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CONTINUITY OF THE SCATTERING 
TRANSFORMATION FOR THE KORTEWEG DE VRIES 

EQUATION 

HENRI-FRANÇOIS GAUTRIN AND TAPIO KLEMOLA 

Introduction. It is at present well known that, if q(x, t) is a solution of 
the Korteweg de Vries (K d V) equation 

(!) Ixxx ~ 6qqx + q, = 0 

such that q(x, 0) = q0(x), where q0(x) behaves reasonably at infinity, and 
if 

(R(k,t),\j(t),Cj(t)), j = 1 , . . . , « , 

are the scattering data (see [4] ) corresponding to q(x, t), then 

R(k,t) = exp(Sik3t)R(k, 0) 

(2) cj{t) = exp(8XJ/Oc/0) 

V> = V°> = V 
The bijective map F which associates the scattering data 

(R(k9t)9\j(t)9Cj{t)) 
to q(x, t), is called the scattering transformation. The knowledge of F and 
its inverse F~ allows us to solve the K d V equation. In fact, we have 

q(x, t) = F~\ (R(k, t), Xj(t), Cj(t) ) , j=l,...,n 

and 

(R(k, 0), X/0), cj) = F(q0(x) ). 

This article is a part of a study of the properties of continuity of F and 
F~ . Here, we are going to define, in the space of solutions q(x, t) and in 
the space of scattering data, relatively natural topologies in relation to 
which F will be continuous. Because of the particularly simple behaviour 
in / of the scattering data, we will study the continuity of the map 

F:q -> (R(k), Xjt Cj). 

This work can be motivated by several points, in addition to purely 
intrinsic reasons. 
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SCATTERING TRANSFORMATION 361 

First off, for the characterization of the infinite dimensional manifold 
formed by the solutions of the K d V equation, the study of the continuity 
of the map F is necessary, before looking at the more complex question of 
its differentiability. 

Secondly, the study of the continuity of F and of F~l is a useful tool for 
looking at the approximation of solutions of the K d V equation by known 
solutions. 

Finally, in studying the closure of the set of the admissible scattering 
data, and using the continuity of F~ , one could envisage to construct, by 
passing to the limit, mathematical objects more general than functions, 
solutions of K d V in some generalized sense. 

In the first part, we shall recall the map F. On this subject one can 
consult classical references such as: [3] and [4] and the articles cited 
there. 

In the second part, we discuss certain natural topologies on the space of 
the functions q(x, t) and on the space of scattering data topologies which 
make the map F0 associated to F continuous and in the third part we study 
the continuity of F. 

1. The scattering theory. Let us consider the Schroedinger equation 

(3) -fxx + qf=k2f 

where q(x) is a locally integrable function such that: q e Lx i.e., 

/

oo 
_oo (1 + \x\ ) \q(x) \dx < oo. 

Let/,(x, k) and/2(*, k) be the Jost functions, i.e., solutions of (3) with the 
following asymptotic behaviour 

/ , (* , k) ~ eikx x -» +00 
f2(x, k) ^ e~ikx x -> - 0 0 . 

Let us note that if k ¥* 0, we obtain for the Wronskian: 

W(f,(x, k)Jx{x, - * ) ) = -2ik 

and 

W(f2(x, k), f2(x, - i t ) ) = +2ik. 

In particular, the solutions/,(.x, k), / , (* , —k) are linearly independent if 
k ¥> 0. Hence we can write f2(x, k) as a linear combination of/,(x, k) and 
/ , (* , -k): 

f2(x, k) = bx(k)f2{x, k) + ax(k)f2{x, -k). 

Similarly we obtain 

/ , (* , k) = b2(k)f2(x, k) + a2(k)f2(x, -k). 
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From this we conclude easily: 

«i(*> = T T W I ( * . k),f2{x, k)) = a2(k), 
2ik 

b,{k) = -b2(k). 

