UNIFORM HARMONIC APPROXIMATION WITH CONTINUOUS EXTENSION TO THE BOUNDARY

M. GOLDSTEIN AND W. H. OW

1. Let G be a domain in the complex plane and F a nonempty subset of G such that F is the closure in G of its interior F^{0}. We will say $f \in C^{1}(F)$ if f is continuous on F and possesses continuous first partial derivatives in F^{0} which extend continuously to F as finite-valued functions. Let $G^{*}-F$ be connected and locally connected, $f \in C^{1}(F)$ be harmonic in F^{0}, and E be a subset of $\partial F \cap \partial G$ (here G^{*} denotes the one-point compactification of G and the boundaries $\partial F, \partial G$ are taken in the extended plane). Suppose there is a sequence $\left\langle h_{n}\right\rangle$ of functions harmonic in G such that

$$
\left|f-h_{n}\right| \rightarrow 0,\left|\frac{\partial f}{\partial x}-\frac{\partial h_{n}}{\partial x}\right| \rightarrow 0, \quad \text { and }\left|\frac{\partial f}{\partial y}-\frac{\partial h_{n}}{\partial y}\right| \rightarrow 0
$$

uniformly on F as $n \rightarrow \infty$. We prove that if f extends continuously to $F \cup E$ then there is a sequence m_{n} of functions harmonic on Ω and continuous on $F \cup E$ such that $\left|f-m_{n}\right| \rightarrow 0$ uniformly on F. Our paper is motivated by a problem posed by Stray (cf. [1], p. 359) for harmonic functions. The analogous problem for analytic functions was solved in 1978 by Roth [9] and Stray [11]. In the analytic case, however, no assumptions are imposed on the partials of f. But the harmonic case, itself, must be dealt with separately since if $f \in C^{1}(F)$ and f is harmonic in the interior of F, f need not be the real part of a function continuous on F and analytic in the interior F^{0}. Finally we would like to make two additional comments. First, such approximations as given above, where the error $f-m_{n}$ can be continuously extended to certain subsets of the boundary, prove useful when constructing functions with prescribed boundary behavior. Secondly, our hypotheses are satisfied in specific instances. See, for example Shaginyan [10].
2. For a subset S of the extended plane \mathbf{C}^{*} let S^{0} be its interior, \bar{S} its closure in \mathbf{C}^{*} and $\partial S=\bar{S}-S^{0}$. By D^{1} we mean $\partial / \partial x$ and by D^{2} we mean $\partial / \partial y$. Our main tool will be the following Walsh-type fusion lemma.

Lemma 1. Let K_{1} and K be compact subsets of \mathbf{C} and let K_{2} be a relatively closed subset of \mathbf{C} such that $K_{1} \cap K_{2}=\emptyset, K_{1} \cup K \cup K_{2} \neq \mathbf{C}$, and $K^{0} \neq \emptyset$.

Moreover, let D be an open disk such that

$$
\bar{D} \subset \mathbf{C} \backslash\left(K_{1} \cup K \cup K_{2}\right) .
$$

Then there exists a constant C_{0} such that if u_{1} and u_{2} are essentially harmonic functions on $\mathbf{C} \backslash \bar{D}$ (for the relevant definitions, see the book by Gauthier-Hengartner [3]) with

$$
\left\|u_{1}-u_{2}\right\|_{K}<\epsilon, \quad \text { and } \quad\left\|D^{i}\left(u_{1}-u_{2}\right)\right\|_{K}<\epsilon, \quad i=1,2,
$$

then there exists an essentially harmonic function h on $\mathbf{C} \backslash \bar{D}$ with

$$
\begin{aligned}
& \left\|u_{i}-h\right\|_{K \cup K_{i}}<C_{0} \epsilon, \quad\left\|\frac{\partial\left(u_{i}-h\right)}{\partial x}\right\|_{K \cup K_{i}}<C_{0} \epsilon, \quad \text { and } \\
& \left\|\frac{\partial\left(u_{i}-h\right)}{\partial y}\right\|_{K \cup K_{i}}<C_{0} \epsilon, \quad i=1,2 .
\end{aligned}
$$

Remark 1. C_{0} depends on K_{1}, K_{2}, and K but is independent of u_{1}, u_{2}. All norms are sup norms.

