BULL. AUSTRAL. MATH. SOC. Vol. 46 (1992) [205-212]

A SELECTION THEOREM AND ITS APPLICATIONS

XIE PING DING, WON KYU KIM AND KOK-KEONG TAN

In this paper, we first prove an improved version of the selection theorem of Yannelis-Prabhakar and next prove a fixed point theorem in a non-compact product space. As applications, an intersection theorem and two equilibrium existence theorems for a non-compact abstract economy are given.

1. INTRODUCTION

In convex analysis, the Fan-Browder fixed point theorem [2] is an essential tool in proving existence theorems of numerous nonlinear problems (for example see [2, 7, 13, 15]). Actually, the Fan-Browder fixed point theorem can be proved by constructing a continuous selection.

In [15], Yannelis-Prabhakar proved a continuous selection theorem and obtained a fixed point theorem in paracompact convex sets. Using this fixed point theorem, they obtained an equilibrium existence theorem for a compact abstract economy.

In this paper, we first give an improved version of the selection theorem of Yannelis-Prabhakar [15]. By applying this result, we prove a fixed point theorem in non-compact product spaces. As an application of our fixed point theorem, we first prove an intersection theorem which is closely related to a non-compact generalisation of Fan's intersection theorem [6] due to Shih-Tan [12]. Next, two equilibrium existence theorems are obtained which are either closely related to or generalisations of those results of Borglin-Keiding [1], Shafer-Sonnenschein [11], Tarafdar [14] and Yannelis-Prabhakar [15].

We shall need the following notations and definitions. Let A be a non-empty set. We shall denote by 2^A the family of all subsets of A. If A is a non-empty subset of a topological space X, we shall denote by cl_XA the closure of A in X. If A is a subset of a vector space, coA denotes the convex hull of A. Let X, Y be topological spaces and $\phi: X \to 2^Y$ be a correspondence.

(i) If $A \subset X$, we shall denote the restriction of ϕ to A by $\phi|_A$, that is, $\phi|_A : A \to 2^Y$ is the correspondence defined by $\phi|_A(x) = \phi(x)$ for all $x \in A$.

Received 4th September, 1991.

This paper was partially supported by NSERC of Canada under grant A-8096, and for the second author by a grant from the Korea Science and Engineering Foundation in 1992.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

- (ii) ϕ is said to be upper semicontinuous if for each open subset V of Y, the set $\{x \in X : \phi(x) \subset V\}$ is open in X.
- (iii) $f: X \to Y$ is a continuous selection of ϕ if f is continuous and $f(x) \in \phi(x)$ for all $x \in X$.
- (iv) If Y is a vector space, the correspondence $co\phi: X \to 2^Y$ is defined by $(co\phi)(x) = co\phi(x)$ for all $x \in X$.

2. Selection and fixed point theorems

We shall first generalise a selection theorem of Yannelis-Prabhakar [15, Theorem 3.1] as follows :

THEOREM 1. Let X be a non-empty paracompact Hausdorff topological space and Y be a non-empty convex subset of a topological vector space. Suppose $S, T : X \to 2^Y$ are correspondences such that

- (1) for each $x \in X$, $co S(x) \subset T(x)$ and $S(x) \neq \emptyset$,
- (2) for each $y \in Y$, $S^{-1}(y)$ is open in X.

Then T has a continuous selection.

PROOF: By (1), $X = \bigcup_{y \in Y} S^{-1}(y)$. Since X is paracompact, by (2) and Lemma 1 of Michael [10], there exists an open locally finite refinement $\mathcal{F} = \{U_a : a \in A\}$ of the family $\{S^{-1}(y) : y \in Y\}$ where A is an index set and U_a is an open subset of X. By Proposition 2 of Michael [10], there exists a family of continuous functions $\{g_a : a \in A\}$ such that $g_a : X \to [0,1]$, $g_a(x) = 0$ for $x \notin U_a$ and $\sum_{a \in A} g_a(x) = 1$ for all $x \in X$. For each $a \in A$, choose $y_a \in Y$ such that $U_a \subset S^{-1}(y_a)$. This can be done since \mathcal{F} is a refinement of $\{S^{-1}(y) : y \in Y\}$. Define $f : X \to Y$ by

$$f(x) = \sum_{a \in A} g_a(x) y_a$$
 for each $x \in X$.

