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Abstract

This paper deals with 3-forms on six-dimensional manifolds, the first dimension where the classification
of 3-forms is not trivial. It includes three classes of multisymplectic 3-forms. We study the class which is
closely related to almost complex structures.
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1. Introduction

There is growing interest in the study of 3-forms among geometers and physicists in
the recent years. There are various geometrical structures connected with different
types of 3-forms on manifolds.

The connections with totally skew-symmetric torsion, which is a 3-form, play an
important role in the research of Thomas Friedrich (see, for example, [F]).

Nigel Hitchin and his school also show an interest in 3-forms [H, W]. There are
three orbits of the action of the group GL(6, R) on the multisymplectic (full-rank)
3-forms on a six-dimensional vector space. There is either a tangent, complex, or
product structure connected with a 3-form on a six-dimensional vector space. The
kind of structure depends on which of the three orbits the form belongs to. We speak
about the forms of product type, of complex type or of tangent type accordingly. The
notion of a 3-form of the given type on the manifold can be defined in the obvious
way. We study closely the 3-forms of complex type and we construct the associated
complex structure in a different (and we think simpler) way than Hitchin in [H].
Furthermore, we investigate the interplay between the integrability of the complex
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structure associated with a given 3-form of complex type and the existence of the linear
symmetric connection, which preserves the form. The result is stated in Theorem 13,
which can be regarded as the Darboux theorem for the 3-forms of complex type.

THEOREM. Let ω be a real 3-form of complex type on a six-dimensional differentiable
manifold M. Let J be the almost complex structure on M such that, for any vector
fields X1, X2, X3 ∈ X(M),

ω(J X1, X2, X3) = ω(X1, J X2, X3) = ω(X1, X2, J X3).

Then there exists a symmetric connection ∇̃ on M such that ∇̃ω = 0 if and only if the
following conditions are satisfied:
(i) dω = 0;
(ii) the almost complex structure J is integrable.

2. The orbits of the 3-forms on six-dimensional spaces

Let V be a real vector space. Recall that a k-form ω (k ≥ 2) is said to be
multisymplectic if the homomorphism

ι : V → 3k−1V ∗, v 7→ ιvω = ω(v, . . .),

is injective. There is a natural action of the general linear group GL(V ) on 3k V ∗,
and also on 3k

ms V ∗, the subset of the multisymplectic forms. Two multisymplectic
forms are called equivalent if they belong to the same orbit of the action. For any form
ω ∈ 3k V ∗ we define a subset

1(ω) = {v ∈ V : (ιvω) ∧ (ιvω) = 0}.

If dim V = 6 and k = 3, the subset 33
ms V ∗ consists of three orbits. Let e1, . . . , e6

be a basis of V and α1, . . . , α6 the corresponding dual basis. Representatives of the
three orbits can be expressed in the form:
(1) ω1 = α1 ∧ α2 ∧ α3 + α4 ∧ α5 ∧ α6;
(2) ω2 = α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 − α3 ∧ α5 ∧ α6;
(3) ω3 = α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 + α3 ∧ α5 ∧ α6.
We speak of multisymplectic forms of product type (first form), or of complex type
(second form), or of tangent type (third form) depending on which orbit they belong
to. The orbits can be characterized as follows:
(1) ω is of product type if and only if 1(ω) = V a

∪ V b, where V a and V b are three-
dimensional subspaces satisfying V a

∩ V b
= {0};

(2) ω is of complex type if and only if 1(ω) = {0};
(3) ω is of tangent type if and only if 1(ω) is a three-dimensional subspace.

The forms ω1 and ω2 have equivalent complexifications. From this point of view
the forms of tangent type are exceptional. See [V] for further details.

A multisymplectic k-form on a manifold M is a section of 3k T ∗M such that its
restriction to the tangent space Tx M is multisymplectic for any x ∈ M , and is of type
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i in x ∈ M , i = 1, 2, 3, if the restriction to Tx M is of type i . A multisymplectic form
on M can change its type as can be seen from the the following example:

σ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx2 ∧ dx4 ∧ dx6

+ sin(x3 + x4) dx3 ∧ dx5 ∧ dx6 + sin(x3 + x4) dx4 ∧ dx5 ∧ dx6

a 3-form on R6. Then σ is of type 3 on the submanifold given by the equation
x3 + x4 = kπ , k ∈ N. If x3 + x4 ∈ (kπ, (k + 1)π), k even, then σ is of type 1 and
if x3 + x4 ∈ (kπ, (k + 1)π), k odd, then σ is of type 2. We point out that σ is closed
and invariant under the action of the group (2πZ)6 and we can factor σ to get a form
changing the type on R6/(2πZ)6, which is the six-dimensional torus, that is, σ is
closed on a compact manifold. The goal of this paper is to study the forms of complex
type. We denote ω = ω2.

3. Three-forms of complex type on vector spaces

In this section, in Proposition 7, we associate a 3-form of complex type on
a six-dimensional vector space V with the complex structure on the vector space
(thereby justifying the name). In Proposition 8 we associate the couple (a 3-form
and the corresponding complex structure) with the unique complex 3-form on the
complexification VC.

We need some results about the decomposition of 3-forms on complex vector spaces
with additional complex structure first.

