Holocene ${}^{14}C$ production rate and solar activity

D.M. Volobuev¹, Yu.A. Nagovitsyn¹, H. Jungner², M.G. Ogurtsov³, V.G. Ivanov¹ and E.V. Miletsky¹

 $^1 \rm Central$ astronomical observatory at Pulkovo of RAS, St.-Petersburg, Russia, e-mail: nag@gao.spb.ru

²Helsinki university, Helsinki, Finland, e-mail: hogne.jungner@helsinki.fi ³Ioffe Institute, St.-Petersburg, Russia, e-mail: maxim.ogurtsov@mail.ioffe.ru

Abstract. We have used most recent archaeomagnetic and ice core CO_2 records for the longterm trend correction in global tree ring radiocarbon concentration ($\Delta^{14}C$). The short-term CO_2 exchange system was approximated via first order differential equation with frequency dependent coefficients. A generalized multi-scale box model was constructed and used for the reservoir effect correction.

1. Introduction

It is known that ${}^{14}C$ produced from atmospheric nitrogen after the chain of nuclear reactions induced by galactic cosmic ray fluxes. Both terrestrial magnetic moment and partly atmospheric CO_2 changes are the causes of measured atmospheric ${}^{14}C/{}^{12}C$ long-term variation during the Holocene. Moreover, CO_2 reservoir exchange leads to shift and decay of short term atmospheric variations of ${}^{14}C$ concentration in the range of periods 10-1000 yrs.

2. Method and results

Long-term changes of the initial ${}^{14}C$ curve are corrected using recent compilation by Yang *et al.* (2000) of the archaeomagnetic data and Elsasser *et al.* (1956) relation. CO_2 record of Tailor Dome by Indermuehle *et al.* (1999) and Law Dome ice core by Etheridge *et al.* (1996) was used to get the long-term variation of $\delta^{14}C$ value by Stuiver *et al.* (1977). This value was used as input $n(t, \omega)$ to our generalized multi-scale box model in the following form:

$$C_1(\omega)dn(t,\omega)/dt + C_2(\omega)n(t,\omega) = S(t,\omega).$$
(2.1)

Here $n(t, \omega)$ - frequency and time dependent absolute atmospheric radiocarbon concentration, $S(t, \omega)$ - radiocarbon source (galactic cosmic ray flux modulated by solar activity). This equation describes the multi-scale reservoir shifts and decay (including radioactive one) in most general form. Using direct wavelet transform we approximated C_1 and C_2 in least square sense for the known (calibration) time interval. Then, using the inverse wavelet transform we estimated $S(t, \omega)$ for the preceding time.

Decadal radiocarbon Stuiver *et al.* (1998(2)) series was calibrated on the base of Wolf number set extension 1090-1950 by Nagovitsyn (1997). Obtained $S(t, \omega)$ estimation (figure 1) can be compared with the processing of naked eye sunspot observations (Nagovitsyn, 2001).

The annual radiocarbon series (Stuiver *et al.* 1998(1)) was calibrated on the base of Group sunspot numbers (GSN) by Hoyt & Schatten, 1998 and Zurich Wolf numbers

Figure 1. Annual and decadal solar activity based on radiocarbon production series.

through 1700-1950. Radiocarbon reconstruction $S(t, \omega)$ was estimated via average C_1, C_2 as shown in figure 1, bottom left panel. Correlation $S(t, \omega)$ with GSN during (1610-1950) yrs R=0.9. The fine structure of Maunder minimum epoch shows that none of 11-yr-cycles was lost in variations of radiocarbon reconstruction. These cycles have extra small amplitude and more long period (12-15) yrs.

Acknowledgements

The work was supported by grants INTAS 2001-0550 "The Solar-terrestrial climate link in the past millennia and its influence on future climate", Federal Scientific and Technical Program "Astronomy-1105", Program of Presidium of Russian Academy of Sciences "Non-stationary phenomena in astronomy" and Russian Fund for Basic Researches No 03-02-17505, 04-02-17560.

References

Elsasser, W., E. P. Ney & J. R. Winckler. 1956 Nature 178, 1226.

Etheridge, D.M., L.P. Steele, R.L. Langenfelds, R.J. Francey, J.-M. Barnola & V.I. Morgan. 1996 Jour. Geophys. Research 101, 4115–4128.

Hoyt, D.V. & Schatten, K.H. 1998 Solar Physics 179, 189–219.

Indermuehle, A. T. F.Stocker, F. Joos, H. Fischer, H. J. Smith, M. Wahlen, B. Deck, D. Mastroianni, J. Tschumi, T. Blunier, R.Meyer & B. Stauffer 1999 Nature 398, 121–126.

Stuiver, M. & Polach, H. A. 1977 Radiocarbon 3, 355–363.

Stuiver, M., P. J. Reimer & T. F. Braziunas. 1998 Radiocarbon 40, 1127–1151.

Stuiver, M., P. J. Reimer, Bard, E., Beck, J. W. Burr, G. S., Hughen, K. A., Kromer, B., McCormac, F. G., Plicht, J. v. d. & M. Spurk. 1998 Radiocarbon 40, 1041–1083.

Nagovitsyn, Yu.A. 1997 Astronomy Letters 23, 742–748.

Nagovitsyn, Yu.A. 2001 Geomagnetism and Aeronomy 41, 711.

Yang, S., Odah, H. & Shaw, J. 2000 Geophys. J. Int. 140, 158–162.