From the local finiteness of \mathcal{F} , it follows that for each $x \in X$, at least one, and at most finitely many, $g_a(x)$ is not zero, and f is a well-defined continuous function from X to Y. Let $x \in X$ and $a \in A$ be such that $g_a(x) \neq 0$, then $x \in U_a \subset S^{-1}(y_a)$ so that $y_a \in S(x)$. By (1) and the definition of f, we have $f(x) \in co S(x) \subset T(x)$ for each $x \in X$. This completes the proof.

If S = T, Theorem 1 reduces to Theorem 3.1 of Yannelis-Prabhakar [15]. We shall need the following lemma.

LEMMA 1. Let D be a non-empty compact subset of a topological vector space E. Then co D is σ -compact and hence is paracompact.

A selection theorem

207

PROOF: The proof that co D is σ -compact can be found in [9, p.49]. For completeness, we shall include the simple proof here. For each $n \in N$, let $S_n = \{(\lambda_1, \ldots, \lambda_n) : \lambda_1, \ldots, \lambda_n \ge 0 \text{ with } \sum_{i=1}^n \lambda_i = 1\}$ and define $f_n : S_n \times \prod_{i=1}^n D \to E$ by $f_n(\lambda_1, \ldots, \lambda_n, x_1, \ldots, x_n) = \sum_{i=1}^n \lambda_i x_i.$

Then f_n is continuous. Since $S_n \times \prod_{i=1}^n D$ is compact, $f_n(S_n \times \prod_{i=1}^n D)$ is compact. But then $co D = \bigcup_{n=1}^{\infty} f_n\left(S_n \times \prod_{i=1}^n D\right)$ is σ -compact. It follows that co D is Lindelöf. Since co D is regular, co D is paracompact by Corollary 33.15 in [3, p.341]. This completes the proof.

We remark here that the topological vector space E in the above lemma is not assumed to be Hausdorff.

We shall prove the following fixed point theorem.

THEOREM 2. Let $\{X_i\}_{i\in I}$ be a family of non-empty convex sets, each in a locally convex Hausdorff topological vector space E_i , where I is an index set. For each $i \in I$, let D_i be a non-empty compact subset of X_i and $S_i, T_i : X = \prod_{i\in I} X_i \to 2^{D_i}$ be such that for each $i \in I$,

- (1) for each $x \in X$, $co S_i(x) \subset T_i(x)$ and $S_i(x) \neq \emptyset$,
- (2) for each $y_i \in D_i$, $S_i^{-1}(y_i)$ is open in X.

Then there exists a point $\hat{x} \in D = \prod_{i \in I} D_i$ such that $\hat{x} \in T(\hat{x}) = \prod_{i \in I} T_i(\hat{x})$, that is, $\hat{x}_i \in T_i(\hat{x})$ for all $i \in I$, where \hat{x}_i is the projection of \hat{x} onto X_i for each $i \in I$.

PROOF: Since $D = \prod_{i \in I} D_i$ is compact in X, it follows from Lemma 1 that coD is paracompact in X. For each $i \in I$, let S_i^*, T_i^* be the restrictions of S_i, T_i on coD, then we have

- (a) for each $x \in co D$, $co S_i^*(x) \subset co T_i^*(x)$ and $co S_i^*(x) \neq \emptyset$,
- (b) for each $y_i \in D_i$,

$$(S_i^*)^{-1}(y_i) = \{x \in co D : y_i \in S_i^*(x)\}$$

= $\{x \in co D : y_i \in S_i(x)\}$
= $co D \cap S_i^{-1}(y_i)$

is open in coD.

By Theorem 1, for each $i \in I$, T_i^* has a continuous selection $f_i : co D \to D_i$ such that $f_i(x) \in T_i^*(x) = T_i(x)$ for each $x \in co D$.