Remark 2. In order to approximate u_{i} on $K \cup K_{i}, i=1,2$, only the assumption $\left\|u_{1}-u_{2}\right\|_{K}<\epsilon$ is needed (cf. Lemma 2.2.16 [3]). But in order to simultaneously approximate u_{i} and its first partials on $K \cup K_{i}, i=1,2$, we need, in addition, a condition on the first partials of u_{i} on K. To see this consider the following example:

Let

$$
\begin{aligned}
& K=K_{1}=\{z| | z \mid \leqq 1\}, \quad K_{2}=\{z| | z \mid \geqq 2\}, \\
& u_{n}(z)=\operatorname{Re} z^{n}, \quad \text { and } \quad v(z) \equiv 0 .
\end{aligned}
$$

Then $\left\|u_{n}-v\right\|_{K} \leqq 1$ but

$$
\left\|\frac{\partial\left(u_{n}-v\right)}{\partial x}\right\|_{K} \geqq n .
$$

So there is no essentially harmonic h such that $\partial h / \partial x$ approximates $\partial u_{n} / \partial x$ and $\partial v / \partial x$ on K for all n.

Proof. The proof is similar to that given for Lemma 2.2.16, [3] except that Gauthier and Hengartner do not simultaneously fuse the partial derivatives in their Lemma 2.2.16. Thus their proof needs some modifications.

We may assume without loss of generality that $u_{2}=0$. Let $u \equiv u_{1}$. Since $K^{0} \neq \emptyset$ we may assume $0<\|u\|_{K}<\epsilon$, for otherwise the proof is trivial. Let Ω_{1}, Ω_{2} be smoothly bounded open sets such that $K_{1} \subset \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2} \subset$ $\bar{\Omega}_{2} \subset \mathbf{C}-\bar{D}$ and $\bar{\Omega}_{2} \cap K_{2}=\emptyset$. Note that Ω_{1}, Ω_{2} depend only on K_{1}, K_{2}, and D. Furthermore let V be a bounded open neighborhood of K such that

$$
\|u\|_{\bar{V}} \leqq 2\|u\|_{K}, \quad\left\|D^{i} u\right\|_{\bar{V}} \leqq 2\left\|D^{i} u\right\|_{K}, \quad i=1,2
$$

$\partial V \in C^{1}$, and $V \subset \mathbf{C}-\bar{D}$. Introduce bounded open sets G_{1}, G_{2} such that

$$
\begin{aligned}
& K_{1} \subset G_{1} \subset \Omega_{1}, \\
& \Omega_{2}, \subset G_{2} \subset \mathbf{C}-\left(K_{2}-V\right)-\bar{D}, \\
& \left(G_{2}-G_{1}\right) \cap V=\left(\Omega_{2}-\Omega_{1}\right) \cap V,
\end{aligned}
$$

with

$$
\begin{aligned}
& d\left(\partial G_{1}, \partial \Omega_{1}\right) \leqq(1 / 2) d\left(K_{1}, \partial \Omega_{1}\right), \\
& d\left(\partial G_{2}, \partial \Omega_{2}\right) \leqq(1 / 2) d\left(K_{2}-V, \partial \Omega_{2}\right),
\end{aligned}
$$

$d \equiv$ distance. Further we choose both $\partial G_{1}, \partial G_{2} \in C^{1}$ and u singularity free on $\partial G_{1}, \partial G_{2}$.

Let $H \in C^{\infty}(\mathbf{C})$ such that

$$
\left.H\right|_{\Omega_{1}} \equiv 1,\left.\quad H\right|_{\mathbf{C}-\Omega_{2}} \equiv 0
$$

and $0 \leqq H(x) \leqq 1$ on \mathbf{C}.
Let

$$
\psi(z)=\left\{\begin{array}{cl}
H(z) u(z), & z \in G_{2} \\
0, & z \in \mathbf{C}-G_{2} .
\end{array}\right.
$$

Then ψ is C^{∞} outside the singularities of u contained in G_{2}, and satisfies the following inequalities:
(1) $\|\psi-u\|_{K_{1} \cup K} \leqq C\|u\|_{K}$
(2) $\|\psi\|_{K_{2} \cup K} \leqq C\|u\|_{K}$
(3) $\left\|D^{i}(\psi-u)\right\|_{K_{1} \cup K} \leqq C\left(\|u\|_{K}+\left\|D^{i} u\right\|_{K}\right)$
(4) $\left\|D^{i} \psi\right\|_{K_{2} \cup K} \leqq C\left(\|u\|_{K}+\left\|D^{i} u\right\|_{K}\right)$,
where the constant C is independent of u.
Since ψ, however, is not necessarily essentially harmonic in $\mathbf{C}-\bar{D}$ it is not the desired function, but will serve as an auxiliary function.