Let J be an automorphism of a six-dimensional real vector space V satisfying
J 2

= −I . Furthermore, let VC = V ⊕ iV be the complexification of V . There is
the standard decomposition VC = V 1,0

⊕ V 0,1. Consider a nonzero form γ of type
(3, 0) on VC and set

γ0 = Re γ, γ1 = Im γ.

For any v1 ∈ V , v1 + i Jv1 ∈ V 0,1, and consequently γ (i(v1 + i Jv1), v2, v3) = 0 for
any v2, v3 ∈ V . This implies that

γ0(i(v1 + i Jv1), v2, v3) = 0 and γ1(i(v1 + i Jv1), v2, v3) = 0.

Thus,

0 = γ0(i(v1 + i Jv1), v2, v3) = γ0(iv1, v2, v3) − γ0(Jv1, v2, v3).

A similar argument with γ1 leads to

γ0(iv1, v2, v3) = γ0(Jv1, v2, v3), γ1(iv1, v2, v3) = γ1(Jv1, v2, v3),

for any v1, v2, v3 ∈ V . Moreover,

γ0(w1, w2, w3) = Re(−γ (i2w1, w2, w3)) = Re(−iγ (iw1, w2, w3))

= Im(γ (iw1, w2, w3)) = γ1(iw1, w2, w3),

for any w1, w2, w3 ∈ VC, that is, γ1(w1, w2, w3) = −γ0(iw1, w2, w3). Finally,
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γ0(Jv1, v2, v3) = γ0(iv1, v2, v3) = Re(γ (iv1, v2, v3)) = Re(iγ (v1, v2, v3))

= Re(γ (v1, iv2, v3)) = Re(γ (v1, Jv2, v3)) = γ0(v1, Jv2, v3).

In a similar manner,

γ0(Jv1, v2, v3) = γ0(v1, Jv2, v3) = γ0(v1, v2, Jv3)

γ1(Jv1, v2, v3) = γ1(v1, Jv2, v3) = γ1(v1, v2, Jv3)

that is, both forms γ0 and γ1 are pure with respect to the complex structure J .
We recall that a 3-form ω on a vector space V is called pure with respect to an

automorphism A of V if and only if

ω(AX1, X2, X3) = ω(X1, AX2, X3) = ω(X1, X2, AX3) for all X1, X2, X3 ∈ V .

LEMMA 1. The real 3-forms γ0|V and γ1|V (on V) are multisymplectic.

PROOF. Assume that v1 ∈ V is a vector such that for any vectors v2, v3 ∈ V
(γ0|V )(v1, v2, v3) = 0 or equivalently γ0(v1, v2, v3) = 0. There are uniquely
determined vectors w1, w2, w3 ∈ V 1,0 such that

v1 = w1 + w̄1, v2 = w2 + w̄2, v3 = w3 + w̄3.

Then

0 = γ0(v1, v2, v3) = Re(γ (w1 + w̄1, w2 + w̄2, w3 + w̄3))

= Re(γ (w1, w2, w3)) = γ0(w1, w2, w3),

for a fixed w1 and arbitrary w2, w3 ∈ V 1,0. Because iw2 ∈ V 1,0,

γ0(iw1, w2, w3) = γ0(w1, iw2, w3) = 0.

Moreover, γ1(w, w′, w′′) = −γ0(iw, w′, w′′) for any w, w′, w′′
∈ VC, giving

γ1(w1, w2, w3) = −γ0(iw1, w2, w3) = 0,

for arbitrary w2, w3 ∈ V 1,0. Thus,

γ (w1, w2, w3) = γ0(w1, w2, w3) + iγ1(w1, w2, w3) = 0,

for arbitrary w2, w3 ∈ V 1,0.
Because γ is a nonzero complex 3-form on the complex three-dimensional vector

space V 1,0, we find that w1 = 0, and consequently v1 = 0. This proves that the
real 3-form γ0|V is multisymplectic. Similarly, the real 3-form γ1|V is also
multisymplectic. 2

LEMMA 2. The forms γ0|V and γ1|V satisfy 1(γ0|V ) = {0} and 1(γ1|V ) = {0}.
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PROOF. The complex 3-form γ is decomposable, and therefore γ ∧ γ = 0. This
implies that, for any w ∈ VC, (ιwγ ) ∧ (ιwγ ) = 0. Similarly, for any w ∈ VC, (ιwγ̄ )

∧ (ιwγ̄ ) = 0. Obviously γ0 =
1
2 (γ + γ̄ ). Let v ∈ V be such that (ιvγ0) ∧ (ιvγ0) = 0.

Then

0 = (ιvγ0) ∧ (ιvγ0) =
1
4 (ιvγ + ιv γ̄ ) ∧ (ιvγ + ιv γ̄ ) =

1
2 (ιvγ ) ∧ (ιv γ̄ ).

But ιvγ is a form of type (2, 0) and ιv γ̄ a form of type (0, 2). Consequently the last
wedge product vanishes if and only if either ιvγ = 0 or ιv γ̄ = 0. By virtue of the
preceding lemma, this implies that v = 0. 2

Lemma 2 shows that both forms γ0|V and γ1|V are of complex type. As a final
result of this type we get the following.

COROLLARY 3. Let γ be a 3-form on VC of type (3, 0). Then the real 3-forms
(Re γ )|V and (Im γ )|V on V are multisymplectic and of complex type.

