A SELECTION THEOREM AND ITS APPLICATIONS

XIE PING DING, WON KYU KIM AND KOK-KEONG TAN

In this paper, we first prove an improved version of the selection theorem of Yannelis-Prabhakar and next prove a fixed point theorem in a non-compact product space. As applications, an intersection theorem and two equilibrium existence theorems for a non-compact abstract economy are given.

1. INTRODUCTION

In convex analysis, the Fan-Browder fixed point theorem [2] is an essential tool in proving existence theorems of numerous nonlinear problems (for example see [2, 7, 13, 15]). Actually, the Fan-Browder fixed point theorem can be proved by constructing a continuous selection.

In [15], Yannelis-Prabhakar proved a continuous selection theorem and obtained a fixed point theorem in paracompact convex sets. Using this fixed point theorem, they obtained an equilibrium existence theorem for a compact abstract economy.

In this paper, we first give an improved version of the selection theorem of Yannelis-Prabhakar [15]. By applying this result, we prove a fixed point theorem in non-compact product spaces. As an application of our fixed point theorem, we first prove an intersection theorem which is closely related to a non-compact generalisation of Fan’s intersection theorem [6] due to Shih-Tan [12]. Next, two equilibrium existence theorems are obtained which are either closely related to or generalisations of those results of Borglin-Keiding [1], Shafer-Sonnenschein [11], Tarafdar [14] and Yannelis-Prabhakar [15].

We shall need the following notations and definitions. Let \(A \) be a non-empty set. We shall denote by \(2^A \) the family of all subsets of \(A \). If \(A \) is a non-empty subset of a topological space \(X \), we shall denote by \(\text{cl}_X A \) the closure of \(A \) in \(X \). If \(A \) is a subset of a vector space, \(\text{co} A \) denotes the convex hull of \(A \). Let \(X, Y \) be topological spaces and \(\phi : X \rightarrow 2^Y \) be a correspondence.

(i) If \(A \subset X \), we shall denote the restriction of \(\phi \) to \(A \) by \(\phi|_A \), that is, \(\phi|_A : A \rightarrow 2^Y \) is the correspondence defined by \(\phi|_A(x) = \phi(x) \) for all \(x \in A \).
(ii) \(\phi \) is said to be upper semicontinuous if for each open subset \(V \) of \(Y \), the set \(\{ x \in X : \phi(x) \subseteq V \} \) is open in \(X \).

(iii) \(f : X \to Y \) is a continuous selection of \(\phi \) if \(f \) is continuous and \(f(x) \in \phi(x) \) for all \(x \in X \).

(iv) If \(Y \) is a vector space, the correspondence \(co\phi : X \to 2^Y \) is defined by \((co\phi)(x) = co\phi(x) \) for all \(x \in X \).

2. SELECTION AND FIXED POINT THEOREMS

We shall first generalise a selection theorem of Yannelis-Prabhakar [15, Theorem 3.1] as follows:

Theorem 1. Let \(X \) be a non-empty paracompact Hausdorff topological space and \(Y \) be a non-empty convex subset of a topological vector space. Suppose \(S, T : X \to 2^Y \) are correspondences such that

1. For each \(x \in X \), \(coS(x) \subseteq T(x) \) and \(S(x) \neq \emptyset \),
2. For each \(y \in Y \), \(S^{-1}(y) \) is open in \(X \).

Then \(T \) has a continuous selection.

Proof: By (1), \(X = \bigcup_{y \in Y} S^{-1}(y) \). Since \(X \) is paracompact, by (2) and Lemma 1 of Michael [10], there exists an open locally finite refinement \(\mathcal{F} = \{ U_a : a \in A \} \) of the family \(\{ S^{-1}(y) : y \in Y \} \) where \(A \) is an index set and \(U_a \) is an open subset of \(X \). By Proposition 2 of Michael [10], there exists a family of continuous functions \(\{ g_a : a \in A \} \) such that \(g_a : X \to [0,1] \), \(g_a(x) = 0 \) for \(x \notin U_a \) and \(\sum_{a \in A} g_a(x) = 1 \) for all \(x \in X \). For each \(a \in A \), choose \(y_a \in Y \) such that \(U_a \subseteq S^{-1}(y_a) \). This can be done since \(\mathcal{F} \) is a refinement of \(\{ S^{-1}(y) : y \in Y \} \). Define \(f : X \to Y \) by

\[
\begin{align*}
f(x) = \sum_{a \in A} g_a(x) y_a \quad & \text{for each } x \in X.
\end{align*}
\]

From the local finiteness of \(\mathcal{F} \), it follows that for each \(x \in X \), at least one, and at most finitely many, \(g_a(x) \) is not zero, and \(f \) is a well-defined continuous function from \(X \) to \(Y \). Let \(x \in X \) and \(a \in A \) be such that \(g_a(x) \neq 0 \), then \(x \in U_a \subseteq S^{-1}(y_a) \) so that \(y_a \in S(x) \). By (1) and the definition of \(f \), we have \(f(x) \in coS(x) \subseteq T(x) \) for each \(x \in X \). This completes the proof.