We show (1) first. Now $\psi \equiv u$ on Ω_{1} and $K_{1} \subset \Omega_{1}$ imply

$$
\|\psi-u\|_{K_{1}}=0 .
$$

As for K we have

$$
K=\left(K \cap G_{2}\right) \cup\left[K \cap\left(\mathbf{C}-G_{2}\right)\right]
$$

and $\psi \equiv 0$ on $K \cap\left(\mathbf{C}-G_{2}\right)$. Hence

$$
\|\psi-u\|_{K \cap\left(\mathbf{C}-G_{2}\right)}=\|u\|_{K \cap\left(\mathbf{C}-G_{2}\right)} \leqq\|u\|_{K}
$$

and since $\psi \equiv H u$ on $K \cap G_{2}$ we have

$$
\|\psi-u\|_{K \cap G_{2}}=\|u(H-1)\|_{K \cap G_{2}} \leqq 2\|u\|_{K} .
$$

As for (2) we note that since $\psi \equiv 0$ on $\mathbf{C}-G_{2}$ it suffices to show (2) on $\left(K_{2} \cup K\right) \cap G_{2}$. Now

$$
\|\psi\|_{K \cap G_{2}}=\|H u\|_{K \cap G_{2}} \leqq\|u\|_{K} .
$$

Since $K_{2} \cap G_{2}=\emptyset$ we have (2).
In order to show (3) it suffices to show the inequality on K since on K_{1}, $\psi \equiv u$. As before

$$
K=K \cap\left(\mathbf{C}-G_{2}\right) \cup\left(K \cap G_{2}\right)
$$

and $\psi \equiv 0$ on $K \cap\left(\mathbf{C}-G_{2}\right)$ so

$$
\left\|D^{i}(\psi-u)\right\|_{K \cap\left(\mathbf{C}-G_{2}\right)}=\left\|D^{i} u\right\|_{K \cap\left(\mathbf{C}-G_{2}\right)} \leqq\left\|D^{i} u\right\|_{K}
$$

while on $K \cap G_{2}, \psi \equiv H u$, so

$$
\begin{aligned}
\left\|D^{i}(\psi-u)\right\|_{K \cap G_{2}} & =\left\|D^{i}(H u)-D^{i} u\right\|_{K \cap G_{2}} \\
& \leqq\left\|D^{i}(H u)-D^{i} u\right\|_{K} .
\end{aligned}
$$

Now H has compact support and so

$$
\left\|D^{i} H\right\|_{\mathbf{C}} \leqq M<\infty .
$$

Also $D^{i}(H u)=u D^{i} H+H D^{i} u$ implies

$$
\begin{aligned}
\left\|D^{i}(H u)-D^{i} u\right\|_{K} & \leqq\|u\|_{K} M+\left\|(H-1) D^{i} u\right\|_{K} \\
& \leqq\|u\|_{K} M+\left\|D^{i} u\right\|_{K},
\end{aligned}
$$

and this proves (3).
Finally we need show (4) only on $K \cap G_{2}$, where we have

$$
\begin{aligned}
\left\|D^{i} \psi\right\|_{K \cap G_{2}} & =\left\|D^{i}(H u)\right\|_{K \cap G_{2}} \leqq\left\|D^{i}(H u)\right\|_{K} \\
& \leqq\|u\|_{K} M+\left\|D^{i} u\right\|_{K} .
\end{aligned}
$$