Let us set a(k) = a2(k) and b(k) = b2(k). 
Let us consider, now, the map F0 which to q(x) associates the couple of 

functions (a(k), b(k) ); one shows (see [1] and the references therein) that, 
if q(x, t) is a solution of the equation (1), such that q(x, 0) = q(x)y 

then 

F0(q(x, t) ) = (a(k, t\ b(k, t) ), and 

a(k, t) = a(k, 0) 

b(k, t) = e~khb(k, 0). 

Let us introduce, to simplify the presentation, the two functions 

m,(x, k) = e~lkxfx{x, k) and m2(x, k) = elkxf2(x, k). 

These functions are solutions, respectively, of the differential equations 

m'{ + 2ikm\ = qm] and m2 — 2ikm2 = qm2 

and satisfy the boundary conditions 

lim mx{x, k) = 1 and lim m2(x9 k) = 1. 
x^oo x—> — oo 

One obtains 

m,(i, k) = b2(k)e~2lkxm2(x, k) + a2(k)m2(x9 -k) 

and 

m2(x, k) = bx(k)e2lkxmx(x, k) + ax(k)mx(x, —k). 

Let us introduce the kernel 

Dk(y) = ±-Aemy - l); 
2ik 

we obtain the mx(x, k) as a solution of the integral equation 
(4) m}(x, k) = \ + J Dk(u - x)q(u)mx(u + k)du 

for each k such that Im /: ^ 0. Similarly m2(x, A:) is a solution of the 
integral equation 

fx 
m2(x, k) = 1 + / _ Dk(x — u)q(u)m2(u, k)du. 

Taking the limit as x —> +oo, and making the identifications we obtain: 
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1 /*°~ 
*(*) = — J _„ elikuq(u)mx{u, k)du /

OO 

and 

1 f00 

(5) a(fc) - 1 - — J _oo q(u)mx(u, k)du 

I m i t â O , ^ 0 . 

In the following, we are going to state certain well known properties of 
the solutions mx(x, k), in order to establish the behaviour of b(k) and 
a(k). 

In the sequel, when there is no ambiguity, we shall denote mx{x, k) by 
m(jc, k). 

Let us return to the equation (4), which is an equation of Volterra; we 
solve it by iteration, and obtain after some majorations: 

\m(x, k) | ^ 1 4- —v(x)er](x)W 

(6) 1*1 

\m(x, k) | ^ 1 + y(x)ey(x\ 

where: 

•»?(*) = J x l^(w)l^w 

A» 

TOO = J x (u - x)\q(u)\du. 

We have also from (4) 

|m(x, k) | ^ 1 4- / w|g(w) | |m(w, /c) \du 

foo 

— x J \q(u) | \m(x, k) \du. 

But as for u ^ 0, 1 4 y(w)é>Y(w) ^ 1 4 y(0)ey(0\ this gives 
foo 

\m(x, t ) | ^ l + y(0) 4 y2(0>y(0) - x J x \q(u) \ \m(u, k) \du. 

Let 

C = 1 4 y(0) + y2(0)ey(0\ 

Then C ~ 1. Let us set 

M ( x , A:) = 

c(i + M ) 
and 
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p(x) = (1 + \x\)q(x)\, 

where p(x) is integrable. We obtain 

C_ 

C{\~+\x\) C(l + W ) /

oo 

Y p(u) \M(u, k) \du 

\x\ f°° 

C(l 4- pq ) J * 

/"oo 

^ 1 + J x p(u)\M(u,k)\du. 

Resolving by iteration one obtains 

\M(x, k) | ^ exp ( / p(u)du\ 

Çoo 

^ exp J _Qo (1 + |t/| ) \q(u)\du = exp ||^||J; 

i.e., 

(7) \m(x,k)\^exp\\q\\\C(\ + \x\). 

