Proceedings of the Edinburgh Mathematical Society (2004) **47**, 659–668 © DOI:10.1017/S001309150200024X Printed in the United Kingdom

C^* -ALGEBRAS THAT ARE ISOMORPHIC AFTER TENSORING AND FULL PROJECTIONS

KAZUNORI KODAKA

Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213 Japan (kodaka@math.u-ryukyu.ac.jp)

(Received 21 February 2002)

Abstract Let A be a unital C^{*}-algebra and for each $n \in \mathbb{N}$ let M_n be the $n \times n$ matrix algebra over \mathbb{C} . In this paper we shall give a necessary and sufficient condition that there is a unital C^{*}-algebra B satisfying $A \not\cong B$ but for which $A \otimes M_n \cong B \otimes M_n$ for some $n \in \mathbb{N} \setminus \{1\}$. Also, we shall give some examples of unital C^{*}-algebras satisfying the above property.

Keywords: cancellation; full projection; Murray–von Neumann equivalence; strong Morita equivalence; tensor product

2000 Mathematics subject classification: Primary 46L05

1. Introduction

Let A be a unital C^{*}-algebra and for each $n \in \mathbb{N}$ let M_n be the $n \times n$ matrix algebra over \mathbb{C} . Let $M_n(A)$ be the $n \times n$ matrix algebra over A and we identify $M_n(A)$ with $A \otimes M_n$.

In [13], Plastiras gave an example of a pair of unital C^* -algebras A and B satisfying $A \not\cong B$ but $M_2(A) \cong M_2(B)$. Also, in [7], Cuntz showed that $O_3 \not\cong B$ but $M_2(O_3) \cong M_2(B)$, where O_3 is the Cuntz algebra generated by three isometries with pairwise orthogonal ranges and $B = M_2(O_3)$.

In this note, we shall give a necessary and sufficient condition that for a unital C^* -algebra A there is a unital C^* -algebra B satisfying $A \cong B$ but $M_n(A) \cong M_n(B)$ for some $n \in \mathbb{N} \setminus \{1\}$. We shall refer to these conditions as 'property (*)'. Also, we shall give some examples of unital C^* -algebras satisfying property (*).

2. Preliminaries

Let A be a C^* -algebra, M(A) its multiplier algebra and \tilde{A} its unitization. Let id_A be the identity map of A and let 1_A be the unit element in A if A is unital. We denote them by id and 1 if no confusion can arise.

Let p be a projection in M(A). Then we call p a full projection in A if $\overline{ApA} = A$ (see [4] or [5]). Let p, q be projections in A. Then p is equivalent to q in A, written $p \sim q$, if p is

Murray-von Neumann equivalent to q in A. We denote by (p) the equivalent class of p in A. Also, p is *subordinate* to q, written $p \preceq q$, if p is equivalent to a subprojection of q.

For every $n \in \mathbb{N}$ let $\{f_{ij}\}_{i,j=1}^n$ be matrix units of M_n and let I_n be the unit element in M_n . For any $n, m \in \mathbb{N}$ with $n \leq m$, we regard M_n as a left corner C^* -subalgebra of M_m and I_n as a projection in M_m . Let \mathbb{K} be the C^* -algebra of all compact operators on a countably infinite-dimensional Hilbert space. We regard M_n as a C^* -subalgebra of \mathbb{K} for each $n \in \mathbb{N}$ in the usual way. Let $\{e_{ij}\}_{i,j\in\mathbb{Z}}$ and $\{\overline{e_{ij}}\}_{i,j=0}^{\infty}$ be two families of matrix units of \mathbb{K} .

Lemma 2.1. Let A be a unital C^* -algebra. Then the following hold.

- (i) Let p, q be projections in $A \otimes \mathbb{K}$ with $p \leq q$. If p is a full projection in $A \otimes \mathbb{K}$, then so is q.
- (ii) Let q be a projection in $A \otimes \mathbb{K}$. Suppose that q is full in $A \otimes \mathbb{K}$. Let $p \in q(A \otimes \mathbb{K})q$ be a full projection in $q(A \otimes \mathbb{K})q$. Then p is full in $A \otimes \mathbb{K}$.

Proof. (i)

$$A \otimes \mathbb{K} = \overline{(A \otimes \mathbb{K})p(A \otimes \mathbb{K})} \subset \overline{(A \otimes \mathbb{K})q(A \otimes \mathbb{K})} \subset A \otimes \mathbb{K},$$

so that $\overline{(A \otimes \mathbb{K})q(A \otimes \mathbb{K})} = A \otimes \mathbb{K}$, i.e. q is full in $A \otimes \mathbb{K}$.

(ii) We note that

$$\overline{q(A\otimes\mathbb{K})p(A\otimes\mathbb{K})q}=q(A\otimes\mathbb{K})q$$

since p is full in $q(A \otimes \mathbb{K})q$. Then

$$\overline{(A \otimes \mathbb{K})p(A \otimes \mathbb{K})} \supset \overline{(A \otimes \mathbb{K})q(A \otimes \mathbb{K})p(A \otimes \mathbb{K})q(A \otimes \mathbb{K})} = A \otimes \mathbb{K}.$$

Therefore, p is full in $A \otimes \mathbb{K}$.