If \(S = T \), Theorem 1 reduces to Theorem 3.1 of Yannelis-Prabhakar [15].

We shall need the following lemma.

Lemma 1. Let \(D \) be a non-empty compact subset of a topological vector space \(E \). Then \(coD \) is \(\sigma \)-compact and hence is paracompact.
PROOF: The proof that \(\text{co} D \) is \(\sigma \)-compact can be found in [9, p.49]. For completeness, we shall include the simple proof here. For each \(n \in \mathbb{N} \), let \(S_n = \{ (\lambda_1, \ldots, \lambda_n) : \lambda_1, \ldots, \lambda_n \geq 0 \text{ with } \sum_{i=1}^n \lambda_i = 1 \} \) and define \(f_n : S_n \times \prod_{i=1}^n D \to E \) by

\[
f_n(\lambda_1, \ldots, \lambda_n, x_1, \ldots, x_n) = \sum_{i=1}^n \lambda_i x_i.
\]

Then \(f_n \) is continuous. Since \(S_n \times \prod_{i=1}^n D \) is compact, \(f_n(S_n \times \prod_{i=1}^n D) \) is compact. But then \(\text{co} D = \bigcup_{n=1}^{\infty} f_n \left(S_n \times \prod_{i=1}^n D \right) \) is \(\sigma \)-compact. It follows that \(\text{co} D \) is Lindelöf. Since \(\text{co} D \) is regular, \(\text{co} D \) is paracompact by Corollary 33.15 in [3, p.341]. This completes the proof.

We remark here that the topological vector space \(E \) in the above lemma is not assumed to be Hausdorff.

We shall prove the following fixed point theorem.

Theorem 2. Let \(\{X_i\}_{i \in I} \) be a family of non-empty convex sets, each in a locally convex Hausdorff topological vector space \(E_i \), where \(I \) is an index set. For each \(i \in I \), let \(D_i \) be a non-empty compact subset of \(X_i \) and \(S_i, T_i : X = \prod_{i \in I} X_i \to 2^{D_i} \) be such that for each \(i \in I \),

1. for each \(x \in X \), \(\text{co} S_i(x) \subseteq T_i(x) \) and \(S_i(x) \neq \emptyset \),
2. for each \(y_i \in D_i \), \(S_i^{-1}(y_i) \) is open in \(X \).

Then there exists a point \(\hat{x} \in D = \prod_{i \in I} D_i \) such that \(\hat{x} \in T(\hat{x}) = \prod_{i \in I} T_i(\hat{x}) \), that is, \(\hat{x}_i \in T_i(\hat{x}) \) for all \(i \in I \), where \(\hat{x}_i \) is the projection of \(\hat{x} \) onto \(X_i \) for each \(i \in I \).

Proof: Since \(D = \prod_{i \in I} D_i \) is compact in \(X \), it follows from Lemma 1 that \(\text{co} D \) is paracompact in \(X \). For each \(i \in I \), let \(S_i^*, T_i^* \) be the restrictions of \(S_i, T_i \) on \(\text{co} D \), then we have

1. for each \(x \in \text{co} D \), \(\text{co} S_i^*(x) \subseteq \text{co} T_i^*(x) \) and \(\text{co} S_i^*(x) \neq \emptyset \),
2. for each \(y_i \in D_i \),

\[
(S_i^*)^{-1}(y_i) = \{ x \in \text{co} D : y_i \in S_i(x) \} = \{ x \in \text{co} D : y_i \in S_i(x) \} = \text{co} D \cap S_i^{-1}(y_i)
\]

is open in \(\text{co} D \).

By Theorem 1, for each \(i \in I \), \(T_i^* \) has a continuous selection \(f_i : \text{co} D \to D_i \) such that \(f_i(x) \in T_i^*(x) = T_i(x) \) for each \(x \in \text{co} D \).
Define \(f : \co D \to D \) and \(T : \co D \to 2^D \) by

\[
f(x) = \prod_{i \in I} f_i(x) \quad \text{and} \quad T(x) = \prod_{i \in I} T_i(x) \quad \text{for each} \ x \in \co D.
\]

Then \(f \) is clearly continuous. By Theorem 4.5.1 of Smart [13], there exists \(\widehat{x} \in D \) such that \(\widehat{x} = f(\widehat{x}) \in T(\widehat{x}) \). This completes the proof.