We next proceed as in the proof of Theorem 2.2.9 [3] and let

$$
W=G_{1} \cup V \cup\left(\mathbf{C}-G_{2}\right),
$$

$S=$ set of singularities of u in G_{1}, and S_{ϵ} an ϵ-neighborhood of S. We apply Green's formula to ψ using the Green's function g for $\mathbf{C}-\bar{D}$. For $z \in W-S$ we have (cf. [3], (2.2.17))

$$
\begin{aligned}
& \psi(z) \\
& =\frac{1}{2 \pi} \int_{W-S}[\Delta H(\zeta) \cdot g(z-\zeta)+2 \nabla H(\zeta) \cdot \nabla g(z-\zeta)] u(\zeta) d \xi d \eta
\end{aligned}
$$

$$
\begin{aligned}
-\frac{1}{2 \pi} \int_{\partial W}[\psi(\zeta) \nabla g(z-\zeta) & -\nabla \psi(\zeta) g(z-\zeta) \\
& +2 u(\zeta) \nabla H(\zeta) g(z-\zeta)] d s(\zeta)-\sigma(z)
\end{aligned}
$$

$\zeta=\xi+i \eta$, where $\sigma(z)$ (cf. [3], p. 62) is essentially harmonic in $\mathbf{C}-\bar{D}, \Delta_{\zeta}$ denotes the Laplacian and ∇_{ζ} the gradient with respect to ζ. Set

$$
\psi(z)=I_{1}(z)+I_{2}(z)-\sigma(z)
$$

where $I_{1}(z)$ is the first integral and $I_{2}(z)$ the second in the above representation of ψ. We note that the integral I_{1} reduces to one over V since both ΔH and ∇H vanish on $G_{1}, H \equiv 0$ on $\mathbf{C}-G_{2}$, and $V \cap S=\emptyset$. Similarly the integral I_{2} reduces to one over $\partial W \cap G_{2}$. Hence

$$
I_{1}(z)=\frac{1}{2 \pi} \int_{V}\left[\Delta H(\zeta) g(\zeta, z)+2 \nabla_{\zeta} H(\zeta) \cdot \nabla_{\zeta} g(\zeta, z)\right] u(\zeta) d \xi d \eta
$$

and

$$
\begin{aligned}
I_{2}(z)=-\frac{1}{2 \pi} \int_{\partial W \cap G_{2}}\left[\psi(\zeta) \nabla_{\zeta} g(\zeta, z)\right. & -g(\zeta, z) \nabla_{\zeta} \psi(\zeta) \\
& \left.+2 u(\zeta) g(\zeta, z) \nabla_{\zeta} H(\zeta)\right] d s(\zeta)
\end{aligned}
$$

First note that

$$
\left\|I_{1}(z)\right\|_{K_{1} \cup K_{2} \cup K} \leqq C\|u\|_{K}
$$

where the constant C is independent of u. This holds since

$$
\begin{aligned}
\left|I_{1}(z)\right| & \leqq\|u\|_{V} \int_{V} E \\
& \leqq 2\|u\|_{K} \int_{\mathbf{C}-\bar{D}} E=2\|u\|_{K} \int_{\Omega_{2}-\Omega_{1}} E
\end{aligned}
$$

where

$$
E=[|\Delta H(\zeta)||g(z-\zeta)|+2|\nabla H(\zeta)||\nabla g(z-\zeta)|] d \xi d \eta
$$

For $z \in K_{1} \subsetneq \Omega_{1} \subset \Omega_{2}$ both g and ∇g are bounded for $\zeta \in \Omega_{2}-\Omega_{1}$ (cf. [3], p. 72). So

$$
\left\|I_{1}(z)\right\|_{K_{1}} \leqq C\|u\|_{K},
$$

where C is independent of u. On K_{2} the same reasoning applies since if U is a bounded open neighborhood of $\overline{\Omega_{2}-\Omega_{1}}$ such that $\bar{U} \cap K_{2}=\emptyset$ then for all $z \in K_{2}$ we have

$$
\|g\|_{K_{2} \times \overline{\Omega_{2}-\Omega_{1}}}<\infty \quad \text { and } \quad\|\nabla g\|_{K_{2} \times \overline{\Omega_{2}-\Omega_{1}}}<\infty
$$

(cf. [3], p. 72-3). For $z \in K$ we note that

$$
\int_{\Omega_{2}-\Omega_{1}}[|\Delta H(\zeta)||g(z-\zeta)|+2|\nabla H(\zeta)||\nabla g(z-\zeta)|] d \xi d \eta \leqq C
$$

for a constant C depending only on D, K_{1}, and K_{2}, since the integral is a continuous function of z. So

$$
\left\|I_{1}\right\|_{K} \leqq C\|u\|_{K}, \quad C \text { independent of } u
$$

