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A SELECTION THEOREM AND ITS APPLICATIONS

XIE PING DING, WON KYU KIM AND KOK-KEONG TAN

In this paper, we first prove an improved version of the selection theorem of
Yannelis-Prabhakar and next prove a fixed point theorem in a non-compact prod-
uct space. As applications, an intersection theorem and two equilibrium existence
theorems for a non-compact abstract economy are given.

1. INTRODUCTION

In convex analysis, the Fan-Browder fixed point theorem [2] is an essential tool in
proving existence theorems of numerous nonlinear problems (for example see [2, 7, 13,
15]). Actually, the Fan-Browder fixed point theorem can be proved by constructing a
continuous selection.

In [15], Yannelis-Prabhakar proved a continuous selection theorem and obtained a
fixed point theorem in paracompact convex sets. Using this fixed point theorem, they
obtained an equilibrium existence theorem for a compact abstract economy.

In this paper, we first give an improved version of the selection theorem of Yannelis-
Prabhakar [15]. By applying this result, we prove a fixed point theorem in non-compact
product spaces. As an application of our fixed point theorem, we first prove an inter-
section theorem which is closely related to a non-compact generalisation of Fan's in-
tersection theorem [6] due to Shih-Tan [12]. Next, two equilibrium existence theorems
are obtained which are either closely related to or generalisations of those results of
Borglin-Keiding [1], Shafer-Sonnenschein [11], Tarafdar [14] and Yannelis-Prabhakar
[15].

We shall need the following notations and definitions. Let A be a non-empty set.
We shall denote by 2A the family of all subsets of A. If A is a non-empty subset of a
topological space X, we shall denote by clxA the closure of A in X. If A is a. subset
of a vector space, co A denotes the convex hull of A. Let X, Y be topological spaces
and <j>: X —* 2Y be a correspondence.

(i) If A C X, we shall denote the restriction of (j> to A by <j>\A, that is,
4>\A '• A —* 2Y is the correspondence defined by ^|^(x) = 4>{x) for all
x 6 A.
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(ii) <j> is said to be upper semicontinuous if for each open subset V of Y, the
set {x £ X : <p(x) C V} is open in X.

(iii) / : X —» Y is a continuous selection of <j> if / is continuous and /(x) £
^(x) for all x 6 -X".

(iv) If y is a vector space, the correspondence co<f> : X —> 2Y is defined by
(co<j>)(x) = co(j>(x) for all x £ X.

2. SELECTION AND FIXED POINT THEOREMS

We shall first generalise a selection theorem of Yannelis-Prabhakar [15, Theorem
3.1] as follows :

THEOREM 1. Let X be a, non-empty pa.Ta.compa.ct HausdorfF topological space
and Y be a non-empty convex subset of a topological vector space. Suppose S, T :
X —> 2Y are correspondences such that

(1) for each x £ X, coS(x) C T(x) and S(x) ^ 0,
(2) for each y £Y, S~1(y) is open in X.

Then T has a continuous selection.

PROOF: By (1), X = \J S""1^/). Since X is paracompact, by (2) and Lemma 1

of Michael [10], there exists an open locally finite refinement T = {Ua : a £ A} of the
family {S~1(y) : y G Y} where A is an index set and Ua is an open subset of X. By
Proposition 2 of Michael [10], there exists a family of continuous functions {ga : a (E. A}
such that ga : X -» [0,1], ga(x) = 0 for x $. Ua and X) 9a{x) = 1 for all z 6 X. For

each a £ A, choose ya € Y such that Ua C S~1(ya). This can be done since T is a
refinement of {5-1(t/) : y £ Y}. Define / : X -> Y by

From the local finiteness of T, it follows that for each x £ X, at least one, and at most
finitely many, ga(x) is not zero, and / is a well-defined continuous function from X
to Y. Let x £ X and a £ A be such that ga(x) ^ 0, then x £ Ua C S~1(ya) so that
yo £ S(x). By (1) and the definition of / , we have /(x) £ coS(x) C T(x) for each
x £ X. This completes the proof. u

If 5 = T, Theorem 1 reduces to Theorem 3.1 of Yannelis-Prabhakar [15].
We shall need the following lemma.

