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Abstract

Let 91 be a C*-algebra, a a *-anti-automorphism of order 2, and %"(±1) = {A; A esJl, i
±A) the spectral subspaces of a. It follows that 9I"(+1) is a Jordan algebra and 9l"(- l) is
a Lie algebra. We begin the classification of pairs of Jordan and Lie algebras which can
occur in this manner by examining %=Sf(Jf), the algebra of bounded operators on a Hilbert
space 3P.

1980 Mathematics subject classification (Amer. Math. Soc): 46 L 99.

0. Introduction

Recently Effros and the second-named author (Effros and Stermer (1979)) began
the analysis of Jordan structure associated with positive identity-preserving
projections P acting on a C*-algebra 91 with identity 1. Thus P; A e%^-P(A) e9I
satisfies P^O, P2 = P, and P(l) = 1. The starting point of the analysis, and a
subsequent paper (Stermer (1979)), is a proof that the range PC&h) of P on the
hermitian elements 9lft of 91 is a Jordan algebra when equipped with a suitable
new product. One consequence of this result is that if 91 is a von Neumann algebra
and a a normal positive identity preserving map of 91 into itself then the hermitian
fixed points of a have a natural Jordan structure. An easy example of this latter
result occurs if a is a *-automorphism, or a *-anti-automorphism, of 91.

The starting point of the present note is the observation that if <x is an anti-
automorphism then the elements of 91 satisfying <x(A) = — A form a Lie-algebra
with respect to the natural Lie product [A,B] = AB-BA. This follows from the
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130 Derek W. Robinson and Erling St0rmer [2]

simple calculation

<x([A,B]) = <x(AB)-ot(BA)

= a(B)a(A)-<x(A)<x(B) = -[A,B].

Our purpose is to explore relations between this Lie structure, the Jordan structure
of the fixed points, and positive projections associated with anti-automorphisms.

Suppose, more generally, that 9t is an algebra over a field / and ex is a /-linear
anti-automorphism of 91 then the eigenspaces 5la(± 1) = {A; Ae% <x(A) = ±A}
are Jordan and Lie subalgebras of 91 under the products

AoB = {AB + BA)j2, [A,B] = AB-BA,

respectively. Moreover the linear span of 9T*(+1) and 9ta(-1) is a subalgebra J5f
of 51 on which a acts as an anti-automorphism of order 2. This follows from the
easily verified relations

1), [%«(+ l),9Ia( + l]s9Ia(-1),

which imply that 1£ is both a Lie algebra and a Jordan algebra. Thus if one
considers different powers of a and the corresponding eigenspaces one can reduce
a substantial part of spectral theory for a to the study of anti-automorphisms of
order 2, and the associated Jordan and Lie structure.

In this note we describe parts of the latter theory when 31 is a C*-algebra and
a preserves the *-operation. Our principal result concerns the case that
91 = JSfpf). We show that there is a pairing between the classical Lie algebras
and their infinite dimensional analogues, and the irreducible reversible Jordan
algebras of self-adjoint operators or the scalars.

1. Pairing of Lie and Jordan algebras

We begin by examining some pairing properties of Lie and Jordan algebras in
finite dimensions.

Let Mn denote the nxn matrices and a a *-anti-automorphism of Mn. Since
there is a unique normalized trace on Mn it follows that

for all A eMn. Consequently if A e M«(-1) and Be Af«(+1)

TT(AB*) = -Tr(ot(A)oc(B*))

= -Tr(oc(B*A)) = -Tr (AB*)
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[3] Lie and Jordan structure in operator algebras 131

and hence
Tr(AB*) = 0.

But Mn is the linear span of M%(+1) and M%(— I), because each AeMn has the
decomposition

A = A+ + A_,
where

A± = (A±<x(A))/2eM%(±l).

Thus one deduces that the Jordan algebra M*(+1) is the orthogonal complement
Af£( - l ) x of the Lie algebra M £ ( - l ) when Mn is equipped with the Hilbert
space scalar product

This motivates the examination of Lie subalgebras of Mn which have Jordan
subalgebras as their orthogonal complements, and vice versa.

The Cartan-Killing classification (Z-X Wan (1975)) of Lie subalgebras of Mn

is given in terms of four families of 'classical' algebras An,Bn,Cn,Dn, together
with five 'exceptional' algebras G2, F4, E6, E7, Es. These latter algebras will play
no role in the sequel.

