C^{*}-ALGEBRAS THAT ARE ISOMORPHIC AFTER TENSORING AND FULL PROJECTIONS

KAZUNORI KODAKA
Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213 Japan (kodaka@math.u-ryukyu.ac.jp)

(Received 21 February 2002)

Abstract

Let A be a unital C^{*}-algebra and for each $n \in \mathbb{N}$ let M_{n} be the $n \times n$ matrix algebra over \mathbb{C}. In this paper we shall give a necessary and sufficient condition that there is a unital C^{*}-algebra B satisfying $A \nsupseteq B$ but for which $A \otimes M_{n} \cong B \otimes M_{n}$ for some $n \in \mathbb{N} \backslash\{1\}$. Also, we shall give some examples of unital C^{*}-algebras satisfying the above property.

Keywords: cancellation; full projection; Murray-von Neumann equivalence; strong Morita equivalence; tensor product
2000 Mathematics subject classification: Primary 46L05

1. Introduction

Let A be a unital C^{*}-algebra and for each $n \in \mathbb{N}$ let M_{n} be the $n \times n$ matrix algebra over \mathbb{C}. Let $M_{n}(A)$ be the $n \times n$ matrix algebra over A and we identify $M_{n}(A)$ with $A \otimes M_{n}$.

In [13], Plastiras gave an example of a pair of unital C^{*}-algebras A and B satisfying $A \nsubseteq B$ but $M_{2}(A) \cong M_{2}(B)$. Also, in [7], Cuntz showed that $O_{3} \not \approx B$ but $M_{2}\left(O_{3}\right) \cong M_{2}(B)$, where O_{3} is the Cuntz algebra generated by three isometries with pairwise orthogonal ranges and $B=M_{2}\left(O_{3}\right)$.

In this note, we shall give a necessary and sufficient condition that for a unital C^{*} algebra A there is a unital C^{*}-algebra B satisfying $A \not \approx B$ but $M_{n}(A) \cong M_{n}(B)$ for some $n \in \mathbb{N} \backslash\{1\}$. We shall refer to these conditions as 'property $(*)$ '. Also, we shall give some examples of unital C^{*}-algebras satisfying property $(*)$.

2. Preliminaries

Let A be a C^{*}-algebra, $M(A)$ its multiplier algebra and \tilde{A} its unitization. Let id_{A} be the identity map of A and let 1_{A} be the unit element in A if A is unital. We denote them by id and 1 if no confusion can arise.
Let p be a projection in $M(A)$. Then we call p a full projection in A if $\overline{A p A}=A$ (see [4] or [5]). Let p, q be projections in A. Then p is equivalent to q in A, written $p \sim q$, if p is

Murray-von Neumann equivalent to q in A. We denote by (p) the equivalent class of p in A. Also, p is subordinate to q, written $p \precsim q$, if p is equivalent to a subprojection of q. For every $n \in \mathbb{N}$ let $\left\{f_{i j}\right\}_{i, j=1}^{n}$ be matrix units of M_{n} and let I_{n} be the unit element in M_{n}. For any $n, m \in \mathbb{N}$ with $n \leqslant m$, we regard M_{n} as a left corner C^{*}-subalgebra of M_{m} and I_{n} as a projection in M_{m}. Let \mathbb{K} be the C^{*}-algebra of all compact operators on a countably infinite-dimensional Hilbert space. We regard M_{n} as a C^{*}-subalgebra of \mathbb{K} for each $n \in \mathbb{N}$ in the usual way. Let $\left\{e_{i j}\right\}_{i, j \in \mathbb{Z}}$ and $\left\{\overline{e_{i j}}\right\}_{i, j=0}^{\infty}$ be two families of matrix units of \mathbb{K}.

Lemma 2.1. Let A be a unital C^{*}-algebra. Then the following hold.
(i) Let p, q be projections in $A \otimes \mathbb{K}$ with $p \leqslant q$. If p is a full projection in $A \otimes \mathbb{K}$, then so is q.
(ii) Let q be a projection in $A \otimes \mathbb{K}$. Suppose that q is full in $A \otimes \mathbb{K}$. Let $p \in q(A \otimes \mathbb{K}) q$ be a full projection in $q(A \otimes \mathbb{K}) q$. Then p is full in $A \otimes \mathbb{K}$.

Proof. (i)

$$
A \otimes \mathbb{K}=\overline{(A \otimes \mathbb{K}) p(A \otimes \mathbb{K})} \subset \overline{(A \otimes \mathbb{K}) q(A \otimes \mathbb{K})} \subset A \otimes \mathbb{K}
$$

so that $\overline{(A \otimes \mathbb{K}) q(A \otimes \mathbb{K})}=A \otimes \mathbb{K}$, i.e. q is full in $A \otimes \mathbb{K}$.
(ii) We note that

$$
\overline{q(A \otimes \mathbb{K}) p(A \otimes \mathbb{K}) q}=q(A \otimes \mathbb{K}) q
$$

since p is full in $q(A \otimes \mathbb{K}) q$. Then

$$
\overline{(A \otimes \mathbb{K}) p(A \otimes \mathbb{K})} \supset \overline{(A \otimes \mathbb{K}) q(A \otimes \mathbb{K}) p(A \otimes \mathbb{K}) q(A \otimes \mathbb{K})}=A \otimes \mathbb{K}
$$

Therefore, p is full in $A \otimes \mathbb{K}$.
For a unital C^{*}-algebra A and each $n \in \mathbb{N}$, let $\mathrm{FP}_{n}(A)$ be the set of all full projections p in $A \otimes \mathbb{K}$ with $p(A \otimes \mathbb{K}) p \cong M_{n}(A)$ and let $\mathrm{FP}_{n}(A) / \sim=\left\{(p) \mid p \in \mathrm{FP}_{n}(A)\right\}$. We denote $\mathrm{FP}_{1}(A)$ and $\mathrm{FP}_{1}(A) / \sim$ by $\mathrm{FP}(A)$ and $\mathrm{FP}(A) / \sim$, respectively.