LEMMA 1. Let D be a non-empty compact subset of a topological vector space
E. Then coD is o--compact and hence is paracompact.
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PROOF: The proof that coD is <r-compact can be found in [9, p.49]. For complete-
ness, we shall include the simple proof here. For each n £ N, let Sn = { ( A i , . . . , An) :

Ai,...,An ^ 0 with f^X{ = 1} and define fn:Snx f[D -* E by

n

/n(Ai,. . . , An,Zi,. . . ,Xn) =

n n
Then /„ is continuous. Since Sn x J\D is compact, fn(Sn x J\D) is compact. But

oo / n \ t=l »=1
then coD = \J fn\Snx Y[ D I is (r-compact. It follows that coD is Lindelof. Since

n=l \ i=l /

coD is regular, coZ? is paracompact by Corollary 33.15 in [3, p.341]. This completes
the proof. D

We remark here that the topological vector space E in the above lemma is not
assumed to be Hausdorff.

We shall prove the following fixed point theorem.

THEOREM 2 . Let {X;}i6j be a family of non-empty convex sets, each in a locally
convex Hausdorff topological vector space E,, where I is an index set. For each i £ / ,
let Di be a non-empty compact subset of Xi and Si,T{ : X = Yl-X-i —> 2D* be such
that for each i£l, l € /

(1) for each x £ X, co Si(x) C Ti{x) and Si(x) ^ 0,
(2) for each j/j £ Di, S^1(yi) is open in X.

Then there exists a point x £ D = ]J D; such that x £ T(x) - [] T,(x), that is,

Xi £ Ti(x) for all i £ I, where Xi is the projection of x onto Xi for each i £ / .

PROOF: Since D = Y[ Di is compact in X, it follows from Lemma 1 that coD
iei

is paracompact in X. For each i £ / , let 5,*,^* be the restrictions of Si,Ti on coD,
then we have

(a) for each x £ coD, coSf(x) C coT?(x) and coSt{x) ^ 0,
(b) for each yi £ Di,

= {x £ coD :yi £ 5,(s)}

is open in coD.

By Theorem 1, for each i £ / , T* has a continuous selection /; : co£> —•> Di such
that /i(z) £ T?(x) = Ti(x) for each x e co D.
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Define / : coD -> D and T : coD -* 2D by

f(x) = JJ fi(x) and T{x) = JJT{(x) for each x £ coD.

Then / is clearly continuous. By Theorem 4.5.1 of Smart [13], there exists x £ D

such that x = f(x) £ T(x). This completes the proof. D

Theorem 2 generalises Theorem 3.2 of Yannelis-Prabhakar [15] in several ways :

(i) / need not be a singleton set,
(ii) Xi need not be paracompact, and

(iii) Si and Ti need not be identical.

3. APPLICATIONS
n

Let X\,..., Xn (n ^ 2) be topological spaces and X — Y[X{. Let i g { 1 , . . . , n}

be arbitrarily fixed. Let Xi = JJ Xj and nti : X —* X{ and 7?,- : X —* Xi be the

projections. If x £ X, we can write 7Tj(z) = a:,- and 7r,-(x) = Xi. Let A be a subset of

X, Xi £ Xi and Xi £ Xj. Then [SEJ,S;J] denotes the point x £ X such that 7T,-(x) = St

and 7?i(x) = Xi and we define A(xi) = {t/,- £ Jf,- : [xi,yi] € A} and A(xi) = {j/,- £ Xi :

[yi,Xi] e A}. If A,- C Xi and !,- C Xi, Ai <g> 2^ denotes the set {[y,-,y,] £ X : yi £

Aj and yt £ j4i}.