Define $f: co D \to D$ and $T: co D \to 2^D$ by

$$f(x) = \prod_{i \in I} f_i(x)$$
 and $T(x) = \prod_{i \in I} T_i(x)$ for each $x \in coD$.

Then f is clearly continuous. By Theorem 4.5.1 of Smart [13], there exists $\hat{x} \in D$ such that $\hat{x} = f(\hat{x}) \in T(\hat{x})$. This completes the proof.

Theorem 2 generalises Theorem 3.2 of Yannelis-Prabhakar [15] in several ways :

- (i) I need not be a singleton set,
- (ii) X_i need not be paracompact, and
- (iii) S_i and T_i need not be identical.

3. Applications

Let X_1, \ldots, X_n $(n \ge 2)$ be topological spaces and $X = \prod_{i=1}^n X_i$. Let $i \in \{1, \ldots, n\}$ be arbitrarily fixed. Let $\widehat{X}_i = \prod_{\substack{j=1 \ j \ne i}}^n X_j$ and $\pi_i : X \to X_i$ and $\widehat{\pi}_i : X \to \widehat{X}_i$ be the

projections. If $x \in X$, we can write $\pi_i(x) = x_i$ and $\hat{\pi}_i(x) = \hat{x}_i$. Let A be a subset of $X, x_i \in X_i$ and $\hat{x}_i \in \hat{X}_i$. Then $[x_i, \hat{x}_i]$ denotes the point $x \in X$ such that $\pi_i(x) = x_i$ and $\hat{\pi}_i(x) = \hat{x}_i$ and we define $A(x_i) = \{\hat{y}_i \in \hat{X}_i : [x_i, \hat{y}_i] \in A\}$ and $A(\hat{x}_i) = \{y_i \in X_i : [y_i, \hat{x}_i] \in A\}$. If $A_i \subset X_i$ and $\hat{A}_i \subset \hat{X}_i$, $A_i \otimes \hat{A}_i$ denotes the set $\{[y_i, \hat{y}_i] \in X : y_i \in A_i \text{ and } \hat{y}_i \in \hat{A}_i\}$.

We shall give an application of a fixed point theorem to an intersection theorem as follows:

THEOREM 3. Let $\{X_i\}_{i\in I}$ be a family of non-empty convex sets, each in a locally convex Hausdorff topological vector space E_i . For each $i \in I$, let D_i be a non-empty compact subset of X_i . Suppose that $\{A_i\}_{i\in I}, \{B_i\}_{i\in I}$ are two families of subsets of $X = \prod_{i\in I} X_i$ having the following properties:

(1) for each $i \in I$ and $x_i \in D_i$, the set $B_i(x_i)$ is open in \widehat{X}_i ,

(2) for each $i \in I$, and $\widehat{y}_i \in \widehat{X}_i$, the set $B_i(\widehat{y}_i) \cap D_i$ (= { $x_i \in D_i : [x_i, \widehat{y}_i] \in B_i$ }) $\neq \emptyset$ and $co(B_i(\widehat{y}_i) \cap D_i) \subset A_i(\widehat{y}_i) \cap D_i$.

Then we have $\bigcap_{i\in I} A_i \neq \emptyset$.

PROOF: Define $S_i, T_i: X \to 2^{D_i}$ as follows :

$$egin{aligned} S_i(y) &= B_i(\widehat{y}_i) \cap D_i, \ T_i(y) &= A_i(\widehat{y}_i) \cap D_i, \end{aligned}$$
 for each $y \in X.$

Then by (2), for each $i \in I$ and $y \in X$, co $S_i(y) \subset T_i(y)$ and $S_i(y) \neq \emptyset$. By (1), for each $i \in I$ and $x_i \in D_i$,

$$S_i^{-1}(x_i) = \{ y \in X : x_i \in S_i(y) \}$$

= $\{ y \in X : x_i \in B_i(\widehat{y}_i) \cap D_i \} (= \{ y \in X : x_i \in B_i(\widehat{y}_i) \})$
= $\{ y \in X : [x_i, \widehat{y}_i] \in B_i \}$
= $X_i \otimes B_i(x_i)$

is open in X.

