant. The corresponding holomorphic and anti-holomorphic color
currents are,

J̄ s = −N c
π [i(ff̄)∂̄(ff̄)−1 − 2

m 2
A

fD̄Ff−1 ],

Js = −N c
π [i(ff̄)−1∂(ff̄) + 2

m 2
A

f̄−1DFf̄ ]. (15.12)

The gauge fixed (f̄ = 1) action takes the form,

SY M 2 = S−(2NC )(f) +
1
e2
c

∫
d2zTrH [(∂̄(f−1∂f))2 ]

+
i

2π

∫
d2zTrH [ρ̄∂χ̄ + ρ∂̄χ]. (15.13)

As is expected the equation of motion at present is just that of eqn. (15.11)
after setting Ā = 0. Naturally, the action now lacks gauge invariance, neverthe-
less, it is invariant under the following residual holomorphic transformations,

f → u(z̄)f f → fw(z),

with the corresponding holomorphic and anti-holomorphic currents,

JG = −NC

π

[
A +

2
m2

A

D(∂̄A)
]

J̄G = −NC

π

[
Ã +

2
m2

A

¯̃D(∂Ã)
]

,

and Ã = if ∂̄f−1 . Notice that in spite of the similar structure, Ã is not related
to Ā which was set to zero. To better understand the physical picture behind
these currents we defer temporarily to the abelian case.

15.4 Schwinger model revisited

Since in the pure Maxwell theory there is no analog to the (−2NC) level WZW
term of eqn. (15.10), we study instead the Schwinger model in its bosonized form,

S(Sch) =
1
2π

∫
d2z
[
∂X∂̄X −

√
2∂XĀ +

√
2∂̄XA +

π

e2 (∂Ā− ∂̄A)2
]
.
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284 QCD2 , coset models and BRST quantization

In analogy to the change of variables in the non-abelian case, we now introduce
the following parameterization of the gauge fields A = ∂ϕ, Ā = ∂̄ϕ̄. In terms of
these fields the action takes the form,

S(Sch) =
∫

d2z

2π

{
[∂X∂̄X −

√
2X∂∂̄(ϕ− ϕ̄) +

π

e2 [∂∂̄(ϕ− ϕ̄)]2 + i[ρ̄∂χ̄ + ρ∂̄χ]
}

.

In the gauge Ā = 0 and after the field redefinition X̃ = X + 1√
2
ϕ, the action is

decomposed into decoupled sectors,

S(Sch) = S(X̃) + S(ϕ) + S(ghost) ,

S(X̃) =
1
2π

∫
d2z[∂X̃∂̄X̃] S(ϕ) =

1
4π

∫
d2z

{
2
μ2 [∂∂̄ϕ]2 − ∂ϕ∂̄ϕ

}
, (15.14)

where μ2 = e2

π . The corresponding equations of motion are,

∂∂̄

[
1 +

2
μ2 ∂∂̄

]
ϕ = 0, ∂∂̄X̃ = 0.

The invariance under the chiral shifts δϕ = ε(z̄) and δϕ = ε(z) are generated by
the holomorphically conserved currents,

JG = ∂ϕ +
2
μ2 ∂∂̄∂ϕ, J̄G = ∂̄ϕ +

2
μ2 ∂∂̄∂̄ϕ.

To handle this type of “hybrid” current we suggest the following decomposition
of the massless and massive modes ϕ = ϕ1 + ϕ2 with,

∂∂̄ϕ1 = 0 [2∂∂̄ + μ2 ]ϕ2 = 0.