Let ω be a 3-form on V such that 1(ω) = {0}. This means that for any v ∈ V , v 6= 0,
(ιvω) ∧ (ιvω) 6= 0. This implies that rank ιvω ≥ 4. On the other hand, obviously
rank ιvω ≤ 4. Consequently, for any v 6= 0, rank ιvω = 4. Thus the kernel K (ιvω)

of the 2-form ιvω has dimension two. Moreover, v ∈ K (ιvω). Now we fix a nonzero
6-form on θ on V . For any v ∈ V , there exists a unique vector Q(v) ∈ V such that

(ιvω) ∧ ω = ιQ(v)θ.

The mapping Q : V → V is obviously a homomorphism. If v 6= 0 then (ιvω) ∧ ω 6= 0,
and Q is an automorphism. It is also obvious that if v 6= 0, then the vectors v and Q(v)

are linearly independent (by applying ιv to the last equality). We evaluate ιQ(v) on the
last equality and obtain

(ιQ(v)ιvω) ∧ ω + (ιvω) ∧ (ιQ(v)ω) = 0

−(ιvιQ(v)ω) ∧ ω + (ιvω) ∧ (ιQ(v)ω) = 0

−ιv[(ιQ(v)ω) ∧ ω] + 2(ιvω) ∧ (ιQ(v)ω) = 0.

Now apply ιv to the last equality:

(ιvω) ∧ (ιvιQ(v)ω) = 0.

If the 1-form ιvιQ(v)ω was not zero then there would exist a 1-form σ such that
ιvω = σ ∧ ιvιQ(v)ω, which would give

(ιvω) ∧ (ιvω) = σ ∧ ιvιQ(v)ω ∧ σ ∧ ιvιQ(v)ω = 0,

which is a contradiction. Thus, we have proved the following lemma.

LEMMA 4. For any v ∈ V , ιQ(v)ιvω = 0, that is, Q(v) ∈ K (ιvω).
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This lemma shows that if v 6= 0, then K (ιvω) = [v, Q(v)]. Applying ιQ(v) to
the equality (ιvω) ∧ ω = ιQ(v)θ and using the last lemma, we easily obtain the
following result.

LEMMA 5. For any v ∈ V , (ιvω) ∧ (ιQ(v)ω) = 0.

Lemma 4 shows that v ∈ K (ιQ(v)ω). Because v and Q(v) are linearly independent,
we can see that

K (ιQ(v)ω) = [v, Q(v)] = K (ιvω).

If v 6= 0, then Q2(v) ∈ K (ιQ(v)ω), and consequently there exist a(v), b(v) ∈ R
such that

Q2(v) = a(v)v + b(v)Q(v).

For any v ∈ V ,
(ιQ(v)ω) ∧ ω = ιQ2(v)θ.

Assume that v 6= 0. Then

(ιQ(v)ω) ∧ ω = a(v)ιvθ + b(v)ιQ(v)θ,

and, applying ιv , we obtain b(v)ιvιQ(v)θ = 0, which shows that b(v) = 0 for any v 6= 0.
Consequently, Q2(v) = a(v)v for any v 6= 0.

LEMMA 6. Let A : V → V be an automorphism, and a : V \{0} → R a function such
that

A(v) = a(v)v, for any v 6= 0.

Then the function a is constant.

PROOF. The condition on A means that every vector v of V is an eigenvector of A
with the eigenvalue a(v). But the eigenvalues of two different vectors have to be the
same otherwise their sum would not be an eigenvector. 2

Applying Lemma 6 on Q2 gives Q2
= aI . If a > 0, then V = V +

⊕ V −, and

Qv =
√

av for v ∈ V +, Qv = −
√

av for v ∈ V −.

At least one of the subspaces V + and V − is nontrivial. Assume, for example, that
V +

6= {0}. Then there exist v ∈ V +, v 6= 0, and Qv =
√

av, which is a contradiction
because the vectors v and Qv are linearly independent. This proves that a < 0. We
can now see that the automorphisms

J+ =
1

√
−a

Q and J− = −
1

√
−a

Q

satisfy J 2
+ = −I and J 2

− = −I , that is, they define complex structures on V and
J− = −J+. Setting

θ+ =
√

−aθ, θ− = −
√

−aθ,
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we obtain
(ιvω) ∧ ω = ιJ+vθ+, (ιvω) ∧ ω = ιJ−vθ−.

In what follows we use the notation J = J+. Results which are valid for J+ also
hold for J−.

PROPOSITION 7. There exists a unique (up to sign) complex structure J on V such
that the form ω satisfies the relation

ω(Jv1, v2, v3) = ω(v1, Jv2, v3) = ω(v1, v2, Jv3) for any v1, v2, v3 ∈ V .

PROOF. We shall prove first that the complex structure J defined above satisfies the
relation. By virtue of Lemma 4 for any v, v′

∈ V , ω(v, Jv, v′) = 0. Therefore,

0 = ω(v1 + v2, J (v1 + v2), v3) = ω(v1, Jv2, v3) + ω(v2, Jv1, v3)

= −ω(Jv1, v2, v3) + ω(v1, Jv2, v3),

which gives
ω(Jv1, v2, v3) = ω(v1, Jv2, v3).

Obviously, the opposite complex structure −J satisfies the same relation. We prove
that there is no other complex structure with the same property. Let J̃ be a complex
structure on V satisfying the above relation. Set A = J̃ J−1. Then

ω(v1, Av2, Av3) = ω(v1, J̃ Jv2, J̃ Jv3) = ω(v1, Jv2, J̃ 2 Jv3) = −ω(v1, Jv2, Jv3)

= −ω(v1, v2, J 2v3) = ω(v1, v2, v3).