2. Continuity of the map .F0. Let n o w , / be the space of all the complex 
valued functions/(z) which are analytic in the half-plane Im z > 0 and 
continuous in Im z ^ 0 except at the point z = 0. Let us define on Jt 
the topology of uniform convergence on compact sets. Let JV be the space 
of functions g(x), continuous on the real line except perhaps at x = 0, and 
equipped with the topology of uniform convergence on compact sets. 

THEOREM 1. The map F^ that associates to q the couple (a(k), b(k)) is a 
continuous function from Ll into the product space Jt X Jf. 

Proof. Let us note first that a(k) is indeed an element of Jt. In fact, 

1 f°° 
a(k) = 1 — — / _ q(u)m(u, k)du. 

2ik J °° 

As m(w, k) is analytic in the half plane Im k ^ 0 and continuous in 
{/c|Im k ^ 0} — {0}, this is true about a(k) as well. 

Similarly, starting from the expression 

1 f°° 
b(k) = — J _ œ e2,kxq(x)m(k, x)dx, 

we conclude that b(k) is continuous on R — {0}. 
Let now qn(x) be a sequence in L\, converging to q(x). Let mn(x, k) be 

the solution of the equation 

m" + likm! = qnm 
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such that 

lim mn(x, k) = 1. 
*—»00 

Set also 

(an(k)9bn(k)) = F0(qn). 

From (5) we obtain 

1 f™ 
a(k) ~ an(k) = — J _<„ (<ln(u)mn(u> k) ~ q(u)m(u, k))du 

a(k) - an(k) I = — | J _ Jtf«(") K(w> *0 ~ m(u> k) \du 

f° 
J _oQ \m(u, k) I \qn(u) - q(u) \du. 

2ik 

that is: 

1 I /"°° 

2Tfe| 
1 r°° 

From (7) we have: 

1 f00 

(8) \a(k) - an(k) I ^ — J _oo | < ? » I | m > , fc) - m(a, A:) \du 

+ - i - C I I ^ - 9 | |! 
2\k\ 

but from (4) we obtain 

/

oo 
^ Dk(u - x)(qn(u)mn(u, k) 

— q(u)m(u, k) )du 

/*oo 

\mn(x, k) - m(x9 k)\ ^ J x \Dk(u - x) \ \qn(u) \\mn(u, k) 

— m(u, k) \du 

/

+ 0 0 

_oo \Dk(u - x) I \qn(u) 

— q(u) I \m(u, k) \du 

1 f°° 
\mn(x, k) - m(x, k) | ^ —- / \qn(u) \ \mn(u, k) - m(u, k) \du 

\k\ J x 

+ ^Mn ~ «Hi-

Resolving this inequality of Volterra by iteration we have 
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C 1 
\mn(x9 k) - m{x9 k) | ê — \\qn - qx\\\ exp 

or 

1*1 

c 

/ : 

(9) \m„(x, k) - m{x9 k)\^ — \\qn 

\k\ 

Substituting (9) into (8) we have 

\a{k)-an(k)\?k^-\\qn-q\\\ 
2\k\ 

but 

\k\ 

- g\\\eU™^. 

1 + ^H?Jlie IWI, /* 
1*1 

\q„(u) \du 

\\qn\\, ?k \\qn - q\\x + |M|, ^ \\qn - q\\\ + \\q\\, 

from which 

\a(k) an(k)\^^-\\qn-q\\\ 
2\k\ 

1 \\qn - q\\ 
\k\ 

x-e\\qn-q\\\e 

+ 1*1 
^.e\\^ehn-qh 

This implies that if K is any compact set such that 

K Q {k | Im k ^ 0} - {0}, 

if qn —> q in the topology of Lx, an(k) will converge uniformly in K 
toward a(k). It is clear that we have similar inequalities for b(k), when 
Im k = 0, k =£ 0, which proves the theorem. 

