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Abstract

If G is a compact connected Lie group every infinite subset of G contains an infinite central
A(p) set, for p < 2 + 2rankG/(dim G - rankG). A subset R of G is of type central A(2) if
and only if the associated set of characters on the maximal torus is of type A (2). The dual of
a compact connected semisimple Lie group contains infinite sets which are central p-Sidon for
all p > 1. Every infinite subset of the dual of SU(2) contains such a set.

1980 Mathematics subject classification (Amer. Math. Soc): 42 A 44, 43 A 14.

Introduction

The notion of p-Sidon set (1 < p < 2) was introduced for compact abelian groups
by Edwards and Ross [5]. These authors showed that there exist |-Sidon sets
which are not Sidon sets. Their construction was elaborated by Johnson and
Woodward [7] who found 2n/(2n — 1)-Sidon sets which are not (2ra- l)/(2n-3)-
Sidon sets. Recently, interest in this problem has resurfaced with work of R.
Blei [1], who uses techniques of combinatorial dimension to show that for all
1 < p\ < P2 < 2 there exist P2-Sidon sets which are not pi-Sidon.

It is known that for compact connected nonabelian groups the theory of la-
cunarity departs significantly from the abelian theory. For ecample, a compact,
connected semisimple Lie group has no infinite Sidon sets, infinite central Sidon
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[2] Central lacunary sets for Lie groups 31

sets, or infinite p-Sidon sets (see [4], [8], [10]). Cartwright and McMullen have

recently characterized those compact connected groups which have infinite Sidon

sets.

However, there is one perplexing gap in these results, the question of whether

a compact connected semisimple Lie group can have infinite central p-Sidon sets.

The major par t of this paper (§4) answers this question in the affirmative. In

fact, every compact connected semisimple Lie group has an infinite set in its dual

which is central p-Sidon for all p > 1 (but no infinite central Sidon ( = central

1-Sidon) sets). For SU{2), one can say more; every infinite subset of the dual

contains an infinite set which is central p-Sidon for every p > 1.

This result is proved in the context of sets of type central A(p, q) and central

V(p, q) previously discussed by the author [3]. (Note tha t V ( l , p ' ) = p-Sidon.) A

few ancillary results are obtained from these sets, which enable one to fill some

gaps left in [3], showing in part icular tha t these classes, too, are strictly larger

than previously considered classes. (There are sets of type central V(s,r) which

are not central A(2).)

Preliminary notions from harmonic analysis and Lie theory are set forth in

§1. In an effort to make the article more accessible to harmonic analysts who are

not specialists in Lie theory, I have included a reasonably complete summary of

requisites from this area.

1. Preliminaries

(1.1) Let G be a compact (Hausdorff) topological group, which normalized
Haar measure XG- If / is a continuous function on G, define as usual ||/||p =
(/ |/ |pdAo)1/p. If / and g are both continuous functions, their convolution is
/ * g(x) = J f{xy~1)g(y) dXoiy)- By G, I denote a maximal set of pairwise
inequivalent irreducible representations of G; each a € G acts in a Hilbert space
Ma of dimension da, and \a denotes the character x *-* tr a(x) of a. If / belongs
to the convolution centre of the space of continuous functions, its Fourier series
is

a a = — /where a a = — / / • xa d\G.

A subset of R of G is said to be of type central A(p, r ) if there exists K\ G R

so that for all sequences {aa)a^R with aa = 0 off a finite set,
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and of type central V(p,r) if there exists K2 € R so that for all such sequences

<r€R P'