Any automorphism A satisfying this identity is ±I . In fact the identity means that
A is an automorphism of the 2-form ιvω. Consequently, A preserves the kernel
K (ιvω) = [v, Jv]. On the other hand, it is obvious that any subspace of the form
[v, Jv] is the kernel of ιvω. Considering V as a complex vector space with the
complex structure J , we can say that every one-dimensional complex subspace is the
kernel of the 2-form ιvω for some v ∈ V , v 6= 0, and consequently is invariant under
the automorphism A. As in Lemma 6, we conclude that A = λI , λ ∈ C. If we write
λ = λ0 + iλ1, then A = λ0 I + λ1 J and

ω(v1, v2, v3) = ω(v1, Av2, Av3)

= ω(v1, λ0v2 + λ1 Jv2, λ0v3 + λ1 Jv3)

= λ2
0ω(v1, v2, v3) + λ0λ1ω(v1, v2, Jv3) + λ0λ1ω(v1, Jv2, v3)

+ λ2
1ω(v1, Jv2, Jv3),

(λ2
0 − λ2

1 − 1)ω(v1, v2, v3) + 2λ0λ1ω(v1, v2, Jv3) = 0.

We use this last equation together with one obtained by writing Jv3 instead of v3. In
this way we get the system

(λ2
0 − λ2

1 − 1)ω(v1, v2, v3) + 2λ0λ1ω(v1, v2, Jv3) = 0

−2λ0λ1ω(v1, v2, v3) + (λ2
0 − λ2

1 − 1)ω(v1, v2, Jv3) = 0.
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Because it has a nontrivial solution,∣∣∣∣λ2
0 − λ2

1 − 1 2λ0λ1

−2λ0λ1 λ2
0 − λ2

1 − 1

∣∣∣∣ = 0.

It is easy to verify that the solution of the last equation is λ0 = ±1 and λ1 = 0. This
finishes the proof. 2

We shall now consider the vector space V , together with a complex structure J and
a 3-form ω on V which is pure with respect to this complex structure. First, define
a real 3-form γ0 on VC. Set

γ0(v1, v2, v3) = ω(v1, v2, v3)

γ0(iv1, v2, v3) = ω(Jv1, v2, v3)

γ0(iv1, iv2, v3) = ω(Jv1, Jv2, v3)

γ0(iv1, iv2, iv3) = ω(Jv1, Jv2, Jv3)

for v1, v2, v3 ∈ V . Then γ0 extends uniquely to a real 3-form on VC. We can easily
verify that

γ0(iw1, w2, w3) = γ0(w1, iw2, w3) = γ0(w1, w2, iw3),

for any w1, w2, w3 ∈ VC. Furthermore, set

γ1(w1, w2, w3) = −γ0(iw1, w2, w3) for w1, w2, w3 ∈ VC.

It is obvious that γ1 is a real 3-form satisfying

γ1(iw1, w2, w3) = γ1(w1, iw2, w3) = γ1(w1, w2, iw3),

for any w1, w2, w3 ∈ VC. Now define

γ (w1, w2, w3) = γ0(w1, w2, w3) + iγ1(w1, w2, w3) for w1, w2, w3 ∈ VC.

It is obvious that γ is skew-symmetric and 3-linear over R and has complex values.
Moreover,

γ (iw1, w2, w3) = γ0(iw1, w2, w3) + iγ1(iw1, w2, w3)

= −γ1(w1, w2, w3) − iγ0(i
2w1, w2, w3)

= −γ1(w1, w2, w3) + iγ0(w1, w2, w3)

= i[γ0(w1, w2, w3) + iγ1(w1, w2, w3)] = iγ (w1, w2, w3),

which proves that γ is a complex 3-form on VC. We now prove that γ is a form of
type (3, 0). Obviously, it suffices to prove that for v1 + i Jv1 ∈ V 0,1 and v2, v3 ∈ V ,
γ (v1 + i Jv1, v2, v3) = 0. Indeed,

γ (v1 + i Jv1, v2, v3) = γ (v1, v2, v3) + iγ (Jv1, v2, v3)

= γ0(v1, v2, v3) + iγ1(v1, v2, v3) + iγ0(Jv1, v2, v3) − γ1(Jv1, v2, v3)

= γ0(v1, v2, v3) − iγ0(iv1, v2, v3) + iγ0(Jv1, v2, v3) + γ0(i Jv1, v2, v3).
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Now γ0(i Jv1, v2, v3) = ω(J 2v1, v2, v3) = −ω(v1, v2, v3) = −γ0(v1, v2, v3) and the
real part of the last expression is zero. Furthermore, γ0(Jv1, v2, v3)

= ω(Jv1, v2, v3) = γ0(iv1, v2, v3) and the complex part of the expression is also zero.
Now we easily obtain the following proposition.

PROPOSITION 8. Let ω be a real 3-form on V satisfying 1(ω) = {0}, and let J be
a complex structure on V (one of the two) such that

ω(Jv1, v2, v3) = ω(v1, Jv2, v3) = ω(v1, v2, Jv3).

Then there exists on VC a unique complex 3-form γ of type (3, 0) such that:

ω = (Re γ )|V .