COROLLARY. Let us consider now the solutions q(x, t) of the K d V 
equation, such that q(x, 0) = q(x), and the map F0 that associates (a(k, t)y 

b(k, t) ) to q(x, t). We obtain immediately the following results: 
(a) If qn(x) converges in L\ toward q(x), then F0(qn(x, t)) will tend 

toward F0(q(x, t) ) in the topology of\M X JV, uniformly in t. 
(b) If for a fixed t, qn(x, t) tends to q(x, t) in Lx, then F0(qn(x, t)) 

tends to F0(q(x, t)) in Jt X JV*. 

3. Continuity of the scattering map. 

THEOREM 2. Let qn(x) be a sequence of functions that converges toward 
q(x) in Lj, let 

b(k) "K a„(k) 

and let ah . . . , at be the zeros of a(k). Then {rn(k) } converges to r(k) 
uniformly on compact sets in R — {0}, and for all i, there exists a complex 
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sequence ain such that 

lim ain = ai 

and such that at n is a zero of an(k). 

Proof. As the functions an(k) and a(k) are ¥= 0 outside of the axis 
Re k = 0 (see [3] and [4] ), it is clear that, taking into account the Theorem 
1, the quotient bn(k)/an(k) converges uniformly on all compact sets of 
R - {0} to b(k)/a(k). 

We know that the number of zeros of a(k) is finite on the real axis. If ai 

is a zero of a(k), there exists a closed disk centered at at with radius r, such 
that a(k) i^ 0 elsewhere in the disk. On the other hand, as an(k) is a 
sequence of holomorphic functions that converges uniformly on compact 
sets in the upper half plan to the function a(k), according to the Hurwitz's 
theorem [6], starting from a certain N all the functions an(k) have a unique 
zero inside the disk. Let ain be these zeros, i.e., an(ain) = 0. Let us show 
that ain —> at. 

Given e > 0, consider the disk centered at at and of radius c. For e 
sufficiently small, according to Hurwitz's theorem, 3iV0 such that for 
n > 7V0, an(k) has only one zero inside the disk. Hence 

n > N0=* \at - aUn\ < e. 

The at can be considered as eigenvalues of the self-adjoint operator 
associated with the Schrôdinger equation 

d2 

dxl 

in the Hilbert space of the square integrable functions on the real line. Let 
/ be a Jost function associated with the eigenvalue a•. The normalization 
coefficient c is defined by the relation 

1 f°° 

or, using the functions m- = eaJxfj(x, ia.j) 

1 f°° 
- = / e~2aJxmj(x, ia,)dx. 
r J —oo J v J' 
CJ 

THEOREM 3. Let qn(x) be a sequence of functions converging to q(x) in 
Lj, «j, . . . , « / the zeros of a(k), and let anj be a complex sequence, such 
that 

an(anJ = 0 for allj and 

lim a = a for all j . 
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Let C: be the normalization coefficient that corresponds to a-, c the one 
corresponding to an . Then 

lim c . = cj. 
«—»oo 

Proof L e t / (x, k), i = 1, 2, be the Jost functions for qn(x). \î k = an-
then 

(2ianj)~
xW(fnX(x, anj),fn2(x, anj)) = a„(aw J) = 0 

and 

/ w J is proportional t o / „ 2 , 

i.e., 

Furthermore we have (see [3] page 148) 

-ha + if„a = k%2 + Wn,ik * 0 
where 

fn2 means —fna(*> k). 
dk 

Then 

7-^( /„ , i . /„ ,2) = 2^/„,,/„,2. 
OX 

For /c = a . we obtain, fnX being proportional tofn2, 

2(Xn,J' J -oofnfi* an,j)fn^ an,j)dt = W(fnA, f„a). 

Similarly we have 

f°° 
2<*,Uj J x fn,lO, «nj)fn2«> «»,;)* = W«,h /„ ,2 ) -

So 

/

+ oo 

= W(/„.1,/n.2) + W(JnAjna) 

= ^mfn,x(x,k),flu2(x,k))\k=a 

dk nj 

= -^(2ikan(k))\k 
dk nj 

= [2ian(a ) + 2m -^(a •) ] 
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whence 

Or 

1 f+co 

aMn,j) = ~ J _TO /„,l('. «„,7)/„,2(?. «»,./¥'• 

Then 

— = —- à„(«„,) for ally. 