Hence
(5) $\left\|I_{1}\right\|_{K \cup K_{1} \cup K_{2}} \leqq C\|u\|_{K}$,
where the constant C is independent of u.
Rewrite $I_{1}(z)$ as
(6) $\quad I_{1}(z)=\frac{1}{2 \pi} \int_{V}[\Delta H(\zeta) g(z, \zeta)] u(\zeta) d \xi d \eta$

$$
+\frac{1}{\pi} \int_{V}\left[\nabla_{\zeta} H(\zeta) \cdot \nabla_{\zeta} g(z, \zeta)\right] u(\zeta) d \xi d \eta
$$

Now $I_{1}(z) \in C^{1}(V)$ by Lemma $4.1[4]$. Furthermore by this same lemma we have

$$
D_{z}^{i} \int_{V}[\Delta H(\zeta) g(z, \zeta)] u(\zeta) d \xi d \eta=\int_{V} \Delta H(\zeta)\left[D_{z}^{i} g(z, \zeta)\right] u(\zeta) d \xi d \eta
$$

for $z \in K$, where D_{z}^{i} is the first partial with respect to the i th coordinate of $z=z(x, y)$. Now

$$
g(z, \zeta)=\Gamma(z-\zeta)+h(\zeta)
$$

where

$$
\Gamma(z-\zeta)=-\log |z-\zeta|
$$

and $h(\zeta)$ is the harmonic part of g. Then

$$
\begin{aligned}
& \left\|\int_{V} \Delta H(\zeta) u(\zeta) D_{z}^{i} g(z, \zeta) d \xi d \eta\right\|_{K} \\
& \leqq\left\|\int_{S(H) \cap V} \Delta H(\zeta) u(\zeta) D_{z}^{i} g(z, \zeta) d \xi d \eta\right\|_{K},
\end{aligned}
$$

where $S(H)=$ support of H

$$
\begin{aligned}
& \leqq\left\|\int_{S(H) \cap V}\left|\Delta H(\zeta) u(\zeta) D_{z}^{i} g(z, \zeta) d \xi d \eta\right|\right\|_{K} \\
& \leqq \widetilde{C}\|u\|_{V} \\
& \leqq C\|u\|_{K}, \quad C=\text { constant }
\end{aligned}
$$

using the estimate

$$
\left|D_{z}^{i} \Gamma(z-\zeta)\right| \leqq \frac{1}{2 \pi}|z-\zeta|^{-1}
$$

(cf. [4]), where C is independent of u. For the second integral in (6) we need only worry about the logarithmic terms in

$$
u(\zeta) \nabla_{\zeta} H(\zeta) \cdot \nabla_{\zeta} g(z, \zeta)=\sum_{i=1}^{2}\left[D_{\zeta}^{i} H \cdot D_{\zeta}^{i} g\right] u(\zeta) .
$$

Since

$$
D_{\zeta}^{i} \Gamma(z-\zeta)=-D_{z}^{i} \Gamma(z-\zeta) \quad \text { and } \quad \partial V \in C^{1}
$$

(i.e., the divergence theorem applies to V) we have by Lemma 4.2 [4] that for $z \in K$,
(7) $\quad D_{z}^{j} \int_{V}\left[D_{\zeta}^{i} H(\zeta) \cdot D_{\zeta}^{i} \Gamma(z-\zeta)\right] u(\zeta) d \xi d \eta$

$$
\begin{aligned}
& =D_{z}^{j} \int_{V}\left[-D_{z}^{i} \Gamma(z-\zeta)\right]\left[\left(D_{\zeta}^{i} H(\zeta)\right) \cdot u(\zeta)\right] d \xi d \eta \\
& =-\int_{V}\left[D_{z}^{i j} \Gamma(z-\zeta)\right]\left[\left(D_{\zeta}^{i} H(\zeta)\right) \cdot u(\zeta)-\left(D_{z}^{i} H(z)\right) \cdot u(z)\right] d \xi d \eta \\
& +D_{z}^{i} H(z) \cdot u(z) \int_{\partial V} D_{z}^{i} \Gamma(z-\zeta) \nu_{j}(\zeta) d s_{\zeta}
\end{aligned}
$$

where

$$
D_{z}^{i j}=D_{z}^{j}\left(D_{z}^{i}\right)
$$

ν_{j} denotes the j th component of the outer unit normal, and $d s_{\xi}$ is the differential of arc length.