We shall give an application of a fixed point theorem to an intersection theorem as

follows:

THEOREM 3 . Let {Xj},gj be a family of non-empty convex sets, each in a locally

convex Hausdorff topological vector space E{. For each i £ / , let Di be a non-empty

compact subset of Xi. Suppose that {Ai}igj, {#,-};£/ are two families of subsets of
X = Y\ Xi having the following properties:

»€/

(1) for each i £ / and x,- £ Di, the set i?j(x,-) is open in Xi,

(2) for each i £ I, and yi £ X,-, t ie set JB,(yi)nA- (= {xi £ Df : [xi,y{] € £;})
^ 0 and co(Bi(yi) n A ) C ^(y i ) D D;.

Tien we iave f| ^i ¥" 0-

PROOF: Define 5,-, T; : X - • 2Di as follows :

Ti(y) = Ai(yi) D D{, for each y £ X.
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Then by (2), for each i £ I and y £ X,coSi{y) C T;(T/) and S;(y) ^ 0. By (1), for
each i £ I and ! ;£!) ; ,

Sr\*i) = iv e X : xi £ 5i(»)}

= {y G X : *j G B,-(&) n Di} (= {y £ X : Xi £ 5,(y,)})

= {y £ X : [xi,yi] £ Bi}

is open in X.

By Theorem 2, there exists x £ D = \[ £>, such that x 6 T(x) = f] T{(x), that
>€/ iei

is, Xi £ Ai(ii) for all i £ / and hence x = [x,-,?j] G P)-^»- Therefore f) Â  ^ 0 . This
completes the proof. i 6 / * e / D

We remark that Theorem 3 is closely related to but not comparable to Theorem 2
of Shih-Tan [12] which was a non-compact generalisation of Fan's intersection theorem
[6] (in our case, the space -E; is required to be locally convex).

Next we shall give two equilibrium existence theorems for a non-compact abstract
economy with an infinite number of commodities and an infinite number of agents.
We first give some definitions in equilibrium theory. Let the set / of agents be any
(possibly uncountable) set. An abstract economy T = (Xi,Ai,Bi,Pi)ieI is defined
as a family of ordered quaduples (Xi, Ai, Bi,Pi) where Ai,Bi : f[ Xj —* 2Xi are

constraint correspondences and Pi : Yl Xj —» 2Xi is a preference correspondence.
i€/

An equilibrium for F is a point x £ X = Yl Xi such that for each i £ I, x,- £
i€l

clXiBi(x) and Ai(x) fl Pi(x) = 0 . When Ai = Bi for each i G / , our definitions
of an abstract economy and an equilibrium coincide with the standard definitions, for

example in Borglin-Keiding [1, p.315] or in Yannelis-Prabhakar [15, p.242].

We shall first show that by applying Himmelberg's fixed point theorem [8, Theorem

2] instead of Ky Fan's fixed point theorem [5], the proof of Theorem 6.1 of Yannelis-

Prabhakar [15] can be used to prove its non-compact case.

THEOREM 4 . Let T = (Xi,Ai,Bi,Pi)i£I be an abstract economy such that for

each i £ I,

(1) Xi is a non-empty convex subset of a locally convex Hausdorff topological
vector space Ei and Di is a non-empty compact subset of Xi,

(2) for each x £ X = Y\Xi,Ai(x) is non-empty, Ai(x) C Bi(x) C Di and
Bi(x) is convex,

(3) the correspondence clB{ : X -> 2*< defined by (clBi)(x) = clXiBi{x) for
each x £ X, is upper semicontinuous,
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(4) for each y G Di, J4^"1(y) is open in X,
(5) for each y G X j , Pi~

1(y) is open in X,

(6) for each x £ X, Xi £ coPi(x),
(7) the set {x G X : coAi(x) D coPi(x) ^ 0} is paiacompact.

Then V has an equilibrium x G X, that is, for each i & I,

Xi G clXiBi(x) and A{(x) D Pi(x) = 0.

PROOF: We first fix i G I. Define <fo : X -> 2X« by

^,-(z) = coi4j(x) D coPi{x) for each i £ l .