The algebra An_t consists of the n x n matrices with trace zero. The algebras
Bn only occur if n is odd and Cn and Dn occur if n is even. The Bn, Cn, Dn are
identifiable as eigenspaces M£(— 1) of *-anti-automorphisms of the form

= UAlU~x,

where A1 denotes the transpose of A and U is a unitary matrix whose form varies
with the class. The three possibilities UBtUCn,UDn, are usually expressed in the
forms

ln/2

• i . f l o

1

0
0

l(n-l)/2

0
l ( n -

0

where lm denotes the identity matrix in Mm. By repeated transposition of rows and
columns one easily sees that these matrices are similar to the unitary matrices
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are in M2. From this latter identification
ro in r o 1

where the blocks and

Li o j L - i o .
of Bn, Cn, Dn, it is readily calculated that the self-adjoint part of the orthogonal
complements B£, and D^, are the real symmetric matrices Sn, whilst the self-
adjoint part of C£ is the Jordan algebra Qn of self-adjoint matrices whose entries
are blocks of 2 x 2 matrices identified with the quaternions. Thus 2?£ = Sn+iSn,
cn = 5 » + ' 2 r e . Di = Sn + iSn and it is readily verified that A^_x = Cl.

Now a self-adjoint Jordan algebra is defined to be simple if it has no proper nonzero
self-adjoint Jordan ideals. Our first result establishes that the above classical
algebras plus the trivial cases 0 and Mn are the only Lie subalgebras of Mn which
have simple Jordan algebras as their orthogonal complements.

PROPOSITION 1. Let g be a self-adjoint Lie subalgebra of Mn and assume that its
orthogonal complement gx with respect to the Hilbert space scalar product

is a Jordan algebra.
It follows that

2. gx /s a simple Jordan algebra
3. g is one ofO, An_lt Bn, Cn, Dn, Mn.

Furthermore if g o g c g-L then g can only be one ofO,Av Bn, Cn,Dn.
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[5] Lie and Jordan structure in operator algebras 133

PROOF 1. Let A,Beg and C e g x then

because [A,B]EQ. Thus [C,A]EQ± which establishes 1.
2. Since gx is a finite-dimensional self-adjoint Jordan algebra its simplicity will

follow if we can establish that its only central projections are 0 and 1.
Let £ be a central projection of gx. Then if A e g we have

EAE- AE=[E,A]E= E[E, A] = EA- EAE,

where the second step uses part 1, that is [E, A] e gx because A e g and Ee g-1-. Thus

EA + AE = 2EAE.

Successive multiplication on the left and right by £ yields

EA = EAE = AE

and consequently EEQ'. Thus

3. It follows from the discussion preceding the proposition, and the observation
that if g = 0, or Mn, then gx = Mn, or 0, that the cases listed in part 3 are all
possible. It remains to prove that this list is exhaustive.

Let us consider the various possibilities for the Jordan algebra gx.
If gx is irreducible and its self-adjoint part is Qn then g(= g-1-1-) is Cn. But if

gx is irreducible and its self-adjoint part is Sn then g is Bn or Dn.
Next if gx is reducible there are two possibilities. Either the self-adjoint algebra

21 generated by gx is simple or it is not.
In the first of these cases we can identify Mn with 21® Mk, for some k, where gx

is identified with gx® Cl^. Now let {etj; i,j = 1,2, ...,&} denote the usual matrix
units in Mk, then it follows easily that the orthogonal complement of gx within
2t is a Lie algebra 4 and

Thus if A,Be'$L then A®eu and B®e21 belong to g so that

Hence [A,B]e4. Thus 4 contains all the commutators in 21 and 4 must be
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Am-i® Mfc for some m. But then

k

= .2

if, and only if,

that is Tr(/4) = 0 and g = /4n_x.
Next assume 51 is not simple. Then it has exactly two nontrivial central projections

E and F=\-E (see, for example, Jordan and others (1934) or Starmer (1968))
and 2lis = QXE. Now we argue that EMnEnQ is the orthogonal complement of
EQ1- in EMnE. Indeed if EAEEQ then

TT((EAE)EB) = TT(EAEB) = 0

for all 5eg x . Thus £/4£e(£"gx)x. Conversely if EAEe^Eq^ then for all fiegx

one has
0 = TT((EAE)EB) = Tr(£/l£fl)

so EAEEQ.