REMARK. The complex structure J on V can also be introduced by means of Hitchin’s
invariant λ, as in [H]. Forms of complex type form an open subset U in 33V ∗.
Hitchin has shown that this manifold is also endowed with an almost complex structure
which is integrable. Hitchin uses the following method to introduce an almost
complex structure on U . One regards U ⊂ 33V ∗ as a symplectic manifold (let θ

be a fixed element in 36V ∗; one defines the symplectic form 2 on 33V ∗ by the
equation ω1 ∧ ω2 = 2(ω1, ω2)θ ). Then the derivative of the Hamiltonian vector field
corresponding to the function

√
−λ(ω) on U gives an integrable almost complex

structure on U .
There is another way of introducing this almost complex structure on U . Given a 3-

form ω ∈ U , choose the complex structure Jω on V (one of the two), whose existence
is guaranteed by the Proposition 7. Then we define endomorphisms AJω and DJω of
3k V ∗ by

(AJω�)(v1, . . . , vk) = �(Jωv1, . . . , Jωvk),

(DJω�)(v1, . . . , vk) =

k∑
i=1

�(v1, . . . , vi−1, Jωvi , vi+1, . . . , vk).

Then AJω is an automorphism of 3V ∗ and DJω is a derivation of 3V ∗. If k = 3 then
the automorphism −

1
2 (AJω + DJω) of 33V ∗ (=TωU ) gives a complex structure on U

and coincides with that of Hitchin.

4. Three-forms of complex type on manifolds

We use facts from the previous section to obtain some global results on 3-forms on
six-dimensional manifolds. We denote the real vector fields on a (real) manifold M by
X , Y , Z and the complex vector fields on M by V , W . Here X(M) stands for the set
of all (real) vector fields on M and XC(M) means all of the complex vector fields on
M .

A 3-form ω on M is called a form of complex type if, for every x ∈ M , 1(ωx ) = {0}.
Let ω be a form of complex type on M and let U ⊂ M be an open orientable
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submanifold. Then there exists an everywhere nonzero differentiable 6-form on U .
In each Tx M , x ∈ U , construct J− and J+ as in Proposition 7. The construction is
evidently smooth on U . Thus, we obtain the following lemma.

LEMMA 9. Let ω be a form of complex type on M and let U ⊂ M be an orientable
open submanifold. Then there exist two differentiable almost complex structures J+

and J− on U such that, for any vector fields X1, X2, X3:

(i) J+ + J− = 0;
(ii) ω(J+X1, X2, X3) = ω(X1, J+X2, X3) = ω(X1, X2, J+X3);
(iii) ω(J−X1, X2, X3) = ω(X1, J−X2, X3) = ω(X1, X2, J−X3).

At each point x ∈ M consider a one-dimensional subspace of the space T 1
1x (M)

of tensors of type (1, 1) at x generated by the tensors J+x and J−x . The above
considerations show that it is a one-dimensional subbundle J ⊂ T 1

1 (M).

LEMMA 10. The one-dimensional vector bundles J and 36T ∗(M) are isomorphic.

PROOF. Choose a Riemannian metric g0 on T M . If x ∈ M and v, v′
∈ Tx M , define

a Riemannian metric g by the formula

g(v, v′) = g0(v, v′) + g0(J+v, J+v′) = g0(v, v′) + g0(J−v, J−v′).

It is obvious that, for any v, v′
∈ Tx M ,

g(J+v, J+v′) = g(v, v′), g(J−v, J−v′) = g(v, v′).

Now define

σ+(v, v′) = g(J+v, v′), σ−(v, v′) = g(J−v, v′).

It is easy to verify that σ+ and σ− are nonzero 2-forms on Tx M satisfying
σ+ + σ− = 0. 2

Define an isomorphism h : J → 36T ∗M . Let x ∈ M and A ∈ Jx . Write

A = a J+, A = −a J−

and set

h A = aσ+ ∧ σ+ ∧ σ+ = −aσ− ∧ σ− ∧ σ−.

COROLLARY 11. There exist two almost complex structures J+ and J− on M such
that:
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(i) J+ + J− = 0;
(ii) ω(J+X1, X2, X3) = ω(X1, J+X2, X3) = ω(X1, X2, J+X3);
(iii) ω(J−X1, X2, X3) = ω(X1, J−X2, X3) = ω(X1, X2, J−X3);
for any vector fields X1, X2, X3, if and only if the manifold M is orientable.

Hence the assertions in the rest of the paper can be simplified correspondingly if M
is an orientable manifold.

LEMMA 12. Let J be an almost complex structure on M such that for any vector fields
X1, X2, X3 ∈ X(M),

ω(J X1, X2, X3) = ω(X1, J X2, X3) = ω(X1, X2, J X3).

If ∇ is a linear connection on M such that ∇ω = 0, then also ∇ J = 0.

PROOF. Let Y ∈ X(M), and consider the covariant derivative ∇Y . Then

0 = (∇Y ω)(J X1, X2, X3) = Y (ω(J X1, X2, X3) − ω((∇Y J )X1, X2, X3)

− ω(J∇Y X1, X2, X2) − ω(J X1, ∇Y X2, X3) − ω(J X1, X2, ∇Y X3)

0 = (∇Y ω)(X1, J X2, X3) = Y (ω(J X1, X2, X3) − ω(∇Y X1, J X2, X3)

− ω(X1, (∇Y J )X2, X3) − ω(X1, J∇Y X2, X3) − ω(X1, J X2, ∇Y X3).