These sets have been discussed by the author in [2], [3].
(1.2) Let G be a compact connected Lie group of rank /, and let T = Tl

be a maximal torus for G. The Weyl group W is the finite group NG(T)/T,

where NG{T) denotes the normalizer of T in G, and has an action on T given
by w = gT: t —> wt = gtg~*. For each w e W, sgaw denotes the sign of the
determinant of the derivative map w*>e (which is a map R' -» R1). Let $ denote
the set of roots of G on T: $ is the set of characters of T which occur in the
decomposition of the restriction to T of the adjoint representation of G. Choose
a base A for $, that is, a set of / linearly independent characters such that each
element of $ is II/JeA $** •> w ^h the kp all integers of the same sign or zero, and
denote by $ + the set of positive roots (those with all fc/j's nonnegative). The
centre of G is contained in T and is precisely {x 6 T\a(x) = 1 for all a € $}.
Note that each a € $ defines a reflection wa € W and that these reflections
generate W. Further, define a partial order -< on T (the set of characters of T)
by xi -< X2 if X1X2 = Il^gA Pk$ w^k */9 non-negative integers.

Now for each a € G, \<r \T is a sum of characters and we write Xa \T =
X)xef "<T(X) " X- I* c a n be shown that there is, in this decomposition, just one
character x ^ which is maximal with respect to -<, and that this character occurs
precisely once. The representation a is said to be of highest weight x ^ , and the
set {x^'-0 € G} of dominant weights is denoted T+. The map a •-> x ^ s^8

up a bijection G -> f+. lfRCG, let X{R) = {X(<T):CT e R} CT+. Elements
of W have a naturally defined action on T—under this action, each character is
conjugate to just one dominant weight. For w EW, X(W) = (Ilae*+ a " wa)1'2

is a character of T.
I shall need two formulae: the Weyl integration formula states that if / is a

continuous function on G,

fdXG = ^ y I (J fixtx-^dXcix)} \q(t)\2dXT(t)

where q = !]<»€*+ C1 ~ Xa) = Y.wew s S n WX(W) > ajl^L t n e WeVl character formula
that

IX* \T = J2 sgnw(wx{(T))-X(w)-
w€W

(1.3) Suppose in addition that G is semisimple. For every x € T , the derivative
map x*,e- R —• R is a homomorphism; let x denote the unique extension of x*,e
to a complex homomorphism C1 - * C . The elements x,x S T are called the
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weights of G. Since G is semisimple, the Killing form K(X, Y) = t r ( a d X o ad Y)
defines a non-degenerate bilinear form on the complexified Lie algebra of G,
whose restriction to the complexified Lie algebra of T ( tha t is, C') gives it the
structure of Euclidean space.

We may use duality to transfer K f c ' x C to a bilinear form ( , ) on C'* x C'*:
we then set

^ ^ 1 for X,Y€Cr.

The Weyl dimension formula [15] states that

where p=\£ae*+ «•

We can choose a basis {A :̂ /? € A} for (C')* so that for all a, /? € A, (Xp, a) =
t>a,p- We then have p = I^eA V- If X is a weight of G, then x G T+ if and
only if x = H/jgA m0^P where the m^'s are nonnegative integers. If G is simply
connected, then every element of the form X)/?eA rn0^0 with mp G Z+ is an
element of f+~.

Suppose p is a weight of G. (This is not always true, but it is true if G is
simply connected; 2p is always a weight of G.) Denote by p e T+ the associated
character. Then X(w) = pwp (w € W), and we may write the Weyl character
formula in its more usual form \<T \T= A(x^p)/A{p), where for x € f, A(x) =

(1.4) I shall always denote by SG the number / /card$ + ; since dimG =
2card$+ + /, and / = rankG, we have £G = 2rankG/(dimG - rankG). It
is known (see [3], Theorem 2.2) that if s < 6G, then / \q\~sd\T < oo.