By Theorem 2, there exists $x \in D = \prod_{i \in I} D_i$ such that $x \in T(x) = \prod_{i \in I} T_i(x)$, that is, $x_i \in A_i(\hat{x}_i)$ for all $i \in I$ and hence $x = [x_i, \hat{x}_i] \in \bigcap_{i \in I} A_i$. Therefore $\bigcap_{i \in I} A_i \neq \emptyset$. This completes the proof.

We remark that Theorem 3 is closely related to but not comparable to Theorem 2 of Shih-Tan [12] which was a non-compact generalisation of Fan's intersection theorem [6] (in our case, the space E_i is required to be locally convex).

Next we shall give two equilibrium existence theorems for a non-compact abstract economy with an infinite number of commodities and an infinite number of agents. We first give some definitions in equilibrium theory. Let the set I of agents be any (possibly uncountable) set. An abstract economy $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ is defined as a family of ordered quaduples (X_i, A_i, B_i, P_i) where $A_i, B_i : \prod_{j \in I} X_j \to 2^{X_i}$ are constraint correspondences and $P_i : \prod_{j \in I} X_j \to 2^{X_i}$ is a preference correspondence. An equilibrium for Γ is a point $\hat{x} \in X = \prod_{i \in I} X_i$ such that for each $i \in I$, $\hat{x}_i \in$ $cl_{X_i}B_i(\hat{x})$ and $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$. When $A_i = B_i$ for each $i \in I$, our definitions of an abstract economy and an equilibrium coincide with the standard definitions, for example in Borglin-Keiding [1, p.315] or in Yannelis-Prabhakar [15, p.242].

We shall first show that by applying Himmelberg's fixed point theorem [8, Theorem 2] instead of Ky Fan's fixed point theorem [5], the proof of Theorem 6.1 of Yannelis-Prabhakar [15] can be used to prove its non-compact case.

THEOREM 4. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be an abstract economy such that for each $i \in I$,

- X_i is a non-empty convex subset of a locally convex Hausdorff topological vector space E_i and D_i is a non-empty compact subset of X_i,
- (2) for each $x \in X = \prod_{i \in I} X_i$, $A_i(x)$ is non-empty, $A_i(x) \subset B_i(x) \subset D_i$ and $B_i(x)$ is convex,
- (3) the correspondence $cl B_i : X \to 2^{X_i}$ defined by $(cl B_i)(x) = cl_{X_i}B_i(x)$ for each $x \in X$, is upper semicontinuous,

209

- (4) for each $y \in D_i$, $A_i^{-1}(y)$ is open in X,
- (5) for each $y \in X_i$, $P_i^{-1}(y)$ is open in X,
- (6) for each $x \in X$, $x_i \notin coP_i(x)$,
- (7) the set $\{x \in X : co A_i(x) \cap co P_i(x) \neq \emptyset\}$ is paracompact.

Then Γ has an equilibrium $\hat{x} \in X$, that is, for each $i \in I$,

$$\widehat{x}_i \in cl_{X_i}B_i(\widehat{x})$$
 and $A_i(\widehat{x}) \cap P_i(\widehat{x}) = \emptyset$.

PROOF: We first fix $i \in I$. Define $\phi_i : X \to 2^{X_i}$ by

$$\phi_i(x) = co A_i(x) \cap co P_i(x)$$
 for each $x \in X$.

By (4), (5) and Lemma 5.1 of Yannelis-Prabhakar [15], it is easy to see that for each $y \in X_i$, $\phi_i^{-1}(y)$ is open in X. Let $U_i = \{x \in X : \phi_i(x) \neq \emptyset\}$. Since $U_i = \bigcup_{y \in X_i} \phi_i^{-1}(y)$, U_i is open in X. By (7), U_i is paracompact. Note that $\phi_i|_{U_i} : U_i \to 2^{X_i}$ has the following properties :

- (i) for each $x \in U_i$, $\phi_i|_{U_i}(x)$ is non-empty and convex,
- (ii) for each $y \in X_i$, $(\phi_i|_{U_i})^{-1}(y) = \phi_i^{-1}(y) \cap U_i$ is open in U_i .