Because the above expressions are equal, it easily follows that

ω((∇Y J )X1, X2, X3) = ω(X1, (∇Y J )X2, X3).

Write A = ∇Y J . Extending the above equality in the obvious way gives

ω(AX1, X2, X3) = ω(X1, AX2, X3) = ω(X1, X2, AX3).

Moreover J 2
= −I , and applying ∇Y to this equality gives

AJ + J A = 0.

We know that K (ιXω) = [X, J X ]. Furthermore,

ω(X, AX, X ′) = ω(X, X, AX ′) = 0, ω(X, AJ X, X ′) = ω(X, J X, AX ′) = 0,

which shows that A preserves the distribution [X, J X ]. By the very same arguments
as in Proposition 7 we can see that A = λ0 I + λ1 J . Consequently

(λ0 I + λ1 J )J + J (λ0 I + λ1 J ) = 0

−2λ1 I + 2λ0 J = 0

which implies that λ0 = λ1 = 0. Thus, ∇Y J = A = 0. 2
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The statement of the previous lemma can to some extent be reversed, giving the
following theorem.

THEOREM 13. Let ω be a real 3-form on a six-dimensional differentiable manifold M
satisfying 1(ωx ) = {0} for any x ∈ M. Let J be an almost complex structure on M
such that for any vector fields X1, X2, X3 ∈ X(M),

ω(J X1, X2, X3) = ω(X1, J X2, X3) = ω(X1, X2, J X3).

Then there exists a symmetric connection ∇̃ on M such that ∇̃ω = 0 if and only if the
following conditions are satisfied:
(i) dω = 0;
(ii) the almost complex structure J is integrable.

PROOF. First, we prove that the integrability of the structure J and the fact that ω

is closed imply the existence of a symmetric connection with respect to which ω

is parallel.
For any connection ∇ on M we denote its complexification using the same symbol.

That is, we set

∇X0+i X1(Y0 + iY1) = (∇X0Y0 − ∇X1Y1) + i(∇X0Y1 + ∇X1Y0).

Assume that there exists a symmetric connection ∇̊ such that ∇̊ J = 0. Consider a
3-form γ of type (3, 0) such that (Re γ )|T M = ω. Our next aim is to try to find
a symmetric connection

∇V W = ∇̊V W + Q(V, W )

satisfying ∇V γ = 0. Obviously, the connection ∇ is symmetric if and only if

Q(V, W ) = Q(W, V ).

Moreover, ∇V γ = 0 suggests that ∇ J = 0. The equality

0 = (∇V J )W = ∇V (J W ) − J∇V W

= ∇̊V (J W ) + Q(V, J W ) − J ∇̊V W − J Q(V, W )

shows that we should require

Q(J V, W ) = Q(V, J W ) = J Q(V, W ).

Because ∇̊ J = 0, we can immediately see that for any V ∈ XC(M) the covariant
derivative ∇̊V γ is again a form of type (3, 0). Consequently there exists a uniquely
determined complex 1-form ρ such that

∇̊V γ = ρ(V )γ.
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Then

(∇V γ )(W1, W2, W3)

= V (γ (W1, W2, W3)) − γ (∇V W1, W2, W3)

− γ (W1, ∇V W2, W3) − γ (W1, W2, ∇V W3)

= V (γ (W1, W2, W3)) − γ (∇̊V W1, W2, W3)

− γ (W1, ∇̊V W2, W3) − γ (W1, W2, ∇̊V W3)

− γ (Q(V, W1), W2, W3) − γ (W1, Q(V, W2), W3)

− γ (W1, W2, Q(V, W3))

= ρ(V )γ (W1, W2, W3)

− γ (Q(V, W1), W2, W3) − γ (W1, Q(V, W2), W3)

− γ (W1, W2, Q(V, W3)).

In other words ∇V γ = 0 if and only if

ρ(V )γ (W1, W2, W3) = γ (Q(V, W1), W2, W3)

+ γ (W1, Q(V, W2), W3) + γ (W1, W2, Q(V, W3)). 2

SUBLEMMA. If dγ = 0, then ρ is a form of type (1, 0).

PROOF. Let V1 ∈ T 0,1(M). Because ∇̊ is symmetric dγ = −A(∇̊γ ), where A
denotes the alternation. We obtain

0 = −4!(dγ )(V1, V2, V3, V4)

=

∑
π

sign(π)(∇̊Vπ1γ )(Vπ2, Vπ3, Vπ4) +

∑
τ

sign(τ )(∇̊V1γ )(Vτ2, Vτ3, Vτ4)

= 3!(∇̊V1γ )(V2, V3, V4)

= 3!ρ(V1)γ (V2, V3, V4).

The first sum is taken over all permutations π satisfying π1 > 1, and the second is
taken over all permutations of the set {2, 3, 4}. The first sum obviously vanishes, and
ρ(V1) = 0. This finishes the proof.

We now set

Q(V, W ) =
1
8 [ρ(V )W − ρ(J V )J W + ρ(W )V − ρ(J W )J V ].