(1.5) It will be convenient to define the notion of dimension d(x) of an ar-
bitrary character x €E T. To this end, notice that x + p is a weight of the
complexified Lie algebra of G (that is, has the form J2p^A m/3^/3 W^Q m0 S Z).
Thus ([6], §13.2, Lemma A), there is an element w of W so that A = w(x + p)
is a dominant weight (that is, A = D/?GA *^/9> ^0 — ")• ^ X is s u c^ that A is
strongly dominant (k$ > 0), then the choice of w is unique, and ft — A—p is again
dominant; in fact, it is the differential of the character w(x)X(w) °f ̂ - Thus fl
corresponds to a representation a of G and we define d(x) = da. In the case
where A is not strongly dominant, let d(x) = 0. Notice T = \Jw€W w(T+)x~(w),
that d is zero on the intersection w(T+)x(w) nw'(T+)x(u,'), w ^ w'•
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2. Sets of type central A(p, q)

[5]

(2.1) DEFINITION. Suppose T is a compact abelian group and suppose w.T —*
R+ U {0}. Further suppose p, s G [1, oo], s ^ oo. Then Y C T is said to be of
type w — A(p, s) it there exists K G R such that for all sequences {ax}x6y, zero
off a finite set,

1/3

<K

These sets are related to the weighted lacunary sets of [14]. I shall only be
interested in the case where T is the maximal torus for G,Y C T+ , and w is <T
(where d is introduced in (1.5)).

(2.2) THEOREM. Suppose G is a compact connected Lie group, T a maximal
torus for G. Let R C G and r € (2,2 + £G), S e [1, oo]. In order that R should
be of type central A(r, s), it is sufficient that X(R) C T+ should be of type
d?~a - A(p, s) for some p G ((r • £G) / (2 + £G - »")> °°).

PROOF. Choose p € ((r • eG)/>{2+6G -r),oo). Note that since 2 < r <
we have 1 < £G/ (2 + e© - r) < p/r < oo. Thus (p/r)' = p/(p - r) < EGHT - 2)
and so -eG < (2 - r)(p/r)'.

By the Weyl integration formula, to show that R is of type central A(p, s), we
have to show that there exists K G R such that for all sequences (o<T)<T€/e with
aa = 0 off a finite set,

Now, applying Holder's inequality,

\T \q?-rd\T

i / p

I have denoted by K{p,r) the number ( / |9|(a-«-)(p/»-)' dAT)( 1 / r"1 / p ) .
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By the Weyl character formula, and the elementary properties of the p-norm,
we have

w€W

= cardW

Thus, since X(R) is of type d? s — A(p, s), we have the required inequality.

(2.3) Of course for r > 2 the sets of type d° — A(r, 2) are simply sets of type
A(r) (see [5]). Thus we obtain

COROLLARY. Suppose G is a compact connected Lie group. Let 2 < r <
2 + £Q- Then in order for R C G to be of type central A(r) it is sufficient that
X(R) should be of type A(p) for some pG ((r • £ G ) / ( 2 + £G — »0> °°).

In particular, every infinite subset of G contains an infinite set which is of
type central A(r) for all r < 2 + £Q-

(2.4) COROLLARY. Suppose G is an infinite compact connected group. Then
for some p > 2, G contains an infinite central A(p) set.

PROOF. By the well-known structure theorem, we may write G = Gi x G?
where G\ is an infinite connected compact Lie group. Now Gi certainly contains
an infinite central A(p) set, R, and it is not hard to check that, considered as a
subset of G, R is a central A(p) set.

3. Sets of type central V(p,q)

(3.1) DEFINITION. Let T, w be as in (2.1). Suppose p,s € [l,oo], s ^ 1.
Then Y C T is of type w — V(p, s) if there is K € R so that for all sequences
(ax)x€Y, zero off a finite set,

p'

(3.2) PROPOSITION. Let p e [2, oo], r e (1, oo]. If RQG is of type central
V(p,r), then

X(R) C f+ is of type d2~r> - V{p,r).
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PROOF. Let (a(7)(76fi be zero off a finite set. Then we must show tha t

1 < T X ( < T )

<r€R p,

By the Weyl character formula and the Weyl integration formula,

<r€R

>cardVr
p'

= card W *

= cardW

•X(«)
p'

\q\p'dX7

\T

i/p'

where the penultimate step follows from the fact that ||<7||oo = cardW. Since R
is of type central V(p, r), we now have, for some K £ R, independent of (aa),

VffSfl p'

as required.