Similarly we have 

- = - f l ( a - ) . 
CJ VJ 

Let us show now that for all k, Im k > Q, àn(k) converges to à(k) 
uniformly on compact sets, when qn(x) converges to q(x) in L\: we 
have 

[à(k) - àn(k)] = -\[a(k) - an(k)\ 
k 

f °° \q^~qrh\du 
J °° L 7ik J + 

2ik 

/

+ oo i /* + oo 

, ^ .' [,„ q]mdu 
2ik J -°° " " 2ifc ' "™ 

, r 
+ ^ J -co ^ K - « ] < & • 

Let us estimate |m(x, /c) |. From 
/*oo 

m(x, k) = J Dk{t - x)q(t)rh(t, k)dt 

/*oo 

+ Jx Dk(t- x)q{t)m(t,k)dt 

using the estimate 

\Dk(y)\<— f o r l m ^ â O a n d 
\k\ 

\Dk(y)\ g 1 +— f o r l m j ^ O 
\k\ 
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we obtain 

\m(x,k)\ ^ ^ J x \9(t)\ \m(*,k)\dt+ [\ + ^ 

where c = 1 + y(0) + y2(0)ey(0\ 
Solving by iteration we have \m(x, k) | ^ E(k) where 

\q(t)\ \m(t,k)\dt + ( l + -Vjc\\q\\\e^[ 

E(k)= ( l + 4 ) c l M l ! exp(lMl! + M i ) . 

Therefore 

|_1_ 

te 
and 

\kfr-' - - V — • |̂ | 

/

+ oo 

2|fc| 

1 Z"00 

|m„(x, < : ) - » i ( x , i ) | g - / \qn(t) \ \mn - m\dt 
\k\ J x 

V !£l2/ 

+ Uto,ll,/|*l 

ce^Hqn - «II 

Solving by iteration we obtain 

\m„(x, k) - r f i ( j c , t ) | ^ F(/c) | |^ - ^ J A 1 1 ^ 1 , 

where 

Therefore 

I 1 ^°° 

te 
and 

/ : 4„[m„ - m}du ë ||<7„||1JF(£)eIW|/*H<7„ - q\\\ 

\à(k) - àn(k) I S -l |a(*) - a„(*) | + ^-E(k) \\q„ - 9II, 

+ F(*)eW"*||</„ - «111-

As à(k) and tf„(/c) are continuous for Im k > 0 (see [3] ) we conclude 
that àn(anj) will converge to à(a.) when #w converges to q in LJ. 

Let us show now that y • converges to y •. Indeed there exists an x0 such 
that 
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/i(*o> aj) * °-

Furthermore from (9) we conclude that fnl(x& k) converges uniformly to 
f\(X(), k) on compact sets of {k | Im k > 0} when qn converges to q in L 
]. Then/W)1(x0, a ) will converge iofx(x^ aj). By the same argument we 
prove that fn 2(x0, anj) converges to/2(x0 , a-). Then 

_ /«,2(xo, a«,y) 

Jn, l(*0> « i i j ) 

will converge to 

ià„(anj) 

>n,j 

y and 

will converge to 
ià («y) 

i.e., 

lim c . = cr 

Definition (Scattering map). Let F be the map that associates to 
q e L \ the triple 

F(q) = (r(k), ( « ! , . . . , «/), (q, . . . , ct) ) 

as defined above. The map F is called the scattering transform. The zeros 
{a,-} of û(fe) are ordered on the imaginary axis so that their absolute values 
form a decreasing sequence. 