It is easy to see that Q(J V, W ) = Q(V, J W ) = J Q(V, W ). For V, W1, W2, W3
∈ T 1,0(M) we can compute

8γ (Q(V, W1), W2, W3) = γ (ρ(V )W1 − ρ(J V )J W1 + ρ(W1)V

− ρ(J W1)J V, W2, W3)

= γ (2ρ(V )W1 + 2ρ(W1)V, W2, W3)

= 2ρ(V )γ (W1, W2, W3) + 2ρ(W1)γ (V, W2, W3),
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using for V ∈ T (1,0)(M) the fact that ρ(J V ) = iρ(V ) and γ (J V, V ′, V ′′)

= iγ (V, V ′, V ′′), since γ is of type (3, 0) and ρ of type (1, 0).
Similarly we can compute γ (W1, Q(V, W2), W3) and γ (W1, W2, Q(V, W3)).

Without loss of generality we can assume that the vector fields W1, W2, W3 are linearly
independent (over C). Then we can find uniquely determined complex functions
f1, f2, f3 such that

V = f1W1 + f2W2 + f3W3.

Then we get

ρ(W1)γ (V, W2, W3) + ρ(W2)γ (W1, V, W3) + ρ(W3)γ (W1, W2, V )

= f1ρ(W1)γ (W1, W2, W3) + f2ρ(W2)γ (W1, W2, W3)

+ f3ρ(W3)γ (W1, W2, W3)

= ρ( f1W1 + f2W2 + f3W3)γ (W1, W2, W3) = ρ(V )γ (W1, W2, W3).

Finally, we obtain

γ (Q(V, W1), W2, W3) + γ (W1, Q(V, W2), W3) + γ (W1, W2, Q(V, W3))

= ρ(V )γ (W1, W2, W3).

which proves ∇V γ = 0.
Let us continue with the main stream of the proof. We now use the complex

connection ∇. For X, Y ∈ T M we denote ∇
0
X Y = Re ∇X Y and ∇

1
X Y = Im ∇X Y . This

means that ∇X Y = ∇
0
X Y + i∇1

X Y . For a real function f on M ,

∇X ( f Y ) = ∇
0
X ( f Y ) + i∇1

X ( f X),

∇X ( f Y ) = (X f )Y + f ∇X Y = [(X f )Y + f ∇
0
X Y ] + i f ∇

1
X Y,

which implies that

∇
0
X ( f Y ) = (X f )Y + f ∇

0
X Y, ∇

1
X ( f Y ) = f ∇

1
X Y.

This shows that ∇
0 is a real connection while ∇

1 is a real tensor field of type (1, 2).
Also

0 = ∇X Y − ∇Y X − [X, Y ] = ∇
0
X Y + i∇1

X Y − ∇
0
Y X − i∇1

Y X − [X, Y ]

= [∇
0
X Y − ∇

0
Y X − [X, Y ]] + i[∇1

X Y − ∇
1
Y X ],

which shows that

∇
0
X Y − ∇

0
Y X − [X, Y ] = 0, ∇

1
X Y − ∇

1
Y X = 0.

These equations show that the connection ∇
0 is symmetric, and that the tensor ∇

1 is
also symmetric. Moreover,

∇X (JY ) = ∇
0
X (JY ) + i∇1

X (JY )

∇X (JY ) = J∇X Y = J∇
0
X Y + i J∇

1
X Y
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which gives
∇

0
X J = 0, ∇

1
X (JY ) = J∇

1
X Y.

For the real vectors X, Y1, Y2, Y3 ∈ T M we can compute

0 = (∇Xγ )(Y1, Y2, Y3) = X (γ (Y1, Y2, Y3))

− γ (∇X Y1, Y2, Y3) − γ (Y1, ∇X Y2, Y3) − γ (Y1, Y2, ∇X Y3)

= X (γ (Y1, Y2, Y3)) − γ (∇0
X Y1 + i∇1

X Y1, Y2, Y3)

− γ (Y1, ∇
0
X Y2 + i∇1

X Y2, Y3) − γ (Y1, Y2, ∇
0
X Y3 + i∇1

X Y3)

= X (γ (Y1, Y2, Y3)) − γ (∇0
X Y1, Y2, Y3) − γ (Y1, ∇

0
X Y2, Y3) − γ (Y1, Y2, ∇

0
X Y3)

− i[γ (∇1
X Y1, Y2, Y3) + γ (Y1, ∇

1
X Y2, Y3) + γ (Y1, Y2, ∇

1
X Y3)]

= [X (γ0(Y1, Y2, Y3)) − γ0(∇
0
X Y1, Y2, Y3) − γ0(Y1, ∇

0
X Y2, Y3) − γ0(Y1, Y2, ∇

0
X Y3)

+ γ1(∇
1
X Y1, Y2, Y3) + γ1(Y1, ∇

1
X Y2, Y3) + γ1(Y1, Y2, ∇

1
X Y3)]

+ i[X (γ1(Y1, Y2, Y3)) − γ1(∇
0
X Y1, Y2, Y3) − γ1(Y1, ∇

0
X Y2, Y3)

− γ1(Y1, Y2, ∇
0
X Y3) − γ0(∇

1
X Y1, Y2, Y3) − γ0(Y1, ∇

1
X Y2, Y3)

− γ0(Y1, Y2, ∇
1
X Y3)].