Next remark that since EQ1- = E% is simple, and of the form Mm®Clfc, the
arguments in the earlier part of the proof establish that {E^y- = EMnEnq = 0
or Ak_1. In the latter case Q1- is the scalars and % cannot have two central pro-
jections. Thus we are left with the possibility EMnEng = 0 or, equivalently,
£gx = EM = EMnE. Now £3I~F9I (Stermer (1968)) and by symmetry

FQ± = F=FMnF.

Thus n = 2m is even and we can make the identifications 91 = Mm ® Mm with
Q± = {A®Ai; AeMm}. Writing elements of 91, g, etcetera as 2 x 2 matrices over
Mm one readily computes that

But this is a Lie algebra if, and only if, m = 1. Thus g = At and gx = Cl.
It now follows from the structure theory of simple self-adjoint Jordan algebras

(Jordan and others (1934); Stermer (1966)) that the only remaining possibility
is that the self-adjoint part of gx is a spin factor of real dimension greater than
6 and n = 2k for some k > 3 (see, for example, Effros and Stermer (1979) or St0rmer
(1966)). Now let £ be a nonzero minimal projection in gx and remark that if
A egx and Beg then

Tr (A(EBE)) = Tr ((EAE)B) = 0.
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[7] Lie and Jordan structure in operator algebras 135

Hence EQEZ(EQXE)±. But conversely if EAEe(Etf-E)-1 and BEQX then

TT((EAE)B) = Tr ((EAE)EB) = 0

and hence (EQ±E)±nEMnE^EQE. Thus EQE is the orthogonal complement of
EqJ-Ein EMn E. But since Eis minimal in gx one has EQXE = C2? and consequently
EQE = (CE)±nEMnE. But F= \-E is also a minimal projection in QX and thus
one concludes that EQE~ FQF~ An/2_1. Now choose ,4 eEQE to be rank one and
let Seg-1- be a self-adjoint unitary such that

S£S = F.

It follows from part 1 of the proposition that [S,A] egx. But [S, A] has rank
less than or equal to two and the spin algebra gx cannot contain a nonzero matrix
of rank less than four. This is a contradiction and consequently gx cannot be a
spin factor of dimension greater than 6.

The final statement of the proposition is immediate because the condition
Q1- for all A,BGQ excludes the possibilities An_x with «^3 and Mn

n.

COROLLARY 2. If Q is a self-adjoint exceptional Lie subalgebra of Mn then gx

cannot be a Jordan algebra.
This is a partial reiteration of statement 3 of Proposition 1.

COROLLARY 3. If g is a nonzero self-adjoint Lie subalgebra of Mn then there is a
*-anti-automorphism a of order 2 of Mn with g = Af£(-1) and g-1 = A/«(+1) //,
and only if, gx is a Jordan algebra and

PROOF. If g = Af£(- 1) for some a and A,Beg then

<x(A o B) = (a(AB) + <x(BA))/2 = A°B.

Thus gogcA/«(+]) = gJ-. Conversely if this latter condition is satisfied then
Proposition 1 implies that g is one of the algebras AvBn,Cn,Dn. The existence
of an a in the cases Bn, Cn, Dn, follows from the definitions of these algebras
whilst the case n = 2 and g = Av is dealt with by defining a such that

' » ] ) _ [ ' ~b

c d\j [ -c d

2. Projections on £C(Jf)

Next we examine the pairing of infinite-dimensional Jordan and Lie algebras
but with a slight change of emphasis. If a is a *-anti-automorphism of order 2 of
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a C*-algebra 9t with identity and i is the identity map then P = (i + a)/2 is a
positive projection which preserves the identity. The eigenspaces 3la(+l), and
9Ia(— 1), now correspond to the fixed points of P, and the null space of P,
respectively. Thus we analyze the corresponding pairing problem for projections.
This approach is related to the work of Arazy and Friedman (1978) who discussed
the characterization of all contractions of the compact operators J?C(JT) on
a separable Hilbert space and it is also a natural extension of parts of Effros and
Stormer (1979) and St0rmer (1979). First it is necessary to introduce Lie algebras
which are infinite-dimensional analogues of the Bn, Cn, Dn.