By Theorem 3.1 of Yannelis-Prabhakar [15] (which is the case S = T in our Theorem 1), there exists a continuous selection $f_i: U_i \to 2^{X_i}$ such that $f_i(x) \in \phi_i|_{U_i}(x)$ for all $x \in U_i$. Define $F_i: X \to 2^{X_i}$ by

$$F_i(x) = \begin{cases} \{f_i(x)\}, & \text{if } x \in U_i, \\ cl_{X_i}B_i(x), & \text{if } x \notin U_i. \end{cases}$$

By (3) and Lemma 6.1 of Yannelis-Prabhakar [15], $F_i: X \to 2^{X_i}$ is upper semicontinuous on X. Clearly for each $x \in X, F_i(x)$ is a non-empty closed convex subset of D_i by (2). Finally we define $F: X \to 2^X$ by

$$F(x) = \prod_{i \in I} F_i(x) \quad ext{for each } x \in X.$$

It follows from Lemma 3 of Fan [5] that F is upper semicontinuous on X. Obviously for each $x \in X, F(x)$ is a closed convex subset of $D = \prod_{i \in I} D_i$. By Tychonoff's product theorem (for example see Dugundji [4, p.224]), D is a compact subset of X. Hence by Theorem 2 of Himmelberg [8], there exists a point $\hat{x} \in D$ such that $\hat{x} \in F(\hat{x})$. If $\hat{x} \in U_i$ for some $i \in I$, then $\hat{x}_i = f_i(\hat{x}) \in co A_i(\hat{x}) \cap co P_i(\hat{x}) \subset co P_i(\hat{x})$ which contradicts (6). Thus for each $i \in I$, we must have $\hat{x} \notin U_i$ so that $\hat{x}_i \in cl_{X_i}B_i(\hat{x})$ and $co A_i(\hat{x}) \cap co P_i(\hat{x}) = \emptyset$. Consequently, \hat{x} is an equilibrium for Γ . This completes the proof.

As we have seen in the proof, we can obtain a stronger separation result, that is, for each $i \in I$, $co A_i(\hat{x}) \cap co P_i(\hat{x}) = \emptyset$.

Theorem 4 generalises Theorem 6.1 of Yannelis-Prabhakar [15] in the following ways :

- (i) for each $i \in I$, the space E_i need not be metrisable,
- (ii) for each $i \in I$, the set X_i need not be compact, and
- (iii) the set I of agents need not be countable.

THEOREM 5. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be an abstract economy such that for each $i \in I$, the following conditions hold:

- (1) X_i is a non-empty convex subset of a locally convex Hausdorff topological vector space E_i and D_i be a non-empty compact subset of X_i ,
- (2) for each $x \in X$, $A_i(x)$ is non-empty and $co A_i(x) \subset B_i(x) \subset D_i$,
- (3) for each $y_i \in D_i$, the set $[(co P_i)^{-1}(y_i) \cup F_i] \cap A_i^{-1}(y_i)$ is open in X, where $F_i = \{x \in X : A_i(x) \cap P_i(x) = \emptyset\}$,
- (4) for each $x \in X$, $x_i \notin co P_i(x)$.

Then Γ has an equilibrium.