Definition (Topology T on the image F(L\). Let us introduce on F(L\) 
a topology T saying that a triple sequence 

(rn(k)> ( a l ,n> a 2 , w • • • > a/(n),n)> (cl ,«> ' ' > C /(«),«) ) 

converges to (r(fc), (al9. . . , am), (q, . . . , cm) ) if 
1) rn(k) converges to r(k) uniformly on the compact sets of R — {0}; 

2) lim aiM = a. 

with the convention that if l(n) < m then we complete the /(«)-triplet 
(a l w , . . . , «/(„)„) with m — /(«) zeros, and 

lim CL^n = 0 if /(«) > m. 

3) lim c^ = ct 

n—»oo 

there we also complete the /(fl)-triplet with zeros if m — l(n) > 0. We 
impose no conditions on 

l i m Cl(n),n-
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THEOREM 4. Let D be a domain in Lx, bounded in the topology of L ; 
i.e., 3d > 0 such that 

DQ {? e Li |/^Jtf(0 !<//<</}. 
Then F is continuous in D with respect to the topology r. 

Proof. Let qn be a sequence of functions in D converging to q in L,. 
Let an{k) and a(k) be the corresponding functions. From (5) we 
conclude 

1 f°° 
\an(k) ~ 1| ^ — J _oo \qn{u) | \mn(u, k) \du 

and 

|a(*) - 1| ^ — / _ \q(u) | |m(a, *) |</K; 
2\k\ J °° 

from (6) we obtain 

1 

\k\ 

i.e., 

mn(u, k)\^l+~ (/!j?„(«)|A). l / W0"W k" 

K ( « , A:) | g 1 + ^edm; 
\k\ 

simih irly 

\m(u, k) | 5 1 + — edW. 
\k\ 

We then obtain the following ; inequalities: 

K(k) 
2\k\ 

d d/\k\ 

\k\2 

and 

\a(k) -- 1 ) 1 5 — + 
2|'*| 

d Jl\k\ 

\k\2 

Hence 3K such that for \k\ > K 

(10) Wn{k) - 1| < 1 Vn 

\a(k) -- 1 | < 1. 

Let us recall that the zeros of a(k) as well those of an{k) are finite 
in number, simple and are situated on the positive imaginary axis (i.e., 

https://doi.org/10.4153/CJM-1986-017-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-017-4


SCATTERING TRANSFORMATION 373 

Im k > 0 and Re k = 0). 
We conclude that there exists K > 0 such that all zeros of a(k) and of 

an(k) are situated on the interval between 0 and IK on the imaginary 
axis. 

Let ai be the zero of a(k) such that |a;| is minimum. The zeros of an(k) 
being separated Ve' > 0, e' < |a/|, 3e such that c ^ e' and is not a zero of 
#„(/:), VTZ. Consider the domain in the complex plane, bounded by the line 
Re z = — 5, Re z = 5, Im z = /c, the real axis and the upper half circle 
\z\ = 6, Im z ^ 0, (8 > e). On the contour of this domain a(k) and an(k) 
are continuous and ^ 0; in addition, a(k) and an{k) are holomorphic in 
the domain. Then, by Hurwitz's theorem 37V such that n > TV => a(k) and 
an(k) have the same number of zeros within the domain. Eventually, an(k) 
may have zeros an outside the domain, but then \an\ < e; i.e., the sequence 
of these zeros converges to 0. 

Applying Theorem 2 and Theorem 3 we conclude that F is continuous 
in the topology T. 

COROLLARY. Consider now the solution q(x, t) of K d V equation, 
satisfying the initial condition q(x, 0) = q(x). Let 

F(q(t) ) = (r(k, t), ctj, Cj(t) ) 

such as defined in (2). Then we have immediately the following results: 
(a) If for a fixed t, the sequence {qn{x, t) } in Lx is uniformly bounded 

in L , and converges in Lx to q(x, t) G Ll5 then F(qn(x, t) ) converges to 
F(q(x, t)) in the topology T. 