3. A necessary and sufficient condition

Suppose that A is a unital C^{*}-algebra with property $(*)$. Then there is a unital C^{*} algebra B satisfying $A \nsubseteq B$ but $M_{n}(A) \cong M_{n}(B)$ for some $n \in \mathbb{N} \backslash\{1\}$. Since A and B are strongly Morita equivalent, by Rieffel [14, Proposition 2.1] there is a full projection $q \in A \otimes \mathbb{K}$ such that $B \cong q(A \otimes \mathbb{K}) q$. Then

$$
M_{n}(A) \cong M_{n}(B) \cong\left(q \otimes I_{n}\right)\left(A \otimes \mathbb{K} \otimes M_{n}\right)\left(q \otimes I_{n}\right)
$$

Let χ be an isomorphism of $M_{n}(A)$ onto $\left(q \otimes I_{n}\right)\left(A \otimes \mathbb{K} \otimes M_{n}\right)\left(q \otimes I_{n}\right)$ and let $p_{1}=$ $\chi\left(1_{A} \otimes f_{11}\right)$.

Lemma 3.1. With the above notation, p_{1} is a full projection in $A \otimes \mathbb{K} \otimes M_{n}$.

Proof. Since $1_{A} \otimes f_{11}$ is full in $A \otimes M_{n}, p_{1}$ is full in $\left(q \otimes I_{n}\right)\left(A \otimes \mathbb{K} \otimes M_{n}\right)\left(q \otimes I_{n}\right)$. Since $q \otimes I_{n}$ is full in $A \otimes \mathbb{K} \otimes M_{n}$, by Lemma 2.1 (ii) p_{1} is full in $A \otimes \mathbb{K} \otimes M_{n}$.

For any $n \in \mathbb{N}$ let ψ_{n} be an isomorphism of $\mathbb{K} \otimes M_{n}$ onto \mathbb{K} with $\psi_{n *}=\mathrm{id}$, the identity map of $K_{0}\left(\mathbb{K} \otimes M_{n}\right)$ onto $K_{0}(\mathbb{K})$. Let $p=\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{1}\right) \in A \otimes \mathbb{K}$.
Lemma 3.2. With the above notation, $p \in \operatorname{FP}(A)$.
Proof. Since p_{1} is a full projection in $A \otimes \mathbb{K} \otimes M_{n}$ by Lemma 3.1, p is a full projection in $A \otimes \mathbb{K}$. Also,

$$
\begin{aligned}
p(A \otimes \mathbb{K}) p & \cong\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{1}\left(A \otimes \mathbb{K} \otimes M_{n}\right) p_{1}\right) \cong p_{1}\left(A \otimes \mathbb{K} \otimes M_{n}\right) p_{1} \\
& =\chi\left(\left(1_{A} \otimes f_{11}\right)\left(A \otimes M_{n}\right)\left(1_{A} \otimes f_{11}\right)\right) \cong A .
\end{aligned}
$$

Therefore, we obtain the conclusion.
We shall show that $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$. To do this, we need lemmas.
Lemma 3.3. With the above notation, for any $N \in \mathbb{N}$ there is a partial isometry $v \in \mathbb{K} \otimes M_{n}$ such that

$$
v^{*} v=\sum_{j=-N}^{N} e_{j j} \otimes I_{n}, \quad v v^{*}=\sum_{j=-N}^{N} \psi_{n}\left(e_{j j} \otimes I_{n}\right) \otimes f_{11}
$$

$$
v\left(e_{i j} \otimes f_{k l}\right) v^{*}=\psi_{n}\left(e_{i j} \otimes f_{k l}\right) \otimes f_{11} \quad \text { for } i, j=-N, \ldots, 0, \ldots, N \text { and } k, l=1,2, \ldots, n .
$$

Proof. Since $\left(e_{00} \otimes f_{11}\right) \otimes f_{11}$ is a minimal projection in $\left(\mathbb{K} \otimes M_{n}\right) \otimes M_{n}, \psi_{n}\left(e_{00} \otimes\right.$ $\left.f_{11}\right) \otimes f_{11}$ is a minimal projection in $\mathbb{K} \otimes M_{n}$. Since all minimal projections are equivalent, there is a partial isometry $w \in \mathbb{K} \otimes M_{n}$ such that

$$
w^{*} w=e_{00} \otimes f_{11}, \quad w w^{*}=\psi_{n}\left(e_{00} \otimes f_{11}\right) \otimes f_{11} .
$$

Let

$$
v=\sum_{k=1}^{n} \sum_{j=-N}^{N}\left(\psi_{n}\left(e_{j 0} \otimes f_{k 1}\right) \otimes f_{11}\right) w\left(e_{0 j} \otimes f_{1 k}\right) .
$$

By routine computations, we can see that v is the required partial isometry in $\mathbb{K} \otimes M_{n}$.