(3.3) THEOREM. Let G be a compact connected Lie group, T a maximal
torus for G. Suppose p e [2, oo] and r e (l,oo], and let R C G. Then if
I L w(x(R))X(w) is of type d?-r' - V{p,r), R is of type central V{a,r) s <

PROOF. Suppose that X(R) is of type d?~r' - V(p,r) with constant K,
and choose s < ((2 + SG)/{P + £G))P- It then follows that p' < s' and that
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p((s — 2)/(p — s)) < 6G- Thus for any sequence (aa)a€R with aa = 0 off a finite
set, we have, using the same techniques as in the calculation of (2.2),

i/p'

<KcaxdW1/r'

= K card W'1^' \ f

= K cardW-1/r'

dXT

tr

1/P'

This shows that i? is of type central V(s,r).

(3.4) Recalling that a set is of type central V(p, 2) for some p > 2 if and only
if it is of type central A(2) in the sense of [8], we have

COROLLARY. Let G be a compact connected Lie group, T a maximal torus
for G. Then RCG is a central A(2) set if and only if X(R) C.f is a A(2) set.

(3.5) PROPOSITION. Let G be a compact connected Lie group, and suppose
RCG. Then if J2aeR ĉr e° < oo, R w a set of type central V(s, r) for all (s, r)
satisfying r' < 2 and 2 < s < 2 + ea •

PROOF. Since 2 < s < 2 + e<3, we may choose p e (2, oo) so that max(r', s) <
£G)/(p + £G))p < 2 + £G. Notice that 1 < eG/(r'-2) < oo. Thus, applying
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Holder's inequality, we obtain, for any sequence (a<r)<T€ij

\l/r' / x (r'-2)/(r'eG)

r'eG/(2+eG-r')

Wfi
(2+£G-r')/r'£G

• ) '

where A"i = (X^d e°G)^T 2 ^ r £G. The second inequality follows once we note
that r' < ((2 + 6G)/{P + £G))P is equivalent to r£c/(2 + £G - »"') < p. Now by
the Hausdorff-Young inequality

El a " l P ) <cardW~1/p

p'

tr

But as part of the proof of (3.3) it is shown that

P'

T9x<T M l ^
lip'

whenever s < ((2 + €G)/(p + £G))P- This completes the proof.
(3.6) EXAMPLE. It is easily seen that a set of type central A(2) is of type

central V(s,r) whenever inf(s, r') > 2. The converse, however, does not hold;
there exist sets in SU(2)A which are of type central V(s, r) for all s, r satisfying
max(r,s') < 3 but which are not of type central A(2). (By (3.4) and (3.5), it
suffices to find a set E of integers such that ^ZneE n'1 < oo, but such that E is
not a A(2) set—such a set is given by E = {2m! + n(2m)\: 0 < n < m, m € N}.
It is shown in [13, (4.3)] that this set is not a A(2) set.)

4. Central p-Sidon sets

(4.1) Sets of type central V(l,p'), 1 < p < 2, are called central p-Sidon sets.
Central 1-Sidon sets are central Sidon sets in the sense of [8], [10]. In [3] it is
shown that if G is semisimple, then G contains no infinite p-Sidon sets. It is
shown [10] for general compact connected G that G contains an infinite central
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1-Sidon set if and only if G is not semisimple Lie. The results of this section
indicate that for central p-Sidon sets, p > 1, the situation is radically different.

(4.2) Suppose G is a compact connected semisimple Lie group, and suppose
(see (1.3)) that p is a weight of G. Then for each integer n, there is a represen-
tation an G G so that x ^ = np. For general compact connected semisimple
G, this will be true only for even n. I will show that if (6n) n €N is a sufficiently
lacunary sequence, then {obn } is a central p-Sidon set, where if p is not a weight
of G, we understand that (bn) consists only of even integers.