For a unital C^* -algebra A and each $n \in \mathbb{N}$, let $\operatorname{FP}_n(A)$ be the set of all full projections p in $A \otimes \mathbb{K}$ with $p(A \otimes \mathbb{K})p \cong M_n(A)$ and let $\operatorname{FP}_n(A)/\sim = \{(p) \mid p \in \operatorname{FP}_n(A)\}$. We denote $\operatorname{FP}_1(A)$ and $\operatorname{FP}_1(A)/\sim$ by $\operatorname{FP}(A)$ and $\operatorname{FP}(A)/\sim$, respectively.

3. A necessary and sufficient condition

Suppose that A is a unital C^* -algebra with property (*). Then there is a unital C^* algebra B satisfying $A \not\cong B$ but $M_n(A) \cong M_n(B)$ for some $n \in \mathbb{N} \setminus \{1\}$. Since A and B are strongly Morita equivalent, by Rieffel [14, Proposition 2.1] there is a full projection $q \in A \otimes \mathbb{K}$ such that $B \cong q(A \otimes \mathbb{K})q$. Then

$$M_n(A) \cong M_n(B) \cong (q \otimes I_n)(A \otimes \mathbb{K} \otimes M_n)(q \otimes I_n).$$

Let χ be an isomorphism of $M_n(A)$ onto $(q \otimes I_n)(A \otimes \mathbb{K} \otimes M_n)(q \otimes I_n)$ and let $p_1 = \chi(1_A \otimes f_{11})$.

Lemma 3.1. With the above notation, p_1 is a full projection in $A \otimes \mathbb{K} \otimes M_n$.

Proof. Since $1_A \otimes f_{11}$ is full in $A \otimes M_n$, p_1 is full in $(q \otimes I_n)(A \otimes \mathbb{K} \otimes M_n)(q \otimes I_n)$. Since $q \otimes I_n$ is full in $A \otimes \mathbb{K} \otimes M_n$, by Lemma 2.1 (ii) p_1 is full in $A \otimes \mathbb{K} \otimes M_n$.

For any $n \in \mathbb{N}$ let ψ_n be an isomorphism of $\mathbb{K} \otimes M_n$ onto \mathbb{K} with $\psi_{n*} = \mathrm{id}$, the identity map of $K_0(\mathbb{K} \otimes M_n)$ onto $K_0(\mathbb{K})$. Let $p = (\mathrm{id}_A \otimes \psi_n)(p_1) \in A \otimes \mathbb{K}$.

Lemma 3.2. With the above notation, $p \in FP(A)$.

Proof. Since p_1 is a full projection in $A \otimes \mathbb{K} \otimes M_n$ by Lemma 3.1, p is a full projection in $A \otimes \mathbb{K}$. Also,

$$p(A \otimes \mathbb{K})p \cong (\mathrm{id}_A \otimes \psi_n)(p_1(A \otimes \mathbb{K} \otimes M_n)p_1) \cong p_1(A \otimes \mathbb{K} \otimes M_n)p_1$$
$$= \chi((1_A \otimes f_{11})(A \otimes M_n)(1_A \otimes f_{11})) \cong A.$$

Therefore, we obtain the conclusion.

We shall show that $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$. To do this, we need lemmas.

Lemma 3.3. With the above notation, for any $N \in \mathbb{N}$ there is a partial isometry $v \in \mathbb{K} \otimes M_n$ such that

$$v^*v = \sum_{j=-N}^N e_{jj} \otimes I_n, \qquad vv^* = \sum_{j=-N}^N \psi_n(e_{jj} \otimes I_n) \otimes f_{11}$$
$$v(e_{ij} \otimes f_{kl})v^* = \psi_n(e_{ij} \otimes f_{kl}) \otimes f_{11} \quad \text{for } i, j = -N, \dots, 0, \dots, N \text{ and } k, l = 1, 2, \dots, n$$

Proof. Since $(e_{00} \otimes f_{11}) \otimes f_{11}$ is a minimal projection in $(\mathbb{K} \otimes M_n) \otimes M_n$, $\psi_n(e_{00} \otimes f_{11}) \otimes f_{11}$ is a minimal projection in $\mathbb{K} \otimes M_n$. Since all minimal projections are equivalent, there is a partial isometry $w \in \mathbb{K} \otimes M_n$ such that

$$w^*w = e_{00} \otimes f_{11}, \qquad ww^* = \psi_n(e_{00} \otimes f_{11}) \otimes f_{11}.$$

Let

$$v = \sum_{k=1}^n \sum_{j=-N}^N (\psi_n(e_{j0} \otimes f_{k1}) \otimes f_{11}) w(e_{0j} \otimes f_{1k}).$$

By routine computations, we can see that v is the required partial isometry in $\mathbb{K} \otimes M_n$.

Lemma 3.4. With the above notation, $p \otimes f_{11} \sim p_1$ in $A \otimes \mathbb{K} \otimes M_n$.