PROOF: For each $i \in I$, let $G_i = \{x \in X : A_i(x) \cap P_i(x) \neq \emptyset\}$ and for each $x \in X$, let $I(x) = \{i \in I : A_i(x) \cap P_i(x) \neq \emptyset\}$. For each $i \in I$, we define the correspondences $S_i, T_i : X = \prod_{i \in I} X_i \to 2^{D_i}$ by

$$S_i(x) = \left\{egin{array}{ll} co \ P_i(x) \cap A_i(x), & ext{if } i \in I(x), \ & A_i(x), & ext{if } i \notin I(x), \ & T_i(x) = \left\{egin{array}{ll} co \ P_i(x) \cap B_i(x), & ext{if } i \in I(x), \ & B_i(x), & ext{if } i \notin I(x). \end{array}
ight.
ight.$$

Then we have the following properties:

- (i) for each $i \in I$ and $x \in X$, $co S_i(x) \subset T_i(x)$ and $S_i(x) \neq \emptyset$,
- (ii) for each $i \in I$ and $y_i \in D_i$,

$$S_i^{-1}(y_i) = \{ [(co P_i)^{-1}(y_i) \cap A_i^{-1}(y_i)] \cap G_i \} \cup [A_i^{-1}(y_i) \cap F_i]$$

= $[(co P_i)^{-1}(y_i) \cap A_i^{-1}(y_i)] \cup [A_i^{-1}(y_i) \cap F_i]$
= $[(co P_i)^{-1}(y_i) \cup F_i] \cap A_i^{-1}(y_i)$

is open in X by (3).

[8]

By Theorem 2, there exists $\hat{x} \in D$ such that $\hat{x}_i \in T_i(\hat{x})$ for all $i \in I$. By (4) and the definition of T_i , we have $\hat{x}_i \in B_i(\hat{x})$ and $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$ for all $i \in I$. This completes the proof.

Finally we remark that Theorems 4 and 5 are closely related to those results of Shafer-Sonnenschein [11, p.347], Borglin-Keiding [1, p.315] and Tarafdar [14, Theorem 3.1].

References

- A. Borglin and H. Keiding, 'Existence of equilibrium actions and of equilibrium: a note on the 'new' existence theorem', J. Math. Econom. 3 (1976), 313-316.
- [2] F.E. Browder, 'The fixed point theory of multi-valued mappings in topological vector spaces', Math. Ann. 177 (1968), 283-301.
- [3] H.F. Cullen, Introduction to general topology (D. C. Heath, Boston, 1968).
- [4] J. Dugundji, Topology (Allyn and Bacon, Inc., Boston, 1966).
- K. Fan, 'Fixed-point and minimax theorems in locally convex topological linear spaces', Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 131-136.
- [6] K. Fan, 'Sur un théorème minimax', C.R. Acad. Sci. Paris Ser. 1 259 (1964), 3925-3928.
- [7] K. Fan, 'A minimax inequality and applications', in *Inequalities III*, Editor O. Shisha (Academic Press, New York, 1972).
- [8] C.J. Himmelberg, 'Fixed points of compact multifunctions', J. Math. Anal. Appl. 38 (1972), 205-207.
- [9] M. Lassonde, 'Fixed point for Kakutani factorizable multifunctions', J. Math. Anal. Appl. 152 (1990), 46-60.
- [10] E. Michael, 'A note on paracompact spaces', Proc. Amer. Math. Soc. 4 (1953), 831-838.
- [11] W. Shafer and H. Sonnenschein, 'Equilibrium in abstract economies without ordered preferences', J. Math. Econom. 2 (1975), 345-348.
- [12] M.H. Shih and K.-K. Tan, 'Non-compact sets with convex sections', Pacific J. Math. 119 (1985), 473–479.
- [13] D.R. Smart, Fixed point theorems (Cambridge University Press, Cambridge, MA, 1974).
- [14] E. Tarafdar, 'A fixed point theorem and equilibrium point of an abstract economy', J. Math. Econom. 20 (1991), 211-218.
- [15] N.C. Yannelis and N.D. Prabhakar, 'Existence of maximal elements and equilibria in linear topological spaces', J. Math. Econom. 12 (1983), 233-245.

Department of MathematicsDepartment of Mathematics EducationSichuan Normal UniversityChungbuk National UniversityChengdu, SichuanCheongju 360-763ChinaKoreaDepartment of Mathematics, Statistics and Computing ScienceDalhousie UniversityHalifar NSCanada B3H 3J5