By (4), (5) and Lemma 5.1 of Yannelis-Prabhakar [15], it is easy to see that for

each y G X,, (jf^iy) is open in X. Let Vi = {x G X : <j>i(x) ^ 0}. Since Ui =
U <^r1(j/)) ^» *s open in X . By (7), i/» is paracompact. Note that <f>i\ut • Ui —> 2Xi

has the following properties :

(i) for each x G Ui, &|[/j(z) is non-empty and convex,

(ii) for each y G Xi, (<f>i\ui)~ {y) = ^(y) n Ui is open in Ui.

By Theorem 3.1 of Yannelis-Prabhakar [15] (which is the case 5 = T in our

Theorem 1), there exists a continuous selection fi : Ui —* 2X' such that fi(x) G 4>i\uiix)

for all x G Ui. Define Fi : X -> 2*< by

iK.)-(
1 clXiBi(x), if x ^ Di.

By (3) and Lemma 6.1 of Yannelis-Prabhakar [15], Fi : X —* 2Xi is upper semicontin-
uous on X. Clearly for each x G X, Fi(x) is a non-empty closed convex subset of Dj
by (2). Finally we define F : X -> 2X by

F(x) = Y[ Fi{x) for e a c h i £ l

It follows from Lemma 3 of Fan [5] that F is upper semicontinuous on X. Obviously
for each x G X,F(x) is a closed convex subset of D = f[ Di. By Tychonoff's product

iei
theorem (for example see Dugundji [4, p.224]), D is a compact subset of X. Hence
by Theorem 2 of Himmelberg [8], there exists a point x E D such that z G F(x).

If i 6 17; for some i G / , then z; = fi(x) G co^4,-(z) fl coP,(z) C coPi(x) which
contradicts (6). Thus for each * G / , we must have x £ Ui so that Xi G clxtBi(x) and
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coAi(x) (~1 coPi(x) = 0. Consequently, x is an equih'brium for F . This completes the
proof. D

As we have seen in the proof, we can obtain a stronger separation result, that is,
for each i G / , co Ai{x) (~l coPi(x) - 0.

Theorem 4 generalises Theorem 6.1 of Yannelis-Prabhakar [15] in the following
ways :

(i) for each i G / , the space E{ need not be metrisable,
(ii) for each i 6 I, the set Xi need not be compact, and

(iii) the set I of agents need not be countable.

THEOREM 5 . Let T — (Xi,Ai,Bi,Pi)ieI be an abstract economy such that for
each i G I, the following conditions hold:

(1) Xi is a non-empty convex subset of a locally convex Hausdorfftopological

vector space E, and Di be a non-empty compact subset of Xi,

(2) for each x G X, Ai(x) is non-empty and coAi{x) C Bi(x) C Di,

(3) for each y, G Dit the set [(coPi)'1 (yi) U Fi] fi A^iyi) is open in X,
where Fi = {x € X : Ai(x) D Pi(x) = 0} ,

(4) for each x G X, n £ coPi(x).

Then T has an equilibrium.

PROOF: For each i G / , let Gt- = {x G X : Ai(x)C\Pi{x) ^ 0} and for each x G X,
let I(x) = {i G / : Ai(x) PI Pi(x) ^ 0} . For each i G / , we define the correspondences
Si,Ti-.X= n ^ ^ 2 ° - by

= <
coPi(x) n Ai(x), if i G I(x),

coPi{x)nBi(x), if »£/(*),

Then we have the following properties:

(i) for each i G / and x G X, co Si(x) C Ti(x) and 5,(x) ^ 0,
(ii) for each i G / and i/j G -Dt-,

i)-1^) n ^(y,-)] n G,} u \Ar\yt) n ^ ]

^ ) n Ari(y,.)] u K " 1 ^ ) n Fi]

is open in X by (3).
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By Theorem 2, there exists x G D such that x,- £ Ti(x) for all i e I. By (4) and the
definition of Tiy we have x< e Bi(x) and Ai(x) H P{(x) = 0 for all i £ / . This
completes the proof. D

Finally we remark that Theorems 4 and 5 are closely related to those results of
Shafer-Sonnenschein [11, p.347], Borglin-Keiding [1, p.315] and Tarafdar [14, Theorem
3.1].
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