Proof. There are an $N \in \mathbb{N}$ and a projection $p_0 \in A \otimes M_{2N+1} \otimes M_n \subset A \otimes \mathbb{K} \otimes M_n$ such that $p_0 \sim p_1$ in $A \otimes \mathbb{K} \otimes M_n$. Since $(\mathrm{id}_A \otimes \psi_n)(p_0) \otimes f_{11} \sim (\mathrm{id}_A \otimes \psi_n)(p_1) \otimes f_{11} = p \otimes f_{11}$ in $A \otimes \mathbb{K} \otimes M_n$, we have only to show that $(\mathrm{id}_A \otimes \psi_n)(p_0) \otimes f_{11} \sim p_0$ in $A \otimes \mathbb{K} \otimes M_n$. We write

$$p_0 = \sum_{k,l=1}^n \sum_{i,j=-N}^N a_{ijkl} \otimes e_{ij} \otimes f_{kl}, \quad \text{where } a_{ijkl} \in A.$$

Then, by routine computations,

$$(1 \otimes v)p_0(1 \otimes v)^* = \sum_{k,l=1}^n \sum_{i,j=-N}^N a_{ijkl} \otimes v(e_{ij} \otimes f_{kl})v^* = (\mathrm{id}_A \otimes \psi_n)(p_0) \otimes f_{11},$$
$$p_0(1 \otimes v)^*(1 \otimes v)p_0 = \sum_{k,l=1}^n \sum_{i,j=-N}^N (a_{ijkl} \otimes e_{ij} \otimes f_{kl}) \left(1 \otimes \sum_{j=-N}^N e_{jj} \otimes I_n\right)p_0 = p_0.$$

Therefore, $p_0 \sim (\mathrm{id}_A \otimes \psi_n)(p_0) \otimes f_{11}$ in $A \otimes \mathbb{K} \otimes M_n$.

Proposition 3.5. With the above notation, $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$.

Proof. By Lemma 3.4, $\chi(1 \otimes f_{jj}) \sim \chi(1 \otimes f_{11}) = p_1 \sim p \otimes f_{11} \sim p \otimes f_{jj}$ in $A \otimes \mathbb{K} \otimes M_n$ for j = 1, 2, ..., n. Thus in $A \otimes \mathbb{K} \otimes M_n$,

$$q \otimes I_n = \chi(1 \otimes I_n) = \sum_{j=1}^n \chi(1 \otimes f_{jj}) \sim \sum_{j=1}^n p \otimes f_{jj} = p \otimes I_n$$

Therefore, we obtain the conclusion.

Theorem 3.6. Let A be a unital C^* -algebra. Suppose that there is a unital C^* algebra B satisfying $A \not\cong B$ but $M_n(A) \cong M_n(B)$ for some $n \in \mathbb{N} \setminus \{1\}$. Then there are full projections p, q in $A \otimes \mathbb{K}$ with $p \in FP(A)$, $q \notin FP(A)$ such that $q(A \otimes \mathbb{K})q \cong B$, $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$.

Proof. Since A and B are strongly Morita equivalent by Rieffel [14, Proposition 2.1], there is a full projection q in $A \otimes \mathbb{K}$ such that $q(A \otimes \mathbb{K})q \cong B$. If $q \in FP(A)$, $A \cong q(A \otimes \mathbb{K})q \cong B$. This is a contradiction. Thus $q \notin FP(A)$. Furthermore, by Proposition 3.5 there is a $p \in FP(A)$ such that $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$.

Corollary 3.7. Let A be a unital C^* -algebra. Then the following conditions are equivalent.

- (i) There is a unital C*-algebra B satisfying A ≇ B but M_n(A) ≅ M_n(B) for some n ∈ N \ {1}.
- (ii) There is a full projection q in $A \otimes \mathbb{K}$ with $q \notin FP(A)$ satisfying that there is a $p \in FP(A)$ such that $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$ for some $n \in \mathbb{N} \setminus \{1\}$.

Proof. (i) \Rightarrow (ii). This is clear by Theorem 3.6.

(ii) \Rightarrow (i). Put $B = q(A \otimes \mathbb{K})q$. Then

$$B \otimes M_n \cong (q \otimes I_n)(A \otimes \mathbb{K} \otimes M_n)(q \otimes I_n) \cong (p \otimes I_n)(A \otimes \mathbb{K} \otimes M_n)(p \otimes I_n) \cong A \otimes M_n$$

since $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$ and $p \in FP(A)$. Also, $A \not\cong B$. Indeed, if $A \cong B$, $q(A \otimes \mathbb{K})q \cong A$. Thus $q \in FP(A)$. This is a contradiction. Therefore, we obtain the conclusion.

662

Corollary 3.8. Let A be a unital C^* -algebra. Suppose that A has cancellation or A is purely infinite simple and that $K_0(A)$ is torsion free. Then A does not satisfy property (*).

Proof. Suppose that there is a unital C^* -algebra B satisfying $A \not\cong B$ but $M_n(A) \cong M_n(B)$ for some $n \in \mathbb{N} \setminus \{1\}$. Then there are full projections $p, q \in A \otimes \mathbb{K}$ with $p \in FP(A)$ and $q \notin FP(A)$ such that $p \otimes I_n \sim q \otimes I_n$ in $A \otimes \mathbb{K} \otimes M_n$ by Corollary 3.7. Hence n[p] = n[q] in $K_0(A)$. Since $K_0(A)$ is torsion free and A has cancellation or A is purely infinite simple, $p \sim q$ in $A \otimes \mathbb{K}$. This is a contradiction. Therefore, we obtain the conclusion. \Box

4. Examples

In this section, we shall give some examples of unital C^* -algebras with property (*).