Applying the Taylor's formula and Cauchy inequality to u and noting that $D_{\xi}^{i} H$ satisfies a Lipschitz condition we have

$$
\begin{aligned}
& \left|\left(D_{\xi}^{i} H(\xi)\right) \cdot u(\xi)-\left(D_{z}^{i} H(z)\right) \cdot u(z)\right| \\
& \leqq\left|D_{\xi}^{i} H(\xi)\right||u(\xi)-u(z)|+|u(z)|\left|D_{\xi}^{i} H(\xi)-D_{z}^{i} H(z)\right| \\
& \leqq\left\|D_{\xi}^{i} H\right\|_{V}|z-\xi|\left(\left\|D^{1} u\right\|_{V}+\left\|D^{2} u\right\|_{V}\right)+\|u\|_{V} C_{1}|z-\xi| \\
& \leqq C_{2}|z-\xi|\left(\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}+\|u\|_{K}\right)
\end{aligned}
$$

for $z \in K, \xi \in V$, and a constant C_{2} is independent of u.
This last estimate together with the inequality

$$
\left|D^{i j} \Gamma(z-\zeta)\right| \leqq \frac{1}{\pi}|z-\zeta|^{-2}
$$

cf. [4] implies the first term in (7) satisfies

$$
\left|\int_{V}\left[D_{z}^{i j} \Gamma(z-\zeta)\right]\left[D_{\zeta}^{i} H(\zeta) u(\zeta)-D_{\zeta}^{i} H(z) u(z)\right] d \xi d \eta\right|
$$

$$
\leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right)
$$

where C is independent of u.
As for the second integral in (7), we again see that

$$
\left|D_{z}^{i} \Gamma(z-\zeta)\right| \leqq \frac{1}{2 \pi}|z-\zeta|^{-1}
$$

implies that for $z \in K$ and $\zeta \in \partial V$,

$$
\begin{aligned}
& \left|D_{z}^{i} H(z) \cdot u(z) \int_{\partial V} D_{z}^{i} \Gamma(z-\zeta) \nu_{j}(\zeta) d s_{\zeta}\right| \\
& \leqq\left\|D_{\zeta}^{i} H\right\|_{S(H)}\|u\|_{V} \hat{C} \leqq C\|u\|_{K},
\end{aligned}
$$

where C is again independent of u. Thus

$$
\left\|D_{z}^{i} I_{1}\right\|_{K} \leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right)
$$

where the constant C is independent of u.
We next estimate $D_{z}^{i} I_{1}$ for $z \in K_{1} \cup K_{2}$, using Leibnitz's rule. Now

$$
\begin{align*}
& D_{z}^{i} I_{1}(z) \tag{8}\\
& =\frac{1}{2 \pi} \int_{V} \Delta H(\zeta) D_{z}^{i} g(z, \zeta) u(\zeta)+2 D_{z}^{i}\left[\left(\nabla_{\zeta} H(\zeta) \cdot \nabla_{\zeta} g(z, \zeta)\right) u(\zeta)\right. \\
& =\frac{1}{2 \pi} \int_{V}\left[\Delta H(\zeta) D_{z}^{i} g(z, \zeta) u(\zeta)+2 u(\zeta) \nabla_{\zeta} H(\zeta) \cdot \nabla_{\zeta} D_{z}^{i} g(z, \zeta)\right] d \xi d \eta .
\end{align*}
$$

The integral in (8) reduces to one over $V \cap\left(\Omega_{2}-\Omega_{1}\right)$, since $H \equiv 0$ outside Ω_{2} and $H \equiv 1$ on Ω_{1}. Now $\left|\nabla_{z} g(z, \zeta)\right|$ is bounded by M say, for

$$
\zeta \in V \cap \overline{\Omega_{2}-\Omega_{1}} \quad \text { and } \quad z \in K_{1} \cup K_{2}
$$