Lemma 3.4. With the above notation, $p \otimes f_{11} \sim p_{1}$ in $A \otimes \mathbb{K} \otimes M_{n}$.
Proof. There are an $N \in \mathbb{N}$ and a projection $p_{0} \in A \otimes M_{2 N+1} \otimes M_{n} \subset A \otimes \mathbb{K} \otimes M_{n}$ such that $p_{0} \sim p_{1}$ in $A \otimes \mathbb{K} \otimes M_{n}$. Since $\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{0}\right) \otimes f_{11} \sim\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{1}\right) \otimes f_{11}=p \otimes f_{11}$ in $A \otimes \mathbb{K} \otimes M_{n}$, we have only to show that $\left(\mathrm{id}_{A} \otimes \psi_{n}\right)\left(p_{0}\right) \otimes f_{11} \sim p_{0}$ in $A \otimes \mathbb{K} \otimes M_{n}$. We write

$$
p_{0}=\sum_{k, l=1}^{n} \sum_{i, j=-N}^{N} a_{i j k l} \otimes e_{i j} \otimes f_{k l}, \quad \text { where } a_{i j k l} \in A .
$$

Then, by routine computations,

$$
\begin{gathered}
(1 \otimes v) p_{0}(1 \otimes v)^{*}=\sum_{k, l=1}^{n} \sum_{i, j=-N}^{N} a_{i j k l} \otimes v\left(e_{i j} \otimes f_{k l}\right) v^{*}=\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{0}\right) \otimes f_{11} \\
p_{0}(1 \otimes v)^{*}(1 \otimes v) p_{0}=\sum_{k, l=1}^{n} \sum_{i, j=-N}^{N}\left(a_{i j k l} \otimes e_{i j} \otimes f_{k l}\right)\left(1 \otimes \sum_{j=-N}^{N} e_{j j} \otimes I_{n}\right) p_{0}=p_{0}
\end{gathered}
$$

Therefore, $p_{0} \sim\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p_{0}\right) \otimes f_{11}$ in $A \otimes \mathbb{K} \otimes M_{n}$.
Proposition 3.5. With the above notation, $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$.
Proof. By Lemma 3.4, $\chi\left(1 \otimes f_{j j}\right) \sim \chi\left(1 \otimes f_{11}\right)=p_{1} \sim p \otimes f_{11} \sim p \otimes f_{j j}$ in $A \otimes \mathbb{K} \otimes M_{n}$ for $j=1,2, \ldots, n$. Thus in $A \otimes \mathbb{K} \otimes M_{n}$,

$$
q \otimes I_{n}=\chi\left(1 \otimes I_{n}\right)=\sum_{j=1}^{n} \chi\left(1 \otimes f_{j j}\right) \sim \sum_{j=1}^{n} p \otimes f_{j j}=p \otimes I_{n}
$$

Therefore, we obtain the conclusion.
Theorem 3.6. Let A be a unital C^{*}-algebra. Suppose that there is a unital C^{*} algebra B satisfying $A \not \approx B$ but $M_{n}(A) \cong M_{n}(B)$ for some $n \in \mathbb{N} \backslash\{1\}$. Then there are full projections p, q in $A \otimes \mathbb{K}$ with $p \in \operatorname{FP}(A), q \notin \operatorname{FP}(A)$ such that $q(A \otimes \mathbb{K}) q \cong B$, $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$.

Proof. Since A and B are strongly Morita equivalent by Rieffel [14, Proposition 2.1], there is a full projection q in $A \otimes \mathbb{K}$ such that $q(A \otimes \mathbb{K}) q \cong B$. If $q \in \operatorname{FP}(A), A \cong$ $q(A \otimes \mathbb{K}) q \cong B$. This is a contradiction. Thus $q \notin \operatorname{FP}(A)$. Furthermore, by Proposition 3.5 there is a $p \in \operatorname{FP}(A)$ such that $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$.

Corollary 3.7. Let A be a unital C^{*}-algebra. Then the following conditions are equivalent.
(i) There is a unital C^{*}-algebra B satisfying $A \not \approx B$ but $M_{n}(A) \cong M_{n}(B)$ for some $n \in \mathbb{N} \backslash\{1\}$.
(ii) There is a full projection q in $A \otimes \mathbb{K}$ with $q \notin \operatorname{FP}(A)$ satisfying that there is a $p \in \operatorname{FP}(A)$ such that $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$ for some $n \in \mathbb{N} \backslash\{1\}$.

Proof. (i) \Rightarrow (ii). This is clear by Theorem 3.6.
(ii) \Rightarrow (i). Put $B=q(A \otimes \mathbb{K}) q$. Then

$$
B \otimes M_{n} \cong\left(q \otimes I_{n}\right)\left(A \otimes \mathbb{K} \otimes M_{n}\right)\left(q \otimes I_{n}\right) \cong\left(p \otimes I_{n}\right)\left(A \otimes \mathbb{K} \otimes M_{n}\right)\left(p \otimes I_{n}\right) \cong A \otimes M_{n}
$$

since $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$ and $p \in \mathrm{FP}(A)$. Also, $A \not \approx B$. Indeed, if $A \cong B$, $q(A \otimes \mathbb{K}) q \cong A$. Thus $q \in \operatorname{FP}(A)$. This is a contradiction. Therefore, we obtain the conclusion.

Corollary 3.8. Let A be a unital C^{*}-algebra. Suppose that A has cancellation or A is purely infinite simple and that $K_{0}(A)$ is torsion free. Then A does not satisfy property (*).

Proof. Suppose that there is a unital C^{*}-algebra B satisfying $A \not \approx B$ but $M_{n}(A) \cong$ $M_{n}(B)$ for some $n \in \mathbb{N} \backslash\{1\}$. Then there are full projections $p, q \in A \otimes \mathbb{K}$ with $p \in \operatorname{FP}(A)$ and $q \notin \mathrm{FP}(A)$ such that $p \otimes I_{n} \sim q \otimes I_{n}$ in $A \otimes \mathbb{K} \otimes M_{n}$ by Corollary 3.7. Hence $n[p]=n[q]$ in $K_{0}(A)$. Since $K_{0}(A)$ is torsion free and A has cancellation or A is purely infinite simple, $p \sim q$ in $A \otimes \mathbb{K}$. This is a contradiction. Therefore, we obtain the conclusion.