Let A be a unital C^* -algebra. For any $p \in \operatorname{FP}(A)$, $((\operatorname{id}_A \otimes \psi_n)(p \otimes I_n)) \in \operatorname{FP}_n(A)/\sim$ by an easy calculation. In the same way as in the proof of [8, Lemma 3.1], we see that $((\operatorname{id}_A \otimes \psi_n)(p \otimes I_n))$ is independent of the choices of $p \in \operatorname{FP}(A)$ and ψ_n by easy computations. Hence we can define a map $\mu_n : \operatorname{FP}(A)/\sim \operatorname{FP}_n(A)/\sim$ by $\mu_n((p)) =$ $((\operatorname{id}_A \otimes \psi_n)(p \otimes I_n))$.

Lemma 4.1. With the above notation, μ_n is surjective for any $n \in \mathbb{N}$.

Proof. Let $q \in \operatorname{FP}_n(A)$. Then there is an isomorphism χ_q of $A \otimes M_n$ onto $q(A \otimes \mathbb{K})q$. Put $p = \chi_q(1_A \otimes f_{11})$. Then $p(A \otimes \mathbb{K})p \cong A$ and by Lemma 2.1 (ii) p is a full projection in $A \otimes \mathbb{K}$ since p is full in $q(A \otimes \mathbb{K})q$. Thus $p \in \operatorname{FP}(A)$. Furthermore, in the same way as in the proof of Lemma 3.4, $(\operatorname{id} \otimes \psi_n)(\chi_q(1 \otimes f_{11}) \otimes f_{jj}) \sim \chi_q(1 \otimes f_{jj})$ in $A \otimes \mathbb{K}$ for $j = 1, 2, \ldots, n$. Hence, in $A \otimes \mathbb{K}$,

$$(\mathrm{id}\otimes\psi_n)(p\otimes I_n)=\sum_{j=1}^n(\mathrm{id}\otimes\psi_n)(\chi_q(1\otimes f_{11})\otimes f_{jj})\sim\sum_{j=1}^n\chi_q(1\otimes f_{jj})=q.$$

Therefore, we obtain the conclusion.

Proposition 4.2. Let A be a unital C^* -algebra such that $K_0(A)$ has a torsion element x with nx = 0 and $kx \neq 0$ for k = 1, 2, ..., n - 1, where $n \in \mathbb{N}$ with $n \geq 2$. Suppose that $FP(A)/\sim = \{(1_A \otimes e_{00})\}$. Then there are unital C^* -algebras A_1 and A_2 strongly Morita equivalent to A such that $M_n(A_1) \cong M_n(A_2)$, $M_k(A_1) \ncong M_k(A_2)$ for k = 1, 2, ..., n - 1.

Proof. For the $x \in K_0(A)$, there are $l, m \in \mathbb{N}$ and a projection $p \in M_l(A)$ such that $x = [p] - [1_A \otimes I_m]$ in $K_0(A)$. Since nx = 0 in $K_0(A)$, $[p \otimes I_n] = [1 \otimes I_{mn}]$ in $K_0(A)$. Thus there are $k, N \in \mathbb{N}$ with $N \ge l, m$ such that

$$(p \otimes I_n) \oplus (1_A \otimes I_k \otimes I_n) \sim (1_A \otimes I_m \otimes I_n) \oplus (1_A \otimes I_k \otimes I_n)$$

in $M_{N+k}(A) \otimes M_n$, where we regard p and I_m as projections in $M_{N+k}(A)$. Thus

$$(p \oplus (1 \otimes I_k))M_{N+k}(A)(p \oplus (1 \otimes I_k)) \otimes M_n$$

$$\cong ((1 \otimes I_m \otimes I_n) \oplus (1 \otimes I_k \otimes I_n))(M_{N+k}(A) \otimes M_n)((1 \otimes I_m \otimes I_n) \oplus (1 \otimes I_k \otimes I_n))$$

$$\cong M_{m+k}(A) \otimes M_n.$$

Put $A_1 = (p \oplus (1 \otimes I_k))M_{N+k}(A)(p \oplus (1 \otimes I_k)), A_2 = M_{m+k}(A)$. Then $M_n(A_1) \cong M_n(A_2)$. Let $q = p \oplus (1 \otimes I_k)$. Since $1 \otimes I_k$ is full in $M_{N+k}(A)$, by Lemma 2.1 (i) q is full in $M_{N+k}(A)$. Hence by Brown [4, Corollary 2.6] A_1 is strongly Morita equivalent to A. Suppose that $M_r(A_1) \cong M_r(A_2)$ for some $r \in \mathbb{N}$ with $1 \leq r \leq n-1$. Then by an easy computation, $(\mathrm{id}_A \otimes \psi_r)(q \otimes I_r) \in \mathrm{FP}_{(m+k)r}(A)$. Since $\mathrm{FP}(A)/\sim = \{(1 \otimes e_{00})\}$, by Lemma 4.1

$$\operatorname{FP}_{(m+k)r}(A)/\!\sim = \left\{ \left(1 \otimes \sum_{j=0}^{(m+k)r} e_{jj} \right) \right\}.$$