In the holomorphic quantization,

Π =
δL

δ(∂ϕ)
= − 1

πμ2 ∂̄

(
∂∂̄ +

μ2

4

)
ϕ =

1
4π

∂̄(ϕ2 − ϕ1). (15.15)

A unique solution to the commutation relations [ϕ(z, z̄),Π(w, w̄)]z=w =
iδ(z̄ − w̄), [ϕ,ϕ] = 0 and [Π,Π] = 0 is,

[ϕ1(z, z̄), ϕ1(w, w̄)]z=w = πiε(z̄ − w̄)

[ϕ2(z, z̄), ϕ2(w, w̄)]z=w = −πiε(z̄ − w̄)

[ϕ1(z, z̄), ϕ2(w, w̄)]z=w = 0[
X̃(z, z̄), X̃(w, w̄)

]
z=w

= −πiε(z̄ − w̄), (15.16)

where ε is the standard antisymmetric step function. Notice that the massless
degree of freedom has commutation relations which correspond to a negative
metric on the phase space. These relations can also be translated to the following
OPEs (choosing the part ϕ1(z) of ϕ1),

ϕ1(z)ϕ1(w) = log(z − w),

ϕ2(z, z̄)ϕ2(w, w̄) = − log |(z − w)|2 + O(μ2 |z − w|2),
ϕ1(z)ϕ2(w, w̄) = O(z − w). (15.17)
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It is thus clear that the model is invariant under a U(1) affine Lie algebra of level
k = −1 since JG (z)JG (w) = 1

(z−w )2 , as JG = ∂ϕ1 with no contribution from ϕ2 .
The physical states of the model have to be in the cohomology of the BRST

charge. Due to the fact that the current is holomorphically (and the other anti-
holomorphically) conserved, it follows that the same property holds for the BRST
charge, and thus the space of physical states is an outer product of the cohomol-
ogy of Q and Q̄. The latter are given by,

Q = χJ = χ(i∂X̃ + ∂ϕ1),

Q̄ = χ̄J̄ = χ̄(−i∂̄X̃ + ∂̄ϕ1). (15.18)

Expanding the fields i∂X̃ and ∂ϕ1 in terms of the Laurent modes X̃n and
(ϕ̃1)n with [Xn,Xm ] = nδn+m and [(ϕ1)n , (ϕ1)m ] = nδn+m we have

Q =
∑

n

χ̃n

[
X̃−n − i(ϕ1)−n

]
.

Since J0 = {Q, ρ0}, physical states have to have a zero eigenvalue of J0 . The
general structure of the states in the ϕ1 , X̃, ρ, χ Fock space is,

(X̃n )nX (ϕ1m )nf (χk )nχ (ρl)nρ |vac ,

where obviously nχ and nρ are either 0 or 1. It is straightforward to realize that
only the vacuum state and states of the form (X̃0)nX (ϕ10)nf are in the BRST
cohomology. Recall that being on the plane we exclude zero modes and thus only
the vacuum state remains. Since there is no constraint on the modes of ϕ2 , the
physical states are built solely of ϕ2 which are massive modes. This result is
identical to the well-known solution of the Schwinger model.

15.5 Back to the YM theory

Equipped with the lesson from the Schwinger model we return now to the YM
case and introduce a decomposition of the group element f so that again the
gauge currents obey an affine Lie algebra. Let us write f = f2f1 which implies
that,

A = if−1∂f = if−1
1 ∂f1 + if−1

1 (f−1
2 ∂f2)f1 ≡ J1 + J2

With no loss of generality we take ∂̄f1 = 0 implying also ∂̄J1 = 0. Inserting these
expressions into JG of eqn (15.3) one finds,

JG = −NC

π

[
J1 + J2 +

2
m2

A

(∂∂̄J2 + i[∂̄J2 , J1 + J2 ])
]

.

If one can consistently require that,

J2 +
2

m2
A

(∂∂̄J2 + i[∂̄J2 , J1 + J2 ]) = 0,
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then, in a complete analogy with the abelian case, JG = −N c
π J1 . The lat-

ter is an affine current of level k = −2NC. One can in fact show that
(15.5) can be assumed without a loss of generality. ∂̄JG = 0 implies that
J2 + 2

m 2
A

(∂∂̄J2 + i[∂̄J2 , J1 + J2 ]) = u(z), where u(z) is some holomorphic func-

tion. We then introduce the shifted currents J̃2 = J2 − u(z), J̃1 = J1 + u(z). Now
∂̄J̃1 = 0 as does J1 , and J̃2 obeys eqn (15.5) with J̃1 replacing J1 . It is easy to
check that the shifts in the currents correspond to f1 → v(z)f1 , f2 → f1v(z)−1

with u(z) = if−1
1 (v(z)−1∂v(z))f1 .