This shows that the real part is zero. The complex part then leads to the same identity,
and thus it is also zero. Using the relations between γ0 and γ1 gives

0 = X (γ0(Y1, Y2, Y3)) − γ0(∇
0
X Y1, Y2, Y3) − γ0(Y1, ∇

0
X Y2, Y3) − γ0(Y1, Y2, ∇

0
X Y3)

− γ0(J∇
1
X Y1, Y2, Y3) − γ0(Y1, J∇

1
X Y2, Y3) − γ0(Y1, Y2, J∇

1
X Y3)

= X (γ0(Y1, Y2, Y3)) − γ0(∇
0
X Y1 + J∇

1
X Y1, Y2, Y3)

− γ0(Y1, ∇
0
X Y2 + J∇

1
X Y2, Y3) − γ0(Y1, Y2, ∇

0
X Y3 + J∇

1
X Y3).

Now define
∇̃X Y = ∇

0
X Y + J∇

1
X Y.

It is easy to verify that ∇̃ is a real connection. Moreover, the previous equation shows
that

∇̃γ0 = 0.

Furthermore, it is very easy to see that the connection ∇̃ is symmetric.
The inverse implication can also be proved easily. 2

Let us use the standard definition of integrability of a k-form ω on M , that is, every
x ∈ M has a neighbourhood N such that ω has the constant expression in dx i , x i being
suitable coordinate functions on N .

COROLLARY 14. Let ω be a real 3-form on a six-dimensional differentiable manifold
M satisfying 1(ωx ) = {0} for any x ∈ M. Let J be an almost complex structure on M
such that for any vector fields X1, X2, X3 ∈ X(M),

ω(J X1, X2, X3) = ω(X1, J X2, X3) = ω(X1, X2, J X3).
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Then ω is integrable if and only if there exists a symmetric connection ∇ preserving ω,
that is, ∇ω = 0.

PROOF. Let ∇ be a symmetric connection such that ∇ω = 0. According to the
previous proposition, dω = 0 and J is integrable. Then we construct the complex
form γ on TCM of type (3, 0) such that Re γ |Tx M = ω, for any x ∈ M (point by
point, according to Proposition 8). Moreover, if ω is closed then so is γ . That is,
γ = f · dz1

∧ dz2
∧ dz3, where z1, z2, and z3 are (complex) coordinate functions on

M , dz1, dz2, dz3 are a basis of 31,0 M and f is a function on M . Furthermore,

0 = dγ = ∂γ + ∂γ = ∂ f · dz1
∧ dz2

∧ dz3
+ ∂ f · dz1

∧ dz2
∧ dz3.

Evidently ∂γ = 0, which means that ∂ f = 0 and f is holomorphic. Now we
exploit a standard trick. There exists a holomorphic function F(z1, z2, z3) such
that (∂ F/∂z1) = f . We introduce new complex coordinates z̃1

= F(z1, z2, z3),
z̃2

= z2, and z̃3
= z3. Then γ = f dz1

∧ dz2
∧ dz3

= dz̃1
∧ dz̃2

∧ dz̃3. Now write
z̃1

= x1
+ i x4, z̃2

= x2
+ i x5, and z̃3

= x3
+ i x6 for real coordinate functions x1, x2,

x3, x4, x5, and x6 on M . Then

Re γ = Re(d(x1
+ i x4) ∧ d(x2

+ i x5) ∧ d(x3
+ i x6))

= dx1
∧ dx2

∧ dx3
− dx1

∧ dx5
∧ dx6

+ dx2
∧ dx4

∧ dx6

− dx3
∧ dx4

∧ dx5

and ω = (Re γ )|T M is an integrable on M .
Conversely, if ω is integrable, then for any x ∈ M there is a basis dx1, . . . , dx6 of

T ∗N in some neighbourhood N ⊂ M of x such that ω has a constant expression in all
Tx M , x ∈ N . Then the flat connection ∇ given by the coordinate system x1, . . . , x6
is symmetric and ∇ω = 0 on N . We use a partition of unity, and extend ∇ over the
whole manifold M . 2

We can reformulate Theorem 13 as ‘the Darboux theorem for complex type forms’.

COROLLARY 15. Let ω be a real 3-form on a six-dimensional differentiable manifold
M satisfying 1(ωx ) = {0} for any x ∈ M. Let J be an almost complex structure on M
such that for any vector fields X1, X2, X3 ∈ X(M),

ω(J X1, X2, X3) = ω(X1, J X2, X3) = ω(X1, X2, J X3).

Then ω is integrable if and only if the following conditions are satisfied:
(i) dω = 0;
(ii) the almost complex structure J is integrable.

OBSERVATION 16. There is an interesting relation between structures given by
a form of complex type on six-dimensional vector spaces and G2-structures on
seven-dimensional vector spaces (G2 being the exeptional Lie group, the group of
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automorphisms of the algebra of Cayley numbers and also the group of automorphism
of the 3-form given below), that is, structures given by a form of the type

α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 − α1 ∧ α6 ∧ α7 + α2 ∧ α4 ∧ α6 + α2 ∧ α5 ∧ α7

+ α3 ∧ α4 ∧ α7 − α3 ∧ α5 ∧ α6,

where α1, . . . , α7 are the basis of the vector space V . If we restrict a form of this type
to any six-dimensional subspace of V we get a form of complex type. Thus, any G2
structure on a seven-dimensional manifold gives a structure of complex type on any
six-dimensional submanifold. Thus we get a vast variety of examples.

Many examples of G2 structures are known and they have been well studied. See,
for example, [J].
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