Hence $(\mathrm{id} \otimes \psi_r)(q \otimes I_r) \sim 1 \otimes \sum_{j=0}^{(m+k)r} e_{jj}$ in $A \otimes \mathbb{K}$. Since ψ_{r*} is the identity map of $K_0(\mathbb{K} \otimes M_r)$ onto $K_0(\mathbb{K})$, $r[q] = (m+k)r[1_A]$ in $K_0(A)$. Hence rx = 0 in $K_0(A)$. This is a contradiction. Therefore, we obtain the conclusion.

The Cuntz algebra O_3 satisfies the assumptions of Proposition 4.2 since $K_0(O_3) \cong \mathbb{Z}/2\mathbb{Z}$ and $FP(O_3)/\sim = \{(1 \otimes e_{00})\}$ by [8, Corollary 4.6] and [9, Corollary 15]. We shall give an example of a simple unital C^* -algebra with cancellation satisfying the assumptions of Proposition 4.2.

For a C^* -algebra C we denote by $\operatorname{Aut}(C)$ the group of all automorphisms of C and by $\operatorname{sr}(C)$ its stable rank.

Let θ be a non-quadratic irrational number in (0, 1) and let $\mathbb{Z} + \mathbb{Z}\theta$ be the ordered group with the usual total ordering. Let \mathbb{D} be the group of all rational numbers and let $G = (\mathbb{Z} + \mathbb{Z}\theta) \oplus \mathbb{D}$ be the ordered group with the strict ordering from the first coordinate. We denote by G_+ its positive cone and we choose an order unit $u \in G$ by u = (1, 0). Then by routine calculations, we can see that (G, G_+, u) is a simple dimension group by Blackadar [2, Theorem 7.4.1]. Let C be a unital AF-algebra corresponding to (G, G_+, u) . Let α be an automorphism of C such that the automorphism α_* of $K_0(C)$ is defined by $\alpha_*(a, b) = (a, -2b)$ for any $(a, b) \in K_0(C)$. Let $A = C \times_{\alpha} \mathbb{Z}$. Then in the same way as in Blackadar [2, 10.11.2], we can see that A is a simple unital stably finite C^* -algebra with its scaled ordered group as follows:

$$((\mathbb{Z} + \mathbb{Z}\theta) \oplus \mathbb{Z}/3\mathbb{Z}, \{(a, b) \in (\mathbb{Z} + \mathbb{Z}\theta) \oplus \mathbb{Z}/3\mathbb{Z}|a > 0\} \cup \{(0, 0)\}, (1, 0)).$$

Example 4.3. Let A be as above. Then A has cancellation and satisfies the assumptions of Proposition 4.2. Thus there are unital C^* -algebras A_1 and A_2 strongly Morita equivalent to A such that $M_3(A_1) \cong M_3(A_2)$, $M_k(A_1) \ncong M_k(A_2)$ for k = 1, 2.

In fact, let (a, [b]) be any positive element in $(\mathbb{Z} + \mathbb{Z}\theta) \oplus \mathbb{Z}/3\mathbb{Z}$, where $a \in \mathbb{Z} + \mathbb{Z}\theta$ with a > 0 and [b] is an equivalence class in $\mathbb{Z}/3\mathbb{Z}$ of $b \in \mathbb{Z}$ with $0 \leq b \leq 2$. Then by the Pimsner–Voiculescu exact sequence, there is a projection q in some $M_n(C)$ such that [q] = (a, [b]) in $K_0(A)$. Since C has cancellation, by the definition of the ordering of $K_0(C)$, there is a projection p in $M_n(C)$ such that $p \leq q$ and $[p] \in (\mathbb{Z} + \mathbb{Z}\theta) \oplus 0 \subset K_0(C)$. Since $qM_n(A)q$ is simple, p is full in $qM_n(A)q$.

The conjecture in Blackadar [1, Remark A7] has been proved by Blackadar. This we can obtain that $\operatorname{sr}(qM_n(A)q) \leq \operatorname{sr}(pM_n(A)p)$. Also since $\alpha_*([p]) = [p]$ and C has cancellation,

there is a unitary element $w \in M_n(C)$ such that $\alpha(p) = w^* p w$. Hence

$$\operatorname{sr}(qM_n(A)q) \leqslant \operatorname{sr}(pM_n(A)p) = \operatorname{sr}(pM_n(C)p \times_{Ad(w) \circ (\alpha \otimes \operatorname{id}_{M_n})} \mathbb{Z})$$
$$\leqslant \operatorname{sr}(pM_n(C)p) + 1 = 2.$$