Note that the equation for J2 involves a coupling to J1 . This is related to
the fact that, unlike the abelian case, one cannot write the action as a sum of
decoupled terms which are functions of J1 and J2 separately.

Once the color current JG is expressed in terms of the holomorphic current
J1 , the analysis of the space of physical states is directly related to that of the
topological G

G model at k = 0. The physical states have to be in the cohomologyof
the BRST charge, which corresponds to the following holomorphically conserved
BRST current,

Q(z) = χa

(
Ja

G +
1
2
Ja

gh

)
= −NC

π
χa

([
A +

2
m2

A

D(∂̄A)
]a

+
i

2
fa

bcρ
bχc

)
.

An anti-holomorphic BRST current Q̄(z) determines the condition for physical
states in the analogous manner to Q. From here on we restrict our description
to the latter. We define now the zero level affine Lie algebra current,

Ja
(tot) = Ja

G + Ja
(gh) = Ja

G + i, fa
bcχbρc ,

and the c = 0 Virasoro generator T ,

T (z) = − 1
NC

: Ja
GJa

G : +ρa∂χa ,

as well as dimension (2,0) fermionic current,

G = − 1
2NC

ρaJa
G ,

and realize the existence of the “topological coset algebra”,

T (z) = {Q,G(z)} , Q(z) =
{
Q, j#(z)

}
, Ja

(tot) = {Q, ρa(z)} ,

{Q,Q(z)} = 0, {G,G(z)} ≡W (z),

W (z) = {Q,U(z)} , [W,W (z)] = 0, (15.19)

where J# = χaρa is “ghost number current”,

W (z) =
1

4Nc
fabcJ

a
Gρbρc + ∂ρaρa ,

and,

U =
1

12Nc
fabcJ

a
Gρbρc .
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A direct consequence is that any physical state has to obey,

J(tot)
0
0 |phys> = 0, L0 |phys> = 0, W0 |phys> = 0, (15.20)

where J(tot)
i
n
, L̃n and Wn are the Laurent modes of J(tot)

i the Cartan sub-algebra
currents, T and W , respectively. In fact the BRST cohomology of the present
model is a special case of the set of G/G models.

We therefore refer the reader to those works [9], [200], [229] and present here
only the result. On the plane where no ghost zero modes are allowed, the only
state in the cohomology is the zero ghost number vacuum state of J1 .

This state can be a tensor-product with oscillators of the massive modes of J2 .
Unlike the abelian case, JG does not commute with J2 so that in general the J2

modes are not obviously in the BRST cohomology. However, there is no reason
to believe that all the J2 modes will be excluded by the BRST condition. Those
J2 modes that remain are by definition color singlets.

This result contradicts previous results on Y M2 . Usually one believes that
pure gluodynamics on the plane is an empty theory since all local degrees of
freedom can be gauged away.

15.6 An alternative formulation

To get a better understanding of the subtleties of the Yang–Mills theory when
expressed in terms of A = if−1∂f , Ā = if̄ ∂̄f̄−1 , and for future application, we
compare now with another formulation of the theory. A similar approach will be
used in the discussion of generalized YM theories in Chapter 16. Consider the
following functional integral,

Z =
∫

DADĀDBeiS (A,Ā,B ) ,

S = −
∫

d2zTrH [ 1
ec

FB + 1
4 B2 ], (15.21)

where B is a pseudoscalar field in the adjoint representation. Obviously the
integration over B produces the usual Tr[F 2 ] action. It is also easy to realize
that the action is invariant under the ordinary gauge symmetry provided that
δB = i[ε, B]. In terms of the f variables after imposing the gauge f̄ = 1 one finds,