4. Examples

In this section, we shall give some examples of unital C^{*}-algebras with property $(*)$.
Let A be a unital C^{*}-algebra. For any $p \in \operatorname{FP}(A),\left(\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p \otimes I_{n}\right)\right) \in \mathrm{FP}_{n}(A) / \sim$ by an easy calculation. In the same way as in the proof of $[\mathbf{8}$, Lemma 3.1] , we see that $\left(\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p \otimes I_{n}\right)\right)$ is independent of the choices of $p \in \operatorname{FP}(A)$ and ψ_{n} by easy computations. Hence we can define a map $\mu_{n}: \mathrm{FP}(A) / \sim \rightarrow \mathrm{FP}_{n}(A) / \sim$ by $\mu_{n}((p))=$ $\left(\left(\operatorname{id}_{A} \otimes \psi_{n}\right)\left(p \otimes I_{n}\right)\right)$.

Lemma 4.1. With the above notation, μ_{n} is surjective for any $n \in \mathbb{N}$.
Proof. Let $q \in \mathrm{FP}_{n}(A)$. Then there is an isomorphism χ_{q} of $A \otimes M_{n}$ onto $q(A \otimes \mathbb{K}) q$. Put $p=\chi_{q}\left(1_{A} \otimes f_{11}\right)$. Then $p(A \otimes \mathbb{K}) p \cong A$ and by Lemma 2.1 (ii) p is a full projection in $A \otimes \mathbb{K}$ since p is full in $q(A \otimes \mathbb{K}) q$. Thus $p \in \mathrm{FP}(A)$. Furthermore, in the same way as in the proof of Lemma 3.4, $\left(\mathrm{id} \otimes \psi_{n}\right)\left(\chi_{q}\left(1 \otimes f_{11}\right) \otimes f_{j j}\right) \sim \chi_{q}\left(1 \otimes f_{j j}\right)$ in $A \otimes \mathbb{K}$ for $j=1,2, \ldots, n$. Hence, in $A \otimes \mathbb{K}$,

$$
\left(\mathrm{id} \otimes \psi_{n}\right)\left(p \otimes I_{n}\right)=\sum_{j=1}^{n}\left(\mathrm{id} \otimes \psi_{n}\right)\left(\chi_{q}\left(1 \otimes f_{11}\right) \otimes f_{j j}\right) \sim \sum_{j=1}^{n} \chi_{q}\left(1 \otimes f_{j j}\right)=q
$$

Therefore, we obtain the conclusion.
Proposition 4.2. Let A be a unital C^{*}-algebra such that $K_{0}(A)$ has a torsion element x with $n x=0$ and $k x \neq 0$ for $k=1,2, \ldots, n-1$, where $n \in \mathbb{N}$ with $n \geqslant 2$. Suppose that $\operatorname{FP}(A) / \sim=\left\{\left(1_{A} \otimes e_{00}\right)\right\}$. Then there are unital C^{*}-algebras A_{1} and A_{2} strongly Morita equivalent to A such that $M_{n}\left(A_{1}\right) \cong M_{n}\left(A_{2}\right), M_{k}\left(A_{1}\right) \not \approx M_{k}\left(A_{2}\right)$ for $k=1,2, \ldots, n-1$.

Proof. For the $x \in K_{0}(A)$, there are $l, m \in \mathbb{N}$ and a projection $p \in M_{l}(A)$ such that $x=[p]-\left[1_{A} \otimes I_{m}\right]$ in $K_{0}(A)$. Since $n x=0$ in $K_{0}(A),\left[p \otimes I_{n}\right]=\left[1 \otimes I_{m n}\right]$ in $K_{0}(A)$. Thus there are $k, N \in \mathbb{N}$ with $N \geqslant l, m$ such that

$$
\left(p \otimes I_{n}\right) \oplus\left(1_{A} \otimes I_{k} \otimes I_{n}\right) \sim\left(1_{A} \otimes I_{m} \otimes I_{n}\right) \oplus\left(1_{A} \otimes I_{k} \otimes I_{n}\right)
$$

in $M_{N+k}(A) \otimes M_{n}$, where we regard p and I_{m} as projections in $M_{N+k}(A)$. Thus

$$
\begin{aligned}
& \left(p \oplus\left(1 \otimes I_{k}\right)\right) M_{N+k}(A)\left(p \oplus\left(1 \otimes I_{k}\right)\right) \otimes M_{n} \\
& \quad \cong\left(\left(1 \otimes I_{m} \otimes I_{n}\right) \oplus\left(1 \otimes I_{k} \otimes I_{n}\right)\right)\left(M_{N+k}(A) \otimes M_{n}\right)\left(\left(1 \otimes I_{m} \otimes I_{n}\right) \oplus\left(1 \otimes I_{k} \otimes I_{n}\right)\right) \\
& \quad \cong M_{m+k}(A) \otimes M_{n}
\end{aligned}
$$

Put $A_{1}=\left(p \oplus\left(1 \otimes I_{k}\right)\right) M_{N+k}(A)\left(p \oplus\left(1 \otimes I_{k}\right)\right), A_{2}=M_{m+k}(A)$. Then $M_{n}\left(A_{1}\right) \cong M_{n}\left(A_{2}\right)$. Let $q=p \oplus\left(1 \otimes I_{k}\right)$. Since $1 \otimes I_{k}$ is full in $M_{N+k}(A)$, by Lemma 2.1 (i) q is full in $M_{N+k}(A)$. Hence by Brown [4, Corollary 2.6] A_{1} is strongly Morita equivalent to A. Suppose that $M_{r}\left(A_{1}\right) \cong M_{r}\left(A_{2}\right)$ for some $r \in \mathbb{N}$ with $1 \leqslant r \leqslant n-1$. Then by an easy computation, $\left(\operatorname{id}_{A} \otimes \psi_{r}\right)\left(q \otimes I_{r}\right) \in \mathrm{FP}_{(m+k) r}(A)$. Since $\operatorname{FP}(A) / \sim=\left\{\left(1 \otimes e_{00}\right)\right\}$, by Lemma 4.1

$$
\operatorname{FP}_{(m+k) r}(A) / \sim=\left\{\left(1 \otimes \sum_{j=0}^{(m+k) r} e_{j j}\right)\right\}
$$