Theorem 2 generalises Theorem 3.2 of Yannelis-Prabhakar [15] in several ways:

(i) \(I \) need not be a singleton set,
(ii) \(X_i \) need not be paracompact, and
(iii) \(S_i \) and \(T_i \) need not be identical.

3. APPLICATIONS

Let \(X_1, \ldots, X_n (n \geq 2) \) be topological spaces and \(X = \prod_{i=1}^{n} X_i \). Let \(i \in \{1, \ldots, n\} \) be arbitrarily fixed. Let \(\widehat{X}_i = \prod_{j \neq i} X_j \) and \(\pi_i : X \to X_i \) and \(\widehat{\pi}_i : X \to \widehat{X}_i \) be the projections. If \(x \in X \), we can write \(\pi_i(x) = x_i \) and \(\widehat{\pi}_i(x) = \widehat{x}_i \). Let \(A \) be a subset of \(X \), \(x_i \in X_i \) and \(\widehat{x}_i \in \widehat{X}_i \). Then \([x_i, \widehat{x}_i] \) denotes the point \(x \in X \) such that \(\pi_i(x) = x_i \) and \(\widehat{\pi}_i(x) = \widehat{x}_i \) and we define \(A(\pi_i) = \{ \widehat{y}_i \in \widehat{X}_i : [x_i, \widehat{y}_i] \in A \} \) and \(A(\widehat{x}_i) = \{ y_i \in X_i : [y_i, \widehat{x}_i] \in A \} \). If \(A_1 \subset X_1 \) and \(\widehat{A}_1 \subset \widehat{X}_1 \), \(A_1 \otimes \widehat{A}_1 \) denotes the set \(\{ [y_i, \widehat{y}_i] \in X : y_i \in A_1 \text{ and } \widehat{y}_i \in \widehat{A}_1 \} \).

We shall give an application of a fixed point theorem to an intersection theorem as follows:

THEOREM 3. Let \(\{X_i\}_{i \in I} \) be a family of non-empty convex sets, each in a locally convex Hausdorff topological vector space \(E_i \). For each \(i \in I \), let \(D_i \) be a non-empty compact subset of \(X_i \). Suppose that \(\{A_i\}_{i \in I}, \{B_i\}_{i \in I} \) are two families of subsets of \(X = \prod_{i \in I} X_i \) having the following properties:

1. For each \(i \in I \) and \(x_i \in D_i \), the set \(B_i(x_i) \) is open in \(\widehat{X}_i \),
2. For each \(i \in I \), and \(\widehat{y}_i \in \widehat{X}_i \), the set \(B_i(\widehat{y}_i) \cap D_i = \{ x_i \in D_i : [x_i, \widehat{y}_i] \in B_i \} \neq \emptyset \) and \(\co (B_i(\widehat{y}_i) \cap D_i) \subset A_i(\widehat{y}_i) \cap D_i \).

Then we have \(\bigcap_{i \in I} A_i \neq \emptyset \).

Proof: Define \(S_i, T_i : X \to 2^{D_i} \) as follows:

\[
S_i(y) = B_i(\widehat{y}_i) \cap D_i, \quad T_i(y) = A_i(\widehat{y}_i) \cap D_i, \quad \text{for each} \ y \in X.
\]
Then by (2), for each \(i \in I \) and \(y \in X, \co S_i(y) \subseteq T_i(y) \) and \(S_i(y) \neq \emptyset \). By (1), for each \(i \in I \) and \(x_i \in D_i \),

\[
S_i^{-1}(x_i) = \{ y \in X : x_i \in S_i(y) \} = \{ y \in X : x_i \in B_i(y_i) \cap D_i \} = \{ y \in X : [x_i, y_i] \in B_i \}
\]

is open in \(X \).

By Theorem 2, there exists \(x \in D = \prod_{i \in I} D_i \) such that \(x \in T(x) = \prod_{i \in I} T_i(x) \), that is, \(x_i \in A_i(\tilde{x}_i) \) for all \(i \in I \) and hence \(x = [x_i, \tilde{x}_i] \in \bigcap_{i \in I} A_i \). Therefore \(\bigcap_{i \in I} A_i \neq \emptyset \). This completes the proof.

We remark that Theorem 3 is closely related to but not comparable to Theorem 2 of Shih-Tan [12] which was a non-compact generalisation of Fan’s intersection theorem [6] (in our case, the space \(E_i \) is required to be locally convex).