(4 .3 ) LEMMA. IfG is any compact connected semisimple group and an is
as in (4.2), then

(») XonW = r U * + A./3(<*(*)) for allz&T
where Dn is the Dirichlet kernel,

zn+l/2 _ j
D«W = ,1/2 _-,1/2 •

PROOF, (i) is a direct result of the Weyl dimension formula, and (ii) is
true because by the Weyl character formula x°~n tr = A{pn+1)/A{p). Now
from (1.2), A(p) = Yla^^+iot1^ - a1/2), and from this it easily follows that

= rw(«( n + 1 ) / 2 - s
(4.4) Let 0i be any element of A: set

Ti = {z € T: /?(z) = 1 for 0 € A

Since the elements of A form a basis for CL(T)*, T\ is a one-dimensional torus.
Now for each a € $ + , we can write a — I I ^ A P™0' where the m^s are nonneg-
ative integers. Let mj = m^ and $f = { « e $+:mf ^ 0}. Then it is a direct
result of (4.3) (ii) that for 2GT1,

(4.5) LEMMA. Let G be a compact Lie group with maximul torus T, and
let R C G. Then R is a central p-Sidon set if and only if there is a constant K
such that for all sequences {aa)a^R of complex numbers, zero off a finite set,

\T
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PROOF. This lemma is a direct consequence of the definition, together with
the fact that for / central, \\f fr || - oo =

(4.6) In view of (4.4), it will come as no surprise to the reader that we need to
examine functions which are products of Dirichlet kernels. The technical result
which we requiure for Theorem (4.8) is contained in the following Proposition.

PROPOSITION. Suppose {mi = I , m 2 , . . . , m t } ts o set of positive integers
with sum S.

For each positive integer c, and for each z E T, let Hc(z) = Y\t
i-1 Dc(z

mi).
Further, for each pair 0 < a < b of positive integers, let

where

Fn(z) = (

is the usual Fejer kernel. {Fa,b is simply the Fejer kernel translated and dilated
so that its Fourier transform is supported on the interval (Sa,Sb).)

Then
(i) Ifa>c, Fa<b*Hc = 0.
(ii) Ifb<c, \Fa,b*Hc(l)\<S(b-a)(2c + l)t-1.
(iii)

where

PROOF. We denote Dc(z
m') by Dl

c{z). Then

(1)

t
_ *

where * denotes convolution in Z. Recall that

1 if n € {kmi: \k\ < c},

0 otherwise.

From this, it follows that H£(n) = 0 if n > S • c, whence (i).
For (ii), observe that F*b and H£ are both positive functions: thus

(2) \Fa b * Hc(l)\ =
fc€Z
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Moreover, by (1), for all k, H*(k) < # A ( 0 ) . Therefore

(3)

41

= H?{0)FaJt(l)
= H?(0)S(b-a).

Now

l#cA(O)l < < | |De
1 A | | , .

i = 2
Joo

= (2c
»=2

C

so we obtain

(4) \H

Combining (3) and (4) proves (ii).

We now prove (iii). It is an easy exercise in induction to prove that if 56—6 <
Jfc < 56, then

(5) H£{k) = Q(Sb-k)

where Q is a polynomial of degree t — 1;

t-i / * \ - i
i ( *

i=o \i=i

The proof of this identity, which is left to the reader, makes use of the fact that
IZ?=o iv is a polynomial in n of degree p + 1, with leading coefficient l/(p + 1).

Secondly, we remark that if S{b + a)/2 < fc < 56 then

(6)

Choose
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Then if Sb - Rb < k < Sb, (5) and (6) are satisfied by k. Therefore we have

Sb-Rb<k<Sb

2
S{b - a]

2
S(b - a]

2

E
(i2-6)

k*
\b
t+1

- 1

This completes the proof.

(4.7) NOTATION. If G is a compact connected Lie group, we denote by
the smallest X > 1 satisfying the inequality

J] m?(V,
( i _ l\card*+

(4 .8) THEOREM. Let G be a compact connected semisimple Lie group. Let
(&n)neN be o Hadamard sequence of integers with bn+i/bn > XQ- Then R =
{cbn- n € N} is a central p-Sidon set for every p > 1.