Thus by Blackadar [1, Theorem A1], A has cancellation. Since θ is non-quadratic, by Shen [15, Theorem 2.1] the identity map of $\mathbb{Z} + \mathbb{Z}\theta$ is the unique order-preserving automorphism of $\mathbb{Z} + \mathbb{Z}\theta$. Thus for any $\beta \in \operatorname{Aut}(A \otimes \mathbb{K})$ there is an automorphism σ of $\mathbb{Z}/3\mathbb{Z}$ such that $\beta_* = \operatorname{id}_{\mathbb{Z} + \mathbb{Z}\theta} \oplus \sigma$ on $K_0(A \otimes \mathbb{K}) = (\mathbb{Z} + \mathbb{Z}\theta) \oplus \mathbb{Z}/3\mathbb{Z}$. Hence $\beta_*([1 \otimes e_{00}]) = (1, \sigma(0)) =$ $(1, 0) = [1 \otimes e_{00}]$ in $K_0(A \otimes \mathbb{K})$. Since A has cancellation, $\beta(1 \otimes e_{00}) \sim 1 \otimes e_{00}$ in $A \otimes \mathbb{K}$. Therefore, $\operatorname{FP}(A)/ \sim = \{(1 \otimes e_{00})\}$ since $\operatorname{FP}(A)/ \sim = \{(\beta(1 \otimes e_{00})) \mid \beta \in \operatorname{Aut}(A \otimes \mathbb{K})\}$ by [8, Theorem 4.5].

Next we shall give an example of a unital C^* -algebra A with property (*) whose $K_0(A)$ is torsion free.

Let \mathbb{C}^m be the topological space of *m*-tuples of complex numbers and let S^{2m-1} be the (2m-1)-dimensional unit sphere of \mathbb{C}^m . Let $C(S^{2m-1})$ be the C^* -algebra of all complex-valued continuous functions on S^{2m-1} . Then $K_0(C(S^{2m-1})) = \mathbb{Z}[1_{C(S^{2m-1})}]$ and $K_1(C(S^{2m-1})) = \mathbb{Z}[v]$, where v is a unitary element in $M_m(C(S^{2m-1}))$. In the same way as in Clarke [**6**], we shall define the Toeplitz algebra $\tau(S^{2m-1})$ as follows: let $\operatorname{Ext}(C(S^{2m-1}))$ be the group of all stable strong equivalence classes of unital extensions of $C(S^{2m-1})$ by \mathbb{K} . Since there is the isomorphism γ of $\operatorname{Ext}(C(S^{2m-1}))$ onto $\operatorname{Hom}(K_1(C(S^{2m-1})),\mathbb{Z}) \cong \mathbb{Z}$ defined in Brown [**3**, Theorem] or Blackadar [**2**, 16.3.2], we define a unital extension τ as $\gamma([\tau])([v]) = 1$, where $[\tau]$ is the stable strong equivalence class in $\operatorname{Ext}(C(S^{2m-1}))$ of τ . We may assume that τ is essential by Blackadar [**2**, Proposition 15.6.5]. Let $\tau(S^{2m-1})$ be the pull-back of $(C(S^{2m-1}), M(\mathbb{K}))$ along τ and the quotient map of $M(\mathbb{K})$ onto $M(\mathbb{K})/\mathbb{K}$. We regard \mathbb{K} as a C^* -subalgebra of $\tau(S^{2m-1})$. Then $K_0(\tau(S^{2m-1})) \cong \mathbb{Z}$.

Example 4.4. With the above notation, suppose that $m \ge 3$. Then there is a unital C^* -algebra B satisfying $M_{m-1}(\tau(S^{2m-1})) \not\cong B$ but $M_{2m-2}(\tau(S^{2m-1})) \cong M_2(B)$. In fact, since $\gamma([\tau])([v^*]) = -[\overline{e_{00}}]$ in $K_0(\mathbb{K})$, by the definition of $\gamma([\tau])$,

$$\begin{bmatrix} V^* \begin{bmatrix} 1 \otimes I_m & 0 \\ 0 & 0 \end{bmatrix} V \end{bmatrix} - \begin{bmatrix} \begin{bmatrix} 1 \otimes I_m & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} = -[\overline{e_{00}}]$$

in $K_0(\mathbb{K})$, where V is a unitary element in $M_{2m}(\tau(S^{2m-1}))$ with

$$(\pi \otimes \mathrm{id}_{M_{2m}})(V) = \begin{bmatrix} v & 0\\ 0 & v^* \end{bmatrix}$$

and where π is the homomorphism of $\tau(S^{2m-1})$ onto $C(S^{2m-1})$ associated with τ . Hence

$$\begin{bmatrix} V^* \begin{bmatrix} 1 \otimes I_m & 0 \\ 0 & 0 \end{bmatrix} V \end{bmatrix} = \begin{bmatrix} (1 - \overline{e_{00}}) \otimes f_{11} + \sum_{j=2}^m 1 \otimes f_{jj} & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$$

in $K_0(\tilde{\mathbb{K}})$. Since $\tilde{\mathbb{K}}$ has cancellation, there is a unitary element R in $M_{2m}(\tilde{\mathbb{K}})$ such that

$$R^*V^* \begin{bmatrix} 1 \otimes I_m & 0\\ 0 & 0 \end{bmatrix} VR = \begin{bmatrix} (1 - \overline{e_{00}}) \otimes f_{11} + \sum_{j=2}^m 1 \otimes f_{jj} & 0\\ 0 & 0 \end{bmatrix}$$