(b) If qn(x) converges in Lx to q(x) and the sequence qn(x) is uniformly 
bounded in L , then F(qn(x, t)) converges to F(q(x, t)) in the topology r 
uniformly in t. 

THEOREM 5. Let Gt(i = 1, 2) be domains in L2 n Lv bounded in the 
topology of L ; i.e., 3d such that 

Gx = {q G L\\ J _Qo \q(t) \dt < d and 
/*oo 

/ _oo q(x)m(x, 0)dx = 0} 

/*oo 

G2 = {q & L\\ J _oo \q(t) \dt < d and 
/*oo 

/ _oo q(x)m(x, 0)dx ¥= 0}. 

Then F is a continuous map from Gt equipped with topology of Lx to 
oo oo 

e x e R' x e R1 

i=\ i = \ 

where C represents the space of complex valued functions continuous on 
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R — {0}, considered with the topology of uniform convergence on the 
oo 

compact sets ofR— {0}. On © Rl we consider the following norm 

Wa\ 1» («2b a2 2)> • . . , ( « / ! , . • • ,«//) II = 2a SUp \at L 
i = l y 

Proof. From (10) we conclude that there exists /c > 0 such that all the 
zeros of a(k) and an(k) are situated on the interval (0, in) of the imaginary 

axis. From [3, Theorem 1] it is known that if q e L2 then —m(x, k) ex-
dk 

ists and is continuous for Im k ^ 0. Let us suppose that q and #w are in G] ; 
therefore a(/c) is continuous for k = 0 and 

lim a (A;) ^ 0. 

Hence on the contour of the rectangle with vertices ( — 5, 5, 5 + IK, —8 + 
ÎK) a(k) and an(k) are continuous and ¥> 0; in addition a(k) and an(k) are 
holomorphic in the interior of this rectangle. By Hurwitz's theorem 37V 
such that n > TV => a(k) and Û„(/:) have the same number of zeros within 
the rectangle. As all the zeros are within the rectangle, we conclude 
that, starting from a certain N, an(k) and a(k) have the same number of 
zeros. The continuity of F now follows directly from Theorem 2 and 
Theorem 3. 

Let us suppose now that q and qn are such that 

/

+ oo f + oo 

q(x)m(x, 0)dx and vn = / qn(x)mn(x, 0)dx 
then v and vn are finite and ^ 0. We have: 

v 1 /*+0° 
to (A:) = A: - - - — / _ q(t)(m(t9 k) - m(t9 0) )dt\ 

m(x, k) is continuous for Im k i? 0 then ka(k) and kan(k) are also 
continuous on the contour of the rectangle with vertices ( — S, ô, ô + /K, 
— S 4- //c). /:tf(/c) and kan(k) are ^ 0 on this contour, and the zeros of 
/ctf(/c) are the same as the zeros of a(k). Then by Hurwitz's theorem, 
starting from a certain N, an(k) and a(k) have the same number of zeros. 
This implies that F is continuous (Theorem 2 and Theorem 3). 

COROLLARY. We have immediately the following proposition for q(x, t)y 

the solution o / K d V equation such that q(x, 0) = q(x) 
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(a) if for a fixed t, the sequence qn(x, t) in G/? (/' = 1, 2) converges in 

L\ to q(x, t) in Gt then F(qn(x, t) ) converges to F(q(x, t) ) in 

00 00 

C X S R ' x e R 1 . 

(b) ifqn(x) converges in Lx to q(x) and if qn(x) and q(x) e Gt (i = 1, 2) 
then F(qn(x, t) ) converges to F(q(xy t) ) in the topology of 

CO CO 

e x e R! e R' 

uniformly in t. 

Conclusion. In this article we have given conditions for the continuity of 
the scattering transformation. In order for us to obtain more general 
results for the continuity of the inverse transformation, we would have to 
establish conditions for the differentiality of the scattering transformation 
and make use of an inverse function theorem. 
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