Next we shall give two equilibrium existence theorems for a non-compact abstract economy with an infinite number of commodities and an infinite number of agents. We first give some definitions in equilibrium theory. Let the set \(I \) of agents be any (possibly uncountable) set. An abstract economy \(\Gamma = (X_i, A_i, B_i, P_i)_{i \in I} \) is defined as a family of ordered quadruples \((X_i, A_i, B_i, P_i) \) where \(A_i, B_i : \prod X_j \to 2^{X_i} \) are constraint correspondences and \(P_i : \prod X_j \to 2^{X_i} \) is a preference correspondence. An equilibrium for \(\Gamma \) is a point \(\tilde{x} \in X = \prod_{i \in I} X_i \) such that for each \(i \in I \), \(\tilde{x}_i \in \cl_{X_i} B_i(\tilde{x}) \) and \(A_i(\tilde{x}) \cap P_i(\tilde{x}) = \emptyset \). When \(A_i = B_i \) for each \(i \in I \), our definitions of an abstract economy and an equilibrium coincide with the standard definitions, for example in Borglin-Keiding [1, p.315] or in Yannelis-Prabhakar [15, p.242].

We shall first show that by applying Himmelberg’s fixed point theorem [8, Theorem 2] instead of Ky Fan’s fixed point theorem [5], the proof of Theorem 6.1 of Yannelis-Prabhakar [15] can be used to prove its non-compact case.

Theorem 4. Let \(\Gamma = (X_i, A_i, B_i, P_i)_{i \in I} \) be an abstract economy such that for each \(i \in I \),

1. \(X_i \) is a non-empty convex subset of a locally convex Hausdorff topological vector space \(E_i \) and \(D_i \) is a non-empty compact subset of \(X_i \),
2. for each \(x \in X = \prod X_i, A_i(x) \) is non-empty, \(A_i(x) \subseteq B_i(x) \subseteq D_i \) and \(B_i(x) \) is convex,
3. the correspondence \(\cl B_i : X \to 2^{X_i} \) defined by \((\cl B_i)(x) = \cl_{X_i} B_i(x) \) for each \(x \in X \), is upper semicontinuous,
(4) for each $y \in D_i$, $A_i^{-1}(y)$ is open in X,
(5) for each $y \in X_i$, $P_i^{-1}(y)$ is open in X,
(6) for each $z \in X$, $x_i \notin \text{co}P_i(x)$,
(7) the set $\{x \in X : \text{co}A_i(x) \cap \text{co}P_i(x) \neq \emptyset \}$ is paracompact.

Then Γ has an equilibrium $\hat{x} \in X$, that is, for each $i \in I$,

$$\hat{x}_i \in \text{cl}_X B_i(\hat{x}) \quad \text{and} \quad A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset.$$

Proof: We first fix $i \in I$. Define $\phi_i : X \to 2^{X_i}$ by

$$\phi_i(x) = \text{co}A_i(x) \cap \text{co}P_i(x) \quad \text{for each } x \in X.$$

By (4), (5) and Lemma 5.1 of Yannelis-Prabhakar [15], it is easy to see that for each $y \in X_i$, $\phi_i^{-1}(y)$ is open in X. Let $U_i = \{x \in X : \phi_i(x) \neq \emptyset \}$. Since $U_i = \bigcup_{y \in X_i} \phi_i^{-1}(y)$, U_i is open in X. By (7), U_i is paracompact. Note that $\phi_i|U_i : U_i \to 2^{X_i}$ has the following properties:

(i) for each $x \in U_i$, $\phi_i|U_i(x)$ is non-empty and convex,
(ii) for each $y \in X_i$, $(\phi_i|U_i)^{-1}(y) = \phi_i^{-1}(y) \cap U_i$ is open in U_i.

By Theorem 3.1 of Yannelis-Prabhakar [15] (which is the case $S = T$ in our Theorem 1), there exists a continuous selection $f_i : U_i \to 2^{X_i}$ such that $f_i(x) \in \phi_i|U_i(x)$ for all $x \in U_i$. Define $F_i : X \to 2^{X_i}$ by

$$F_i(x) = \begin{cases}
\{f_i(x)\}, & \text{if } x \in U_i, \\
\text{cl}_X B_i(x), & \text{if } x \notin U_i.
\end{cases}$$