Hence $\left(\operatorname{id} \otimes \psi_{r}\right)\left(q \otimes I_{r}\right) \sim 1 \otimes \sum_{j=0}^{(m+k) r} e_{j j}$ in $A \otimes \mathbb{K}$. Since $\psi_{r *}$ is the identity map of $K_{0}\left(\mathbb{K} \otimes M_{r}\right)$ onto $K_{0}(\mathbb{K}), r[q]=(m+k) r\left[1_{A}\right]$ in $K_{0}(A)$. Hence $r x=0$ in $K_{0}(A)$. This is a contradiction. Therefore, we obtain the conclusion.

The Cuntz algebra O_{3} satisfies the assumptions of Proposition 4.2 since $K_{0}\left(O_{3}\right) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$ and $\operatorname{FP}\left(O_{3}\right) / \sim=\left\{\left(1 \otimes e_{00}\right)\right\}$ by [8, Corollary 4.6] and [9, Corollary 15]. We shall give an example of a simple unital C^{*}-algebra with cancellation satisfying the assumptions of Proposition 4.2.

For a C^{*}-algebra C we denote by $\operatorname{Aut}(C)$ the group of all automorphisms of C and by $\operatorname{sr}(C)$ its stable rank.

Let θ be a non-quadratic irrational number in $(0,1)$ and let $\mathbb{Z}+\mathbb{Z} \theta$ be the ordered group with the usual total ordering. Let \mathbb{D} be the group of all rational numbers and let $G=(\mathbb{Z}+\mathbb{Z} \theta) \oplus \mathbb{D}$ be the ordered group with the strict ordering from the first coordinate. We denote by G_{+}its positive cone and we choose an order unit $u \in G$ by $u=(1,0)$. Then by routine calculations, we can see that $\left(G, G_{+}, u\right)$ is a simple dimension group by Blackadar [2, Theorem 7.4.1]. Let C be a unital AF-algebra corresponding to (G, G_{+}, u). Let α be an automorphism of C such that the automorphism α_{*} of $K_{0}(C)$ is defined by $\alpha_{*}(a, b)=(a,-2 b)$ for any $(a, b) \in K_{0}(C)$. Let $A=C \times{ }_{\alpha} \mathbb{Z}$. Then in the same way as in Blackadar [2, 10.11.2], we can see that A is a simple unital stably finite C^{*}-algebra with its scaled ordered group as follows:

$$
((\mathbb{Z}+\mathbb{Z} \theta) \oplus \mathbb{Z} / 3 \mathbb{Z},\{(a, b) \in(\mathbb{Z}+\mathbb{Z} \theta) \oplus \mathbb{Z} / 3 \mathbb{Z} \mid a>0\} \cup\{(0,0)\},(1,0))
$$

Example 4.3. Let A be as above. Then A has cancellation and satisfies the assumptions of Proposition 4.2. Thus there are unital C^{*}-algebras A_{1} and A_{2} strongly Morita equivalent to A such that $M_{3}\left(A_{1}\right) \cong M_{3}\left(A_{2}\right), M_{k}\left(A_{1}\right) \not \not M_{k}\left(A_{2}\right)$ for $k=1,2$.

In fact, let $(a,[b])$ be any positive element in $(\mathbb{Z}+\mathbb{Z} \theta) \oplus \mathbb{Z} / 3 \mathbb{Z}$, where $a \in \mathbb{Z}+\mathbb{Z} \theta$ with $a>0$ and $[b]$ is an equivalence class in $\mathbb{Z} / 3 \mathbb{Z}$ of $b \in \mathbb{Z}$ with $0 \leqslant b \leqslant 2$. Then by the Pimsner-Voiculescu exact sequence, there is a projection q in some $M_{n}(C)$ such that $[q]=(a,[b])$ in $K_{0}(A)$. Since C has cancellation, by the definition of the ordering of $K_{0}(C)$, there is a projection p in $M_{n}(C)$ such that $p \leqslant q$ and $[p] \in(\mathbb{Z}+\mathbb{Z} \theta) \oplus 0 \subset K_{0}(C)$. Since $q M_{n}(A) q$ is simple, p is full in $q M_{n}(A) q$.

The conjecture in Blackadar [1, Remark A7] has been proved by Blackadar. This we can obtain that $\operatorname{sr}\left(q M_{n}(A) q\right) \leqslant \operatorname{sr}\left(p M_{n}(A) p\right)$. Also since $\alpha_{*}([p])=[p]$ and C has cancellation,
there is a unitary element $w \in M_{n}(C)$ such that $\alpha(p)=w^{*} p w$. Hence

$$
\begin{aligned}
\operatorname{sr}\left(q M_{n}(A) q\right) \leqslant \operatorname{sr}\left(p M_{n}(A) p\right) & =\operatorname{sr}\left(p M_{n}(C) p \times_{A d(w) \circ\left(\alpha \otimes \operatorname{id}_{M_{n}}\right)} \mathbb{Z}\right) \\
& \leqslant \operatorname{sr}\left(p M_{n}(C) p\right)+1=2 .
\end{aligned}
$$