(cf. [3], p. 73). Applying the Poisson formula one gets

$$
\left\|D_{z}^{j} \nabla_{\zeta} g\right\|_{\left(K_{1} \cup K_{2}\right) \times\left(\overline{\Omega_{2}-\Omega_{1}}\right)} \leqq \widetilde{M}<\infty,
$$

where \widetilde{M} is independent of u. Hence for $z \in K_{1} \cup K_{2}$ we have

$$
\begin{aligned}
& \left|D_{z}^{i} I_{1}(z)\right| \leqq\left|\int_{V \cap\left(\overline{\Omega_{2}-\Omega_{1}}\right)} \Delta H(\zeta) D_{z}^{i} g(z, \zeta) u(\zeta)\right| \\
& +\left|\int_{\left.V \cap \overline{\Omega_{2}-\Omega_{1}}\right)} 2 u(\zeta) \nabla_{\zeta} H(\zeta) \cdot D_{z}^{j} \nabla_{\zeta} g\right| \\
& \leqq M\|u\|_{V}\|\Delta H\|_{\overline{\Omega_{2}-\Omega_{1}}}+2\|u\|_{V} \cdot\|\nabla H\|_{\overline{\Omega_{2}-\Omega_{1}}} \cdot \tilde{M} \\
& \leqq C\|u\|_{K}
\end{aligned}
$$

where C is independent of u.

This together with our estimate of $D_{z}^{i} I_{1}$ on K gives

$$
\begin{equation*}
\left\|D_{z}^{i} I_{1}\right\|_{K_{1} \cup K_{2} \cup K} \leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right) \tag{9}
\end{equation*}
$$

as desired, where the constant C is independent of u.
If we set $h_{0}(z)=I_{2}(z)-\sigma(z)$ then from (5) and (9) we have

$$
\left\|h_{0}(z)-\psi\right\|_{K \cup K_{1} \cup K_{2}}=\left\|I_{1}\right\|_{K \cup K_{1} \cup K_{2}} \leqq C\|u\|_{K}
$$

and

$$
\begin{aligned}
\left\|D^{i}\left(h_{0}-\psi\right)\right\|_{K \cup K_{1} \cup K_{2}} & =\left\|D_{z}^{i} I_{1}\right\|_{K \cup K_{1} \cup K_{2}} \\
& \leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right) .
\end{aligned}
$$

Furthermore because of inequalities (1), (2), (3), and (4) we deduce

$$
\begin{aligned}
& \left\|h_{0}-u\right\|_{K \cup K_{1}} \leqq C\|u\|_{K} \\
& \left\|h_{0}\right\|_{K \cup K_{2}} \leqq C\|u\|_{K} \\
& \left\|D^{i}\left(h_{0}-u\right)\right\|_{K \cup K_{1}} \leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right)
\end{aligned}
$$

and

$$
\left\|D^{i} h_{0}\right\|_{K \cup K_{2}} \leqq C\left(\|u\|_{K}+\left\|D^{1} u\right\|_{K}+\left\|D^{2} u\right\|_{K}\right) .
$$

Finally, if we approximate h_{0} by a Riemann sum, we get our desired essentially harmonic approximation h (cf. [3], p. 64 and p. 76).
3. We shall now turn to the result alluded to in Section 1 .

Theorem 1. Let G be a domain in the complex plane \mathbf{C} such that $\mathbf{C}-$ $\bar{G} \neq \emptyset$ contains the closure of an open disk D_{0}. Let F be a relatively closed subset of G such that $F=\overline{F^{0}}$ and $G^{*}-F$ is connected and locally connected. Let E be a subset of $\partial F \cap \partial G$. Let $f \in C^{1}(F)$ be harmonic in the interior of F. Suppose that there are functions h_{n} harmonic in G such that

$$
\left\|f-h_{n}\right\|_{F} \rightarrow 0 \quad \text { and } \quad\left\|D^{i}\left(f-h_{n}\right)\right\|_{F} \rightarrow 0, \quad i=1,2
$$