SY M 2 = S−(2NC )(f) +
∫

d2zTrH

[(
i

ec
(f−1∂f)∂̄B

)
− 1

4
B2
]

+ S(gh) ,

where S(gh) = i
2π

∫
d2zTrH [ρ̄∂χ̄ + ρ∂̄χ]. One should again bear in mind that

the coupling constant undergoes a multiplicative renormalization. This will be
discussed in the next section. Using Polyakov–Wiegmann we get,

SY M 2 (B) = Γ2NC (B)− 1
4 TrH [B2 ]

−S(2NC )(vf) + S(gh) , (15.22)
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where Γk (B) = Sk (v) with 1
ec

∂̄B = 2NC
2π (iv∂̄v−1). The second line in (15.22) is

a c = 0 “topological system”. Since the underlying Minkowski space-time does
not admit zero modes we can safely integrate over the corresponding fields. We
can further pass from functional integrating over B to iv∂̄v−1 . This involves
the insertion of det D̄

∂̄
which will introduce a Γ−2NC (B) term with no additional

ghost terms. The functional integral (16.1) thus takes the final form,

Z =
∫

D[v]e−i( 1
4

∫
d2 zTrH [B 2 ]).

It is thus clear that in the present formulation there is no trace of the massive
“physical modes” discussed in the previous section.

15.7 The resolution of the puzzle

Encouraged by the result of the last section, we proceed now to reexamine the
steps that led to the unexpected massive modes in the pure Y M2 theory. In
particular, we would like to check whether in addition to the implementation of
proper determinants there is no coupling constant renormalization that has to
be invoked when passing to the quantum theory expressed in the f variables.
For this purpose we turn on again the matter degrees of freedom. We introduce
NF quarks in the fundamental color representation and explore the behavior of
the system in the limit NF → 0. Recall that the action of this model is given in
eqn. (15.9). Starting actually from eqn. (15.1), taking the massless limit, writing
A in terms of f in the action but still with A as an integration variable, and
using the formulation presented in the previous section, the path integral of the
colored degrees of freedom now reads

Z(col) =
∫

[DA][DB][Dh]eiS ( c o l )

S(col) = SNF (h) +
NF

2π

∫
d2zTrH [h∂̄h−1f−1∂f ]

+
∫

d2zTrH

[(
i

ec
(f−1∂f)∂̄B

)
− 1

4
B2
]

, (15.23)

where we have also gone from u to h as in Section 15.2.
It was found out that quantum consistency imposes finite renormalization on

the coupling constant of the current-gauge field interaction.3 This renormaliza-
tion is expressed in the following equality,

Z(J̄) ≡
∫

DAei[Sk (f )+ 1
2 π

∫
d2 zTrH [i(f −1 ∂f )J̄ ]

=
∫

Dfei[Sk −2 N C (f )+ e (−k )
2 π

∫
d2 zTrH [(f −1 ∂f )J̄ ]

∫
D(gh)eiS ( g h )

= eiΓ−k + 2 N C

[(
e (−k )

−k + 2 N C

)
J̄
] ∫

D(gh)eiS ( g h )
, (15.24)

3 The finite renormalization of the coupling was introduced by D. Kutasov in [146].
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where k is an arbitrary level and Γk (L) = Sk (w) for L = iw∂̄w−1 . The renor-
malization factor e(k) has to satisfy e(−k−2NC )

e(k) = k
k+2NC

. In addition it is clear
from eqn. (15.24) that it has to be singular at the origin. It can be shown that

e(k) takes the form e(k) =
√

k+2NC
k . Implementing this renormalization in our

case, eqn. (15.23) takes the form,

S(col) = SNF (h̃) + S−(NF +2NC )(f)

+
∫

d2zTrH

[(
i

√
NF + 2NC

NF

1
ec

(f−1∂f)∂̄B

)
− 1

4
B2

]
+ S(gh) , (15.25)

where h̃ = fh. After integrating the auxiliary field B the action becomes,

S(col) = SNF (h̃) + S−(NF +2NC )(f)