Thus by Blackadar [$\mathbf{1}$, Theorem A1], A has cancellation. Since θ is non-quadratic, by Shen [15, Theorem 2.1] the identity map of $\mathbb{Z}+\mathbb{Z} \theta$ is the unique order-preserving automorphism of $\mathbb{Z}+\mathbb{Z} \theta$. Thus for any $\beta \in \operatorname{Aut}(A \otimes \mathbb{K})$ there is an automorphism σ of $\mathbb{Z} / 3 \mathbb{Z}$ such that $\beta_{*}=\operatorname{id}_{\mathbb{Z}+\mathbb{Z} \theta} \oplus \sigma$ on $K_{0}(A \otimes \mathbb{K})=(\mathbb{Z}+\mathbb{Z} \theta) \oplus \mathbb{Z} / 3 \mathbb{Z}$. Hence $\beta_{*}\left(\left[1 \otimes e_{00}\right]\right)=(1, \sigma(0))=$ $(1,0)=\left[1 \otimes e_{00}\right]$ in $K_{0}(A \otimes \mathbb{K})$. Since A has cancellation, $\beta\left(1 \otimes e_{00}\right) \sim 1 \otimes e_{00}$ in $A \otimes \mathbb{K}$. Therefore, $\operatorname{FP}(A) / \sim=\left\{\left(1 \otimes e_{00}\right)\right\}$ since $\operatorname{FP}(A) / \sim=\left\{\left(\beta\left(1 \otimes e_{00}\right)\right) \mid \beta \in \operatorname{Aut}(A \otimes \mathbb{K})\right\}$ by [8, Theorem 4.5].

Next we shall give an example of a unital C^{*}-algebra A with property $(*)$ whose $K_{0}(A)$ is torsion free.

Let \mathbb{C}^{m} be the topological space of m-tuples of complex numbers and let $S^{2 m-1}$ be the $(2 m-1)$-dimensional unit sphere of \mathbb{C}^{m}. Let $C\left(S^{2 m-1}\right)$ be the C^{*}-algebra of all complex-valued continuous functions on $S^{2 m-1}$. Then $K_{0}\left(C\left(S^{2 m-1}\right)\right)=\mathbb{Z}\left[1_{C\left(S^{2 m-1}\right)}\right]$ and $K_{1}\left(C\left(S^{2 m-1}\right)\right)=\mathbb{Z}[v]$, where v is a unitary element in $M_{m}\left(C\left(S^{2 m-1}\right)\right)$. In the same way as in Clarke [6], we shall define the Toeplitz algebra $\tau\left(S^{2 m-1}\right)$ as follows: let $\operatorname{Ext}\left(C\left(S^{2 m-1}\right)\right)$ be the group of all stable strong equivalence classes of unital extensions of $C\left(S^{2 m-1}\right)$ by \mathbb{K}. Since there is the isomorphism γ of $\operatorname{Ext}\left(C\left(S^{2 m-1}\right)\right)$ onto $\operatorname{Hom}\left(K_{1}\left(C\left(S^{2 m-1}\right)\right), \mathbb{Z}\right) \cong \mathbb{Z}$ defined in Brown $[\mathbf{3}$, Theorem] or Blackadar $[\mathbf{2}, 16.3 .2]$, we define a unital extension τ as $\gamma([\tau])([v])=1$, where $[\tau]$ is the stable strong equivalence class in $\operatorname{Ext}\left(C\left(S^{2 m-1}\right)\right)$ of τ. We may assume that τ is essential by Blackadar [2, Proposition 15.6.5]. Let $\tau\left(S^{2 m-1}\right)$ be the pull-back of $\left(C\left(S^{2 m-1}\right), M(\mathbb{K})\right)$ along τ and the quotient map of $M(\mathbb{K})$ onto $M(\mathbb{K}) / \mathbb{K}$. We regard \mathbb{K} as a C^{*}-subalgebra of $\tau\left(S^{2 m-1}\right)$. Then $K_{0}\left(\tau\left(S^{2 m-1}\right)\right) \cong \mathbb{Z}$.

Example 4.4. With the above notation, suppose that $m \geqslant 3$. Then there is a unital C^{*}-algebra B satisfying $M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right) \not \not 二 B$ but $M_{2 m-2}\left(\tau\left(S^{2 m-1}\right)\right) \cong M_{2}(B)$.

In fact, since $\gamma([\tau])\left(\left[v^{*}\right]\right)=-\left[\overline{e_{00}}\right]$ in $K_{0}(\mathbb{K})$, by the definition of $\gamma([\tau])$,

$$
\left[V^{*}\left[\begin{array}{cc}
1 \otimes I_{m} & 0 \\
0 & 0
\end{array}\right] V-\left[\left[\begin{array}{cc}
1 \otimes I_{m} & 0 \\
0 & 0
\end{array}\right]\right]=-\left[\overline{e_{00}}\right]\right.
$$

in $K_{0}(\mathbb{K})$, where V is a unitary element in $M_{2 m}\left(\tau\left(S^{2 m-1}\right)\right)$ with

$$
\left(\pi \otimes \operatorname{id}_{M_{2 m}}\right)(V)=\left[\begin{array}{cc}
v & 0 \\
0 & v^{*}
\end{array}\right]
$$

and where π is the homomorphism of $\tau\left(S^{2 m-1}\right)$ onto $C\left(S^{2 m-1}\right)$ associated with τ. Hence

$$
\left[V^{*}\left[\begin{array}{cc}
1 \otimes I_{m} & 0 \\
0 & 0
\end{array}\right] V\right]=\left[\left[\begin{array}{cc}
\left(1-\overline{e_{00}}\right) \otimes f_{11}+\sum_{j=2}^{m} 1 \otimes f_{j j} & 0 \\
0 & 0
\end{array}\right]\right]
$$

in $K_{0}(\tilde{\mathbb{K}})$. Since $\tilde{\mathbb{K}}$ has cancellation, there is a unitary element R in $M_{2 m}(\tilde{\mathbb{K}})$ such that

$$
R^{*} V^{*}\left[\begin{array}{cc}
1 \otimes I_{m} & 0 \\
0 & 0
\end{array}\right] V R=\left[\begin{array}{cc}
\left(1-\overline{e_{00}}\right) \otimes f_{11}+\sum_{j=2}^{m} 1 \otimes f_{j j} & 0 \\
0 & 0
\end{array}\right] .
$$