The weakly closed Jordan subalgebras of £P(2/F) have been classified (Stormer
(1966); StOTmer (1972)) in terms of four JW-factors, real symmetric factors,
quaternionian factors, spin factors and hermitian parts of von Neumann algebras. In
the finite-dimensional discussion of the previous section the first two occurred in
association with classical Lie algebras and we next introduce infinite-dimensional
analogues of the Lie algebras by generalizing this association. One natural method of
introducing these infinite-dimensional Lie algebras is by orthogonality with respect
to the trace on jSf(Jf) but this leads to annoying details of approximation of trace-class
operators. A second method is through spectral theory of *-anti-automorphisms.
The real symmetric irreducible JW-factor $lr is the hermitian (self-adjoint) elements
of J2?(«?f) which are invariant under a *-anti-automorphism of order 2, the trans-
pose map A^A*. Thus %. = jS?pf)<(+ l)ft. The eigenspace % = <e(2tfj(-1) is
a Lie algebra g with the bracket operation [A,B] = AB—BA. If Jt has finite
dimension n then g = Bn for n odd and g = Dn for n even. If Jf is infinite
dimensional we denote the algebra g by Bx (or Dx). Similarly, the quaternion
algebra 9Ig is formed by the elements of .Sfpf) which are invariant under a
*-anti-automorphism A->A". If Jf has finite dimension n the associated Lie
algebra g = jS?(Jf)9(-l) is Cn and hence we denote the infinite-dimensional
analogue by Cx.

The connection between BX,CX and Bn,Cn can be made more precise by
considering an n-dimensional projector £e9Ir, or Ee%r It follows immediately
from the calculations of the previous section that EQE = (E9I£)X in E^C(Jf)E
and EQE is isomorphic to Bn, Cn or Dn. The first case occurs if n is odd and Ee%.,
the second if Ee%a, and the third if n is even and Ee%r.

THEOREM 4. Let ^ be a complex Hilbert space and P a positive normal identity
preserving projection of£f(JT) into itself such that 2t = P(.2pf)ft) is a JC-algebra.
Let g denote the null space of P.

\.Ifn = dim Jtf < +oo then g is a Lie algebra if and only if
either % = Rl, in which case g = An_x

or 91 is reversible and irreducible, in which case g is one ofO,Bn, Cn, Dn.
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[9] Lie and Jordan structure in operator algebras 137

2. If Jtf is infinite-dimensional then g is a Lie algebra if and only i/"3t is reversible
and irreducible, in which case g is one ofO, B^,, C^.

PROOF. If « = d i m ^ < +oo, 31 = R l and g = An_t then P is a state with null
space An_x and hence P is the trace. Next assume 31 is irreducible and reversible.
One can have 31 = -£?(<#% P = i and g = 0. Alternatively 31 could be the real
symmetric operators or the quaternionian algebra. In both cases P is unique by
St0rmer (1979), Lemma 6.1 and hence P = (i + a)/2 where a is the *-anti-
automorphism of &(#?) such that a(A) = A for Ae%. Consequently

is Bn, Cn or Dn, by Proposition 1, or if dim=?f = oo by the definition of Bx, Cx.
Conversely assume g is a Lie algebra.
We first argue that P must be faithful. Let r = supp/> and assume r ^ l . Let

A = rA(l-r) be nonzero in £C(Jf). Then P{A) = 0 and ASQ. Since P is self-
adjoint A*e§ thus rA(l-r)A*r-(l-r)A*rA(l-r) = [A,A*]e$. Now

and consequently M(l—/-)/4*reg. But P is faithful on r<Sf(JF)r and hence
r/4(l — r)A*r = 0 and rA{\ — r) = 0 contrary to assumption. Thus r = l and P
is faithful.

Since i* is ultra-weakly continuous 31 is a JW-algebra. Let / denote its centre,
then / + / / is an abelian von Neumann algebra and there is a complete family of
normal projections of 31" onto / + / / and in particular of 3I+/3I onto / + / / (see the
proof of 3=>5 in Stormer (1972)). Composing these projections with the faithful
projection P one obtains a complete family of normal projections of J$?(JT) onto
/+// . Thus by Stormer (1972) the centre / is totally atomic.