Thus

$$(1_{\tau(S^{2m-1})} - \overline{e_{00}}) \oplus I_{m-1} \sim 1_{\tau(S^{2m-1})} \oplus I_{m-1}$$
 in $M_m(\tau(S^{2m-1})),$

where we regard I_{m-1} as the unit element in $M_{m-1}(\tau(S^{2m-1}))$. Let $p = (1-\overline{e_{00}}) \oplus I_{m-2} \in M_{m-1}(\tau(S^{2m-1}))$. Then

$$p \oplus p = (1 - \overline{e_{00}}) \oplus I_{m-2} \oplus (1 - \overline{e_{00}}) \oplus I_{m-2} \sim (1 - \overline{e_{00}}) \oplus I_{m-3} \oplus (1 - \overline{e_{00}}) \oplus I_{m-1}$$
$$\sim (1 - \overline{e_{00}}) \oplus I_{m-3} \oplus 1 \oplus I_{m-1} = (1 - \overline{e_{00}}) \oplus I_{m-1} \oplus I_{m-2}$$
$$\sim I_{m-1} \oplus I_{m-1}$$

in $M_{2m-2}(\tau(S^{2m-1}))$. Thus

$$pM_{m-1}(\tau(S^{2m-1}))p \otimes M_2 \cong (p \oplus p)M_{2m-2}(\tau(S^{2m-1}))(p \oplus p) \cong M_{2m-2}(\tau(S^{2m-1})).$$

Put $B = pM_{m-1}(\tau(S^{2m-1}))p$. Then $M_2(B) \cong M_{2m-2}(\tau(S^{2m-1}))$. We shall prove that $B \not\cong M_{m-1}(\tau(S^{2m-1}))$. By Phillips and Raeburn [12, Remark 2.23], the Picard group of $C(S^{2m-1})$, Pic $(C(S^{2m-1}))$, is isomorphic to the semi-direct product group $H^2(S^{2m-1},\mathbb{Z}) \times_s$ Homeo (S^{2m-1}) , where Homeo (S^{2m-1}) is the group of all homeomorphisms on S^{2m-1} and it acts on $H^2(S^{2m-1},\mathbb{Z})$ in the natural way. Since $H^2(S^{2m-1},\mathbb{Z}) =$ 0 by Massey [11, Theorem 2.14], Pic $(C(S^{2m-1})) \cong$ Homeo (S^{2m-1}) . Thus, by [8, Theorem 4.5], FP $(C(S^{2m-1}))/ \sim = \{(1 \otimes e_{00})\}$. Since $(\pi \otimes \mathrm{id}_{\mathbb{K}})(q) \in \mathrm{FP}(C(S^{2m-1}))$ for any $q \in \mathrm{FP}(\tau(S^{2m-1})), \ (\pi \otimes \mathrm{id})(q) \sim 1_{C(S^{2m-1})} \otimes e_{00}$ in $C(S^{2m-1}) \otimes \mathbb{K}$. Hence, by [10, Lemma 4.1],

$$\begin{aligned} \operatorname{FP}(\tau(S^{2m-1}))/\sim \\ \subset \{(q) \mid q \text{ is a projection in } \tau(S^{2m-1}) \otimes \mathbb{K} \text{ with } (\pi \otimes \operatorname{id})(q) = 1 \otimes e_{00} \} \end{aligned}$$

By [10, Theorem 2.1], for every projection $q \in \tau(S^{2m-1}) \otimes \mathbb{K}$ with $(\pi \otimes \mathrm{id})(q) = 1 \otimes e_{00}$, $q(\tau(S^{2m-1}) \otimes \mathbb{K})q \cong \tau(S^{2m-1})$. Furthermore, since τ is essential, q is full in $\tau(S^{2m-1}) \otimes \mathbb{K}$. Thus

$$FP(\tau(S^{2m-1}))/\sim = \{(q) \mid q \text{ is a projection in } \tau(S^{2m-1}) \otimes \mathbb{K} \text{ with } (\pi \otimes \mathrm{id})(q) = 1 \otimes e_{00} \}.$$

Hence, by an easy computation, we can see that

$$\begin{aligned} \operatorname{FP}(\tau(S^{2m-1}))/{\sim} &= \bigg\{ \left(\left(1 - \sum_{j=0}^{n} \overline{e_{jj}}\right) \otimes e_{00} \right) \ \bigg| \ n \in \mathbb{N} \cup \{0\} \bigg\} \\ &\qquad \qquad \cup \bigg\{ \left(1 \otimes e_{00} + \sum_{j=1}^{n} \overline{e_{jj}} \otimes e_{11} \right) \ \bigg| \ n \in \mathbb{N} \bigg\}. \end{aligned}$$

https://doi.org/10.1017/S001309150200024X Published online by Cambridge University Press

Moreover, by Lemma 4.1,

$$\operatorname{FP}_{m-1}(\tau(S^{2m-1}))/ \sim = \left\{ \left(\left(1 - \sum_{j=0}^{n} \overline{e_{jj}}\right) \otimes \sum_{k=0}^{m-2} e_{kk} \right) \middle| n \in \mathbb{N} \cup \{0\} \right\} \\ \cup \left\{ \left(1 \otimes \sum_{k=0}^{m-2} e_{kk} + \sum_{j=1}^{n} \overline{e_{jj}} \otimes \sum_{k=m-1}^{2m-3} e_{kk} \right) \middle| n \in \mathbb{N} \right\}.$$

Since $M_{m-1}(\tau(S^{2m-1}))$ is finite by Blackadar [2, 6.10.1], $(p) \notin \operatorname{FP}_{m-1}(\tau(S^{2m-1}))/\sim$. Therefore, $B \not\cong M_{m-1}(\tau(S^{2m-1}))$.