+
∫

d2zTrH

[(
NF + 2NC

e2
c NF

)]
[∂̄(f−1∂f)]2 ] + S(gh) . (15.26)

It is now straightforward to realize that the equation of motion which follows
from the variation with respect to f is that of eqn. (15.11) where now mA =

ec

√
NF
2π . Thus, the coupling constant renormalization turns the massive modes

into massless ones in the case of pure YM theory (NF = 0). Notice that to reach
this conclusion it is enough to use the fact that e(k) has to be singular at k = 0
and the explicit expression of e(k) is really not needed. Following the arguments
presented in Chapter 5, it is clear that these states that became massless are not
in the BRST cohomology and thus not in the physical spectrum.

A somewhat similar derivation of the triviality of the model in the NF = 0
limit is the following. We integrate in eqn. (15.25) over the ghost fields and over
f , using again the coupling constant renormalization, and find,

Z =
∫

D[v]e
−
{

iSN F (v )+
e 2

c N 2
F

4

∫
d2 zTrH [B 2 (v )]

}
.

It is now clear that the action vanishes at NF = 0 and hence again, on triv-
ial topology, the theory is empty. Notice, however, that the implementation of
renormalization modifies also the result of the previous section.

The final conclusion is that in both methods one finds that indeed the pure
YM theory has an empty space of physical states as of course is implied by the
original formulation in terms of A. We have demonstrated that in this formulation
it follows only after taking subtleties of renormalization into account.

15.8 On bosonized QCD2

To resolve the puzzle of the YM theory we were led to analyze the color and
flavor sectors of QCD2 . The full bosonized QCD2 includes in addition the baryon
number degrees of freedom. The corresponding action is given by eqns. (15.6),
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(15.7) or by eqn. (15.9). In the past the low-lying baryonic spectrum in the strong
coupling limit mq

ec
→ 0 was extracted using a semi-classical quantization. In this

chapter our analysis was based on switching off the mass term, mq = 0. This
limit cannot be treated by the semi-classical approach, as the soliton solution
is not there for mq = 0. In our case here one finds a decoupled WZW action
for the flavor degrees of freedom SNC

(g) and a decoupled free field action for
the baryon degree of freedom, in addition to the action of the colored degrees of
freedom which is given in eqn. (15.26) or eqn. (15.7). The general structure of a
physical state in this case is that of a tensor product of g and φ with the colored
degrees of freedom f , h and the ghosts. The structure of QCD2 which emerged
from the semi-classical quantization for mq 	= 0 involves g and φ only. In our case

here the f colored degrees of freedom acquire mass mA = ec

√
NF
2π while the h

degrees of freedom remain massless. In the limit ec →∞ the f degrees of freedom
decouple. It is thus clear that one has to introduce the mass term which couples
the three sectors. The massless limit of QCD2 can then be derived by taking the
limit mq → 0 after solving for the physical states. Indeed, it was shown in the
limit of ec →∞ that turning on mq 	= 0 results in a hadronic spectrum where
the flavor representation and the baryon number were correlated. The analysis
of the spectrum of the massive multi-flavor QCD2 in the approach of this work
remains to be worked out.

15.9 Summary and discussion

In this chapter we have analyzed 2D YM and QCD theories using a special
parametrization of the gauge fields in terms of group elements. In the mq = 0
case it enabled us to decouple the matter and gauge degrees of freedom. How-
ever, this formulation led, in a naive treatment, to unexpected massive modes.
Even though we did not present a full solution of the theory we had reason-
able arguments to believe that the BRST projection would not exclude these
modes. The fact that a similar approach to QED2 reproduced the known results
of the Schwinger model, enhanced the puzzling phenomenon. Eventually, we
showed that a coupling constant renormalization, renders the unexpected mas-
sive modes into massless un-physical states. The benefit of this detective work is
the appearance of “physical” massive states in massless QCD2 .
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