By (3) and Lemma 6.1 of Yannelis-Prabhakar [15], $F_i : X \to 2^{X_i}$ is upper semicontinuous on X. Clearly for each $x \in X$, $F_i(x)$ is a non-empty closed convex subset of D_i by (2). Finally we define $F : X \to 2^X$ by

$$F(x) = \prod_{i \in I} F_i(x) \quad \text{for each } x \in X.$$

It follows from Lemma 3 of Fan [5] that F is upper semicontinuous on X. Obviously for each $x \in X$, $F(x)$ is a closed convex subset of $D = \prod_{i \in I} D_i$. By Tychonoff’s product theorem (for example see Dugundji [4, p.224]), D is a compact subset of X. Hence by Theorem 2 of Himmelberg [8], there exists a point $\hat{x} \in D$ such that $\hat{x} \in F(\hat{x})$. If $\hat{x} \in U_i$ for some $i \in I$, then $\hat{x}_i = f_i(\hat{x}) \in \text{co}A_i(\hat{x}) \cap \text{co}P_i(\hat{x}) \subset \text{co}P_i(\hat{x})$ which contradicts (6). Thus for each $i \in I$, we must have $\hat{x} \notin U_i$ so that $\hat{x}_i \in \text{cl}_X B_i(\hat{x})$ and
co $A_i(\tilde{x}) \cap co P_i(\tilde{x}) = \emptyset$. Consequently, \tilde{x} is an equilibrium for Γ. This completes the proof. \[\square\]

As we have seen in the proof, we can obtain a stronger separation result, that is, for each $i \in I$, $co A_i(\tilde{x}) \cap co P_i(\tilde{x}) = \emptyset$.

Theorem 4 generalises Theorem 6.1 of Yannelis-Prabhakar [15] in the following ways:

(i) for each $i \in I$, the space E_i need not be metrisable,
(ii) for each $i \in I$, the set X_i need not be compact, and
(iii) the set I of agents need not be countable.

Theorem 5. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be an abstract economy such that for each $i \in I$, the following conditions hold:

1. X_i is a non-empty convex subset of a locally convex Hausdorff topological vector space E_i and D_i be a non-empty compact subset of X_i,
2. for each $x \in X$, $A_i(x)$ is non-empty and $co A_i(x) \subset B_i(x) \subset D_i$,
3. for each $y_i \in D_i$, the set $[(co P_i)^{-1}(y_i) \cup F_i] \cap A_i^{-1}(y_i)$ is open in X, where $F_i = \{x \in X : A_i(x) \cap P_i(x) = \emptyset\}$,
4. for each $x \in X$, $x_i \notin co P_i(x)$.

Then Γ has an equilibrium.

Proof: For each $i \in I$, let $G_i = \{x \in X : A_i(x) \cap P_i(x) \neq \emptyset\}$ and for each $x \in X$, let $I(x) = \{i \in I : A_i(x) \cap P_i(x) \neq \emptyset\}$. For each $i \in I$, we define the correspondences $S_i, T_i : X = \prod_{i \in I} X_i \rightarrow 2^{D_i}$ by

$$S_i(x) = \begin{cases} co P_i(x) \cap A_i(x), & \text{if } i \in I(x), \\ A_i(x), & \text{if } i \notin I(x), \end{cases}$$

$$T_i(x) = \begin{cases} co P_i(x) \cap B_i(x), & \text{if } i \in I(x), \\ B_i(x), & \text{if } i \notin I(x). \end{cases}$$

Then we have the following properties:

(i) for each $i \in I$ and $x \in X$, $co S_i(x) \subset T_i(x)$ and $S_i(x) \neq \emptyset$,
(ii) for each $i \in I$ and $y_i \in D_i$,

$$S_i^{-1}(y_i) = \{[(co P_i)^{-1}(y_i) \cap A_i^{-1}(y_i)] \cap G_i \} \cup [A_i^{-1}(y_i) \cap F_i]$$

$$= [(co P_i)^{-1}(y_i) \cap A_i^{-1}(y_i)] \cup [A_i^{-1}(y_i) \cap F_i]$$

$$= [(co P_i)^{-1}(y_i) \cup F_i] \cap A_i^{-1}(y_i)$$

is open in X by (3).
By Theorem 2, there exists $\tilde{x} \in D$ such that $\tilde{x}_i \in T_i(\tilde{x})$ for all $i \in I$. By (4) and the definition of T_i, we have $\tilde{x}_i \in B_i(\tilde{x})$ and $A_i(\tilde{x}) \cap P_i(\tilde{x}) = \emptyset$ for all $i \in I$. This completes the proof. □

Finally we remark that Theorems 4 and 5 are closely related to those results of Shafer-Sonnenschein [11, p.347], Borglin-Keiding [1, p.315] and Tarafdar [14, Theorem 3.1].

REFERENCES