Thus

$$
\left(1_{\tau\left(S^{2 m-1}\right)}-\overline{e_{00}}\right) \oplus I_{m-1} \sim 1_{\tau\left(S^{2 m-1}\right)} \oplus I_{m-1} \quad \text { in } M_{m}\left(\tau\left(S^{2 m-1}\right)\right),
$$

where we regard I_{m-1} as the unit element in $M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right)$. Let $p=\left(1-\overline{e_{00}}\right) \oplus I_{m-2} \in$ $M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right)$. Then

$$
\begin{aligned}
p \oplus p & =\left(1-\overline{e_{00}}\right) \oplus I_{m-2} \oplus\left(1-\overline{e_{00}}\right) \oplus I_{m-2} \sim\left(1-\overline{e_{00}}\right) \oplus I_{m-3} \oplus\left(1-\overline{e_{00}}\right) \oplus I_{m-1} \\
& \sim\left(1-\overline{e_{00}}\right) \oplus I_{m-3} \oplus 1 \oplus I_{m-1}=\left(1-\overline{e_{00}}\right) \oplus I_{m-1} \oplus I_{m-2} \\
& \sim I_{m-1} \oplus I_{m-1}
\end{aligned}
$$

in $M_{2 m-2}\left(\tau\left(S^{2 m-1}\right)\right)$. Thus

$$
p M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right) p \otimes M_{2} \cong(p \oplus p) M_{2 m-2}\left(\tau\left(S^{2 m-1}\right)\right)(p \oplus p) \cong M_{2 m-2}\left(\tau\left(S^{2 m-1}\right)\right) .
$$

Put $B=p M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right) p$. Then $M_{2}(B) \cong M_{2 m-2}\left(\tau\left(S^{2 m-1}\right)\right)$. We shall prove that $B \not \neq M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right)$. By Phillips and Raeburn [12, Remark 2.23], the Picard group of $C\left(S^{2 m-1}\right), \operatorname{Pic}\left(C\left(S^{2 m-1}\right)\right)$, is isomorphic to the semi-direct product group $H^{2}\left(S^{2 m-1}, \mathbb{Z}\right) \times s \operatorname{Homeo}\left(S^{2 m-1}\right)$, where $\operatorname{Homeo}\left(S^{2 m-1}\right)$ is the group of all homeomorphisms on $S^{2 m-1}$ and it acts on $H^{2}\left(S^{2 m-1}, \mathbb{Z}\right)$ in the natural way. Since $H^{2}\left(S^{2 m-1}, \mathbb{Z}\right)=$ 0 by Massey [11, Theorem 2.14], $\operatorname{Pic}\left(C\left(S^{2 m-1}\right)\right) \cong \operatorname{Homeo}\left(S^{2 m-1}\right)$. Thus, by [8, Theorem 4.5], $\operatorname{FP}\left(C\left(S^{2 m-1}\right)\right) / \sim=\left\{\left(1 \otimes e_{00}\right)\right\}$. Since $\left(\pi \otimes \operatorname{id}_{\mathbb{K}}\right)(q) \in \operatorname{FP}\left(C\left(S^{2 m-1}\right)\right)$ for any $q \in \operatorname{FP}\left(\tau\left(S^{2 m-1}\right)\right),(\pi \otimes \mathrm{id})(q) \sim 1_{C\left(S^{2 m-1}\right)} \otimes e_{00}$ in $C\left(S^{2 m-1}\right) \otimes \mathbb{K}$. Hence, by [10, Lemma 4.1],

$$
\begin{aligned}
& \operatorname{FP}\left(\tau\left(S^{2 m-1}\right)\right) / \sim \\
& \subset\left\{(q) \mid q \text { is a projection in } \tau\left(S^{2 m-1}\right) \otimes \mathbb{K} \text { with }(\pi \otimes \operatorname{id})(q)=1 \otimes e_{00}\right\} .
\end{aligned}
$$

By [10, Theorem 2.1], for every projection $q \in \tau\left(S^{2 m-1}\right) \otimes \mathbb{K}$ with $(\pi \otimes \operatorname{id})(q)=1 \otimes e_{00}$, $q\left(\tau\left(S^{2 m-1}\right) \otimes \mathbb{K}\right) q \cong \tau\left(S^{2 m-1}\right)$. Furthermore, since τ is essential, q is full in $\tau\left(S^{2 m-1}\right) \otimes \mathbb{K}$. Thus

$$
\begin{aligned}
& \operatorname{FP}\left(\tau\left(S^{2 m-1}\right)\right) / \sim \\
& \quad=\left\{(q) \mid q \text { is a projection in } \tau\left(S^{2 m-1}\right) \otimes \mathbb{K} \text { with }(\pi \otimes \mathrm{id})(q)=1 \otimes e_{00}\right\} .
\end{aligned}
$$

Hence, by an easy computation, we can see that

$$
\begin{aligned}
\operatorname{FP}\left(\tau\left(S^{2 m-1}\right)\right) / \sim=\left\{\left(\left(1-\sum_{j=0}^{n} \overline{e_{j j}}\right) \otimes e_{00}\right) \mid n \in \mathbb{N} \cup\{0\}\right\} \\
\cup\left\{\left(1 \otimes e_{00}+\sum_{j=1}^{n} \overline{e_{j j}} \otimes e_{11}\right) \mid n \in \mathbb{N}\right\} .
\end{aligned}
$$