PROOF. Let (alT)(r€R be a sequence of complex numbers, zero off a finite set.
For notational convenience, we let

Then

(7)

By (4.3) and (A

M
•4),

=

ll/lloo

for z €

Y(bn-

<

n,
f l )

E e

n € N

/Tj,n/2 is defined as in Lemma (4.6), where we take t = caid$f, and the
integers m^ to be the integers {mf; a € $f} of (4.4).
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To simplify the notation, I will denote aahn by c n , Hbn/2 by H'n and Fbn_1/2,bn/2

(also defined as in Lemma (4.6)) by F^.

The basic idea of the proof is to show tha t for some Ki > 0, and for all n e N,

where r = 2card$+/p' > 0.
Remark that for all n e N, ||F^|| = 1. Therefore, we have

(9) | ^W(1) I < II^WIloo < ll/lloo

and by the definition of / , we have

(10) F'N * /(I) = £ > „ + ly-'cnFl, * H'n{\).
n€N

Now Lemma (4.6) gives us the following information.
(i) UN>n, then F'N * H^{1) = 0.
(ii) If N < n, then \F'N * H'n(l)\ < (S/2)(bN - &*_!)(*>„ + I)*"1.
(iii) |F; • f f ; ( l ) | > * 1 £ , where

Note that 5/2 = | 23 m ? = &PnP)> so A > AG guarantees that

Using the estimates (i), (ii) and (iii) on (10), we obtain

\F'N * /(1)| > K^bt, + l)T\cN\ - I ^ (6n + ly-^bs * l)|cn|.
n>N

Hence, by (9),

(12) H/Hoo + f (bN +1) E (6« + i)'"1!*™! ̂  Ki(b» + ! ) r M -
n>JV

Repeated application of (12) will yield (8). First, let No be the largest integer
with CJV0 ^ 0. We then have, by (12),

(13) Kr1\\f\\co>{bNo + iy\cNo\.

Combining (13) with the case N — Ni — 1 of (8) gives

(6*0-1 + lrictfo-iitff1 (H/IU + f ^ ^ j W + i r i ^
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Continuing in this way, we obtain, for any N < No,

+ 5 5 J * - + S E
No-N-l

JVo-JV+l

We now invoke (11) to guarantee that the right-hand side of the above in-
equality is dominated by A"2||/||oo, where K2 = /ffx(l - (1 +
Thus we have obtained (8). It follows that

Since bn+i/bn > A > 1, the series on the right is summable provided p > 1,
and we have, by (7)

/ \ 1/p

\YK\P) <K

\o€R J
a&R

Thus, by Lemma (4.5), R is central p-Sidon.

(4.9) REMARKS, (i) In general, the value for XQ given in (4.7) is not optimal.
For G = SU (2), the estimates of Lemma (4.6) become particularly simple, and I
am able to show that Theorem (4.6) is valid with AQ = 1, but (4.7) would give
XQ = 3. It would be interesting to know whether this improvement is possible
in general.

(ii) It would be desirable to decide whether every infinite subset of G contains
an infinite set which is central p-Sidon for some (or all) p > 1. However, my proof
of Theorem (4.8) depends critically on the fact that x<rn \T-I can be factorized
in a particularly simple way; such a factorization is not possible for \a \r, > o
arbitrary, except in special cases (cf. 4.11).

(4.10) In the case where G is a compact connected group which is not semisim-
ple Lie, it is known [10] that G contains an infinite central Sidon set, which is,
of course, central p-Sidon for all p > 1.
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Thus we have

THEOREM. Let G be a compact connected group. Then G contains an infinite

set which is central p-Sidon for all p> 1.

(4.11) For the case G = SU{2) (resp. 50(3)) , the set {an:n € N} (resp.
{CT2T»: n € N}) is the entire dual of G. Thus we have

COROLLARY. Let G = SU{2) or SO(3). Then every infinite subset of G
contains an infinite set which is central p-Sidon for all p> 1.
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