Next we argue that 31 is a JW-factor. If not there exist two non-zero minimal
projections E±F in /. Let [31] = P(^f(JT)) denote the complexification 31+/31 of
31, then &(JF) = [31]+ g, and each 5ejS?(Jf) has a decomposition B = A + G
with Ae% and Geg . But EAF'= 0 and P(AoG) = AoP(G) by Stormer (1979),
Lemma 4.1. Thus

P(EGF) =

= 2P(E°(EGF))

= 2EoP(EGF).
By symmetry

P(EGF) = 2FoP(EGF)

and consequently
P(EGF) = 0.
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Thus £ i? ( J f )Fc Q. Now assuming dim E^ dim F one can find a partial isometry
VtES£{JP)F such that VV* = E and V*V^F. Since Keg, K*eg and
[F, F*]eg. Now by Stermer (1979), Lemma 4.1, P(EGE) = EP(G)E for Geg,
thus -EgisS g and

£•= VV* = E[V, V*]EEQ

which is a contradiction. Thus 91 is a JW-factor.
Next we claim that W is a finite von Neumann algebra and P\%. is a trace.

Indeed if B e 91' then B = A + G with ,4 6 [21] and G e g. But P(£) = Al and A e C
by Stormer (1979), Lemma 4.2. Thus ^ = P(.fi) = Al and B = G+Al. Now let
B' = G' + A' 1 be another operator in 9T then

[5,5'] = [G,G']eg
and

So P is a faithful normal trace on W. But if 5 ' = G' + A' 1 e W and /I e [91], G e g
then

' + (G' + A' 1) G)

= P(AB' + [G\ G] + GG' + X'G)

Consequently if <x> is any normal state on 91 then o> oP is a normal state containing
91' in its centralizer and the support of a> oP belongs to (91') = 91". Let F = supp woP
and let J( be the centralizer of to oP in JS?(Jf). By Tomita's modular theory there
exists a faithful normal projection Pw of FJSf(JT) F onto MF. Since Jl/F is a finite
von Neumann algebra containing WF as a subalgebra there is a faithful normal
projection Qa of MF onto 91' F and since MF is of type I 9l'F is of type I (see
Tomiyama (1959) or Stermer (1972)). Now P is faithful and hence the states of
the form OJOP form a complete set of normal states on SC(JT) and their supports
are separating for 9t' so that 91' is of type I. But then 91" is of type I and therefore
91 is of type I (St0rmer (1968)).

Our next aim is to prove that 91 is reversible. Assume the contrary, then 91 is
a spin factor. Let E and F = 1—E be minimal projections in 91, then EQE is a Lie
subalgebra of g and P restricted to E£C(Jf)E is a state w, that is

P(EAE) = a>(EAE)E.

But a state to on a C*-algebra @t has a Lie algebra JSf as null space if and only if
to is a trace. Indeed if A,Be& then A—OJ(A)1, B-a>(B)leJi?. But then
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[11] Lie and Jordan structure in operator algebras 139

[A, B] = [A - a>(A) 1, B-

and hence

for all A,Be£C In particular P\E2>(jr)E ls a trace so dimJ^< +oo. Now
P{EAF) = 0 for all A e ££?{$?) by the earlier computation which showed that

P(EAF) = 2EoP(EAF) = 2FoP(EAF).

But since P is a trace on both E^{J^)E and F&(JT) F one must have

Tr 04) =

for all >4 G JSfpf). In particular if G G g and 4 e [31] one has from Effros and Stormer
(1979), Lemma 1.1 that

^) = Tr(P(GoP(A)))

because P(G) = 0. Thus Q^W-. But dimJf < +oo and if(Jf) = g + [31] and hence
g = 3I-1-. But by Proposition 1 this is impossible if 31 is a nonreversible spin factor.
Therefore 31 is reversible.