Finally, we shall give an example of a unital C^* -algebra A without property (*) whose $K_0(A)$ has a torsion element.

For every $k \in \mathbb{N} \setminus \{1\}$ let τ_k be an essential unital extension of $C(S^1)$ by \mathbb{K} with $\gamma([\tau_k])([v]) = k$. Let E_k be the pull-back of $(C(S^1), M(\mathbb{K}))$ along τ_k and the quotient map of $M(\mathbb{K})$ onto $M(\mathbb{K})/\mathbb{K}$. Then $K_0(E_k) \cong \mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z}$ and, in the same way as in Example 4.4, we can see that

 $\operatorname{FP}(E_k)/{\sim}=\{(p) \mid p \text{ is a projection in } E_k \otimes \mathbb{K} \text{ with } (\pi \otimes \operatorname{id})(p) = \mathbb{1}_{C(S^1)} \otimes e_{00}\},\$

where π is the homomorphism of E_k onto $C(S^1)$ associated with τ_k .

Example 4.5. With the above notation, E_k does not satisfy property (*).

In fact, by Corollary 3.7 it suffices to show that for any projection $q \in E_k \otimes \mathbb{K}$ satisfying that there is a projection $p \in FP(E_k)$ with $p \otimes I_n \sim q \otimes I_n$ in $E_k \otimes \mathbb{K} \otimes M_n$ for some $n \in \mathbb{N} \setminus \{1\}, q \in FP(E_k)$. Suppose that q is such a projection. Then $n\pi_*([q]) = n[1]$ in $K_0(C(S^1))$. Since $K_0(C(S^1)) \cong \mathbb{Z}$ and $C(S^1)$ has cancellation, $(\pi \otimes \operatorname{id}_{\mathbb{K}})(q) \sim 1 \otimes e_{00}$ in $C(S^1) \otimes \mathbb{K}$. Thus, by [10, Lemma 4.1], there is a projection $q_0 \in E_k \otimes \mathbb{K}$ such that $q_0 \sim q$ in $E_k \otimes \mathbb{K}$ and $(\pi \otimes \operatorname{id})(q_0) = 1 \otimes e_{00}$. Therefore, $q \in FP(E_k)$.

Acknowledgements. I thank Professor M. Nagisa for bringing my attention to a result of Plastiras, and Professor H. Osaka for some helpful discussions about stable ranks. I also thank the referee for a number of valuable comments and suggestions for improvement of the manuscript.

References

- B. BLACKADAR, A stable cancellation theorem from simple C*-algebras, Proc. Lond. Math. Soc. 47 (1983), 303–305.
- 2. B. BLACKADAR, *K-theory for operator algebras*, 2nd edn, MSRI Publication 5 (Cambridge University Press, 1998).
- 3. L. G. BROWN, Operator algebras and algebraic K-theory, Bull. Am. Math. Soc. 81 (1975), 1119–1121.
- L. G. BROWN, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pac. J. Math. 71 (1977), 349–363.
- 5. L. G. BROWN, P. GREEN AND M. A. RIEFFEL, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, *Pac. J. Math.* **71** (1977), 349–363.

$K. \ Kodaka$

- 6. N. P. CLARKE, A finite but not stably finite C*-algebra, Proc. Am. Math. Soc. 96 (1986), 85–88.
- 7. J. CUNTZ, K-theory for certain C*-algebras, Ann. Math. 113 (1981), 181–197.
- K. KODAKA, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C*-algebras, J. Operat. Theory 37 (1997), 357–369.
- K. KODAKA, Picard groups of irrational rotation C^{*}-algebras, J. Lond. Math. Soc. 56 (1997), 179–188.
- K. KODAKA, A lifting problem of full projections in stable algebras of separable unital nuclear C^{*}-algebras to their unital extensions, preprint, 2001.
- 11. W. S. MASSEY, Homology and cohomology theory (Marcel Dekker, New York, 1978).
- J. PHILLIPS AND I. RAEBURN, Automorphisms of C*-algebras and second Čech cohomology, Indiana Univ. Math. J. 29 (1980), 799–822.
- J. PLASTIRAS, C*-algebras isomorphic after tensoring, Proc. Am. Math. Soc. 66 (1977), 276–278.
- M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pac. J. Math. 93 (1981), 415–429.
- C. L. SHEN, A note on the automorphism groups of simple dimension groups, *Pac. J. Math.* 89 (1980), 199–207.