Moreover, by Lemma 4.1,

$$
\begin{aligned}
& \operatorname{FP}_{m-1}\left(\tau\left(S^{2 m-1}\right)\right) / \sim=\left\{\left(\left(1-\sum_{j=0}^{n} \overline{e_{j j}}\right) \otimes \sum_{k=0}^{m-2} e_{k k}\right) \mid n \in \mathbb{N} \cup\{0\}\right\} \\
& \cup\left\{\left(1 \otimes \sum_{k=0}^{m-2} e_{k k}+\sum_{j=1}^{n} \overline{e_{j j}} \otimes \sum_{k=m-1}^{2 m-3} e_{k k}\right) \mid n \in \mathbb{N}\right\} .
\end{aligned}
$$

Since $M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right)$ is finite by Blackadar $[\mathbf{2}, 6.10 .1],(p) \notin \mathrm{FP}_{m-1}\left(\tau\left(S^{2 m-1}\right)\right) / \sim$. Therefore, $B \not \neq M_{m-1}\left(\tau\left(S^{2 m-1}\right)\right)$.

Finally, we shall give an example of a unital C^{*}-algebra A without property $(*)$ whose $K_{0}(A)$ has a torsion element.

For every $k \in \mathbb{N} \backslash\{1\}$ let τ_{k} be an essential unital extension of $C\left(S^{1}\right)$ by \mathbb{K} with $\gamma\left(\left[\tau_{k}\right]\right)([v])=k$. Let E_{k} be the pull-back of $\left(C\left(S^{1}\right), M(\mathbb{K})\right)$ along τ_{k} and the quotient map of $M(\mathbb{K})$ onto $M(\mathbb{K}) / \mathbb{K}$. Then $K_{0}\left(E_{k}\right) \cong \mathbb{Z} \oplus \mathbb{Z} / k \mathbb{Z}$ and, in the same way as in Example 4.4, we can see that

$$
\operatorname{FP}\left(E_{k}\right) / \sim=\left\{(p) \mid p \text { is a projection in } E_{k} \otimes \mathbb{K} \text { with }(\pi \otimes \mathrm{id})(p)=1_{C\left(S^{1}\right)} \otimes e_{00}\right\}
$$

where π is the homomorphism of E_{k} onto $C\left(S^{1}\right)$ associated with τ_{k}.
Example 4.5. With the above notation, E_{k} does not satisfy property ($*$).
In fact, by Corollary 3.7 it suffices to show that for any projection $q \in E_{k} \otimes \mathbb{K}$ satisfying that there is a projection $p \in \operatorname{FP}\left(E_{k}\right)$ with $p \otimes I_{n} \sim q \otimes I_{n}$ in $E_{k} \otimes \mathbb{K} \otimes M_{n}$ for some $n \in \mathbb{N} \backslash\{1\}, q \in \operatorname{FP}\left(E_{k}\right)$. Suppose that q is such a projection. Then $n \pi_{*}([q])=n[1]$ in $K_{0}\left(C\left(S^{1}\right)\right)$. Since $K_{0}\left(C\left(S^{1}\right)\right) \cong \mathbb{Z}$ and $C\left(S^{1}\right)$ has cancellation, $\left(\pi \otimes \operatorname{id}_{\mathbb{K}}\right)(q) \sim 1 \otimes e_{00}$ in $C\left(S^{1}\right) \otimes \mathbb{K}$. Thus, by [10, Lemma 4.1], there is a projection $q_{0} \in E_{k} \otimes \mathbb{K}$ such that $q_{0} \sim q$ in $E_{k} \otimes \mathbb{K}$ and $(\pi \otimes \mathrm{id})\left(q_{0}\right)=1 \otimes e_{00}$. Therefore, $q \in \operatorname{FP}\left(E_{k}\right)$.

Acknowledgements. I thank Professor M. Nagisa for bringing my attention to a result of Plastiras, and Professor H. Osaka for some helpful discussions about stable ranks. I also thank the referee for a number of valuable comments and suggestions for improvement of the manuscript.

References

1. B. Blackadar, A stable cancellation theorem from simple C^{*}-algebras, Proc. Lond. Math. Soc. 47 (1983), 303-305.
2. B. Blackadar, K-theory for operator algebras, 2nd edn, MSRI Publication 5 (Cambridge University Press, 1998).
3. L. G. Brown, Operator algebras and algebraic K-theory, Bull. Am. Math. Soc. 81 (1975), 1119-1121.
4. L. G. Brown, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pac. J. Math. 71 (1977), 349-363.
5. L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, Pac. J. Math. 71 (1977), 349-363.
6. N. P. Clarke, A finite but not stably finite C^{*}-algebra, Proc. Am. Math. Soc. 96 (1986), 85-88.
7. J. Cuntz, K-theory for certain C^{*}-algebras, Ann. Math. 113 (1981), 181-197.
8. K. Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C^{*}-algebras, J. Operat. Theory $\mathbf{3 7}$ (1997), 357-369.
9. K. Kodaka, Picard groups of irrational rotation C^{*}-algebras, J. Lond. Math. Soc. 56 (1997), 179-188.
10. K. Kodaka, A lifting problem of full projections in stable algebras of separable unital nuclear C^{*}-algebras to their unital extensions, preprint, 2001.
11. W. S. Massey, Homology and cohomology theory (Marcel Dekker, New York, 1978).
12. J. Phillips and I. Raeburn, Automorphisms of C^{*}-algebras and second Čech cohomology, Indiana Univ. Math. J. 29 (1980), 799-822.
13. J. Plastiras, C^{*}-algebras isomorphic after tensoring, Proc. Am. Math. Soc. 66 (1977), 276-278.
14. M. A. Rieffel, C^{*}-algebras associated with irrational rotations, Pac. J. Math. 93 (1981), 415-429.
15. C. L. Shen, A note on the automorphism groups of simple dimension groups, Pac. J. Math. 89 (1980), 199-207.