There are now two cases to consider. Either 31" is a factor or 3t" has exactly
two nonzero central projections different from 1 (St0rmer (1968)). Let us first
assume 31" is a factor. Since 31" is of type I we can identify SC(Jt) with W®N
where N is isomorphic to 31' and is a type ln factor with n< +oo. If n = 1 then
TV = C and 31" = JSfpf) and P is the unique normal projection of 31" onto [31]
(see Stermer (1979), Proposition 6.2). Either g = 0 if [31] = J^pf), g = Bn or Dn

if « G Z + U {+00} and 31 is the real symmetric operators, and g = Cn if 31 is the
quaternionian irreducible JW-factor. If n^ 2 then Proposition 6.2 of Starmer (1979)
establishes that P = Q®T where Q is the unique normal projection of 31" onto
[3t] and T is the normalized trace on 31'. Let {ew; i,j = 1,2,...,«} be a complete
set of matrix units in N, then if

one has

=Hf,4
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Thus

I n

fl = MM= S-

and in particular -4®e12, B®e21eQ for all A,BeW. Thus

,45® eu—A4 ® e^ = [A ® e12, B® e21] e g
and

AB-BA = [A,B]eQ~\O),
that is

Q([A,B]) = 0.

Hence if a> is any normal state on 21, a> o Q is a trace on 21" and consequently
91" is finite-dimensional. In praticular Q itself must be the trace and g = Am for
some m.

Finally assume 21" has exactly two minimal central projections E and F different
from 1. Since P is faithful P(E) = Al with 0< A< 1 (Stermer (1979), Lemma 4.2)
and the map PE; ESC(Jt)E^ [21]£ = WE defined by

\
A

is a faithful normal projection such that

PE(E) = E.

The null space P^(0) »s eclual to g n E^(JT) E because PE{EAE) = 0 if and only if
P{EAE) = 0. Thus PE\0) is a Lie algebra. Since 3T£ is a type I factor it is of the form
• W ) ® C l ^ where J T ® ^ = 3f. Furthermore C l ^ ® £?(JT) = (WE)' = WE;
s o ^>lcijr®j2'<.̂ ) is ^e normalized trace T. Thus PE = i® T by Proposition 6.2 of
Stormer (1979) where i denotes the identity map on JSf(JT)- It follows as in the
previous paragraph that either d imJf= 1 or dim^#= 1. If dim Jf = 1 then
WE= CE and since WE~WF one has WF= CF. But 21 is a JW-factor and
hence it is not possible that

21" = CE® CF.

Thus dim Jf" ̂  1 and one must have dim~# = 1. In this latter case

and by symmetry F£C(Jf)F= WF= [21] F. Since WE~WF, dim E = dim F and
a simple modification of the proof of Lemma 6.3 in St0rmer (1979) establishes that

P(EAF+FAE) = 0

for all A e£C(J^). But then EAFeQ and the same argument used to prove that P
was faithful allows one to conclude this case is also impossible. Therefore W
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cannot have exactly two central projections different from 1 and the proof is
complete.

COROLLARY 5. Let 3? be an infinite-dimensional complex Hilbert space and P a
positive normal identity preserving projection of =§?pf) into itself such that
21 = . P ( - 2 W ) A ) « a. JC-algebra and P+1. Let g denote the null space of P.

The following conditions are equivalent
1. Qis a Lie algebra
2. g is a Lie algebra satisfying

3. There exists a *'-anti-automorphism a of order 2 o/JSf(Jf) such that

PROOF. Clearly 3=>2=>1. But condition 1 and Theorem 4 imply that g = Bx or
C and 21 is irreducible. Thus P is the unique normal projection of =S?(Jf) onto
[21], by Lemma 6.1 of Stermer (1979), and hence P = (t + a)/2 and a the •-anti-
automorphism of order 2 of - 2 p f ) such that % = {A;A eSC(JT)h, <x(A) = A}.

REMARK. Adopt the assumptions of the above corollary. For g to be a Lie
algebra it is necessary that 21 is irreducible and i—P is a contraction, for example
|| i -^H = | | ( i -a) /2 | |< 1 and it appears that these conditions are sufficient. For
example, if P is a projection from £CC(Jf) into jSfpf) and if one assumes that
P(^fC(^f))s^fC(Jf) then Proposition 7.7 of Arazy and Friedman (1978), and
the assumption P(l) = 1, imply that either

(P(A) = EAE+ (1 - E) A{\ - E)

for some projection EeJ/?(Jt) or P = (i + a)/2 for some *-anti-automorphism of
order 2. But in the first case 91 is reducible unless E = 1 or 0 and P — t. Thus only
the possibility P = (i + a)/2 remains.
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