Iff extends continuously to $F \cup E$, then there is a sequence m_{n} of functions harmonic on Ω and continuous on $F \cup E$ such that

$$
\left\|f-m_{n}\right\|_{F} \rightarrow 0
$$

Proof. We may without loss of generality assume that G is bounded, for if z_{0} is the center of an open disk in $\mathbf{C}-\bar{G}$, then the general case can be reduced to this one by inverting with respect to this disk. Let $\left\{G_{n}\right\}$ denote a canonical exhaustion (cf. [8]) of G. For each $n=1,2,3, \ldots$, we choose a positive number a_{n} associated with $K_{1 n}=\bar{G}_{n}, K_{2 n}=\left(\mathbf{C}-D_{0}\right)-G_{n+1}$, and $K_{n}=F_{n} \equiv F \cap \bar{G}_{n+1}$ so that $1<a_{1}<a_{2}<\ldots$. Since $F^{0} \cap$ $G_{n+1} \stackrel{ }{=} \emptyset$ for at most a finite number of n, we may assume $K_{n}^{0} \neq \emptyset$ for each n. If $\epsilon>0$ is given, we select positive $\epsilon_{1}, \epsilon_{2}, \ldots$ so that

$$
\epsilon_{1}>\epsilon_{2}>\ldots \text { and } \sum_{n=1}^{\infty} \epsilon_{n}<\epsilon / 2
$$

From our hypotheses we have
(10) $\left\|f-h_{k}\right\|_{F}<\frac{\epsilon_{n}}{4 a_{n}}$ and
(11) $\left\|D^{i}\left(f-h_{k}\right)\right\|_{F}<\frac{\epsilon_{n}}{4 a_{n}}, \quad i=1,2$,
for all k sufficiently large. By relabeling the subscripts of $\left\langle h_{k}\right\rangle$ if necessary we may assume (10) and (11) hold for h_{n} itself. By Lemma 6 [2] there exist functions q_{n} essentially harmonic on \mathbf{C} such that
(12) $\left\|h_{n}-q_{n}\right\|_{\bar{G}_{n+1}}<\frac{\epsilon_{n}}{4 a_{n}}$ and

$$
\left\|D^{i}\left(h_{n}-q_{n}\right)\right\|_{\bar{G}_{n+1}}<\frac{\epsilon_{n}}{4 a_{n}}, \quad \begin{align*}
& i=1,2 \tag{13}\\
& n=1,2, \ldots
\end{align*}
$$

Hence from (10), (12) we have

$$
\begin{equation*}
\left\|f-q_{n}\right\|_{F_{n}} \leqq\left\|f-h_{n}\right\|_{F_{n}}+\left\|h_{n}-q_{n}\right\|_{F_{n}}<\frac{\epsilon_{n}}{2 a_{n}}, \tag{14}
\end{equation*}
$$

while (11) and (13) imply

$$
\begin{equation*}
\left\|D^{i}\left(f-q_{n}\right)\right\|_{F_{n}} \leqq\left\|D^{i}\left(f-h_{n}\right)\right\|_{F_{n}}+\left\|D^{i}\left(h_{n}-q_{n}\right)\right\|_{F_{n}}<\frac{\epsilon_{n}}{2 a_{n}} . \tag{15}
\end{equation*}
$$

Now (14) implies

$$
\begin{aligned}
\left\|q_{n+1}-q_{n}\right\|_{F_{n}} & \leqq\left\|q_{n+1}-f\right\|_{F_{n}}+\left\|f-q_{n}\right\|_{F_{n}} \\
& <\frac{\epsilon_{n+1}}{2 a_{n+1}}+\frac{\epsilon_{n}}{2 a_{n}}<\frac{\epsilon_{n}}{a_{n}},
\end{aligned}
$$

while (15) similarly yields

$$
\left\|D^{i}\left(q_{n+1}-q_{n}\right)\right\|_{F_{n}}<\frac{\epsilon_{n}}{a_{n}} .
$$

Let D be a disk such that $\bar{D} \subset \mathbf{C}-\bar{G}$. Applying Lemma 1 to the functions q_{n}, q_{n+1} relative to $\mathbf{C}-\bar{D}$ and to the sets $K_{1 n}, K_{2 n}$, and K_{n}, we obtain essentially harmonic functions r_{n} on $\mathbf{C}-\bar{D}$ such that

$$
\begin{align*}
& \left|r_{n}(z)-q_{n}(z)\right|<\epsilon_{n}, \quad z \in K_{1 n} \cup K_{n}, \tag{16}\\
& \left|r_{n}(z)-q_{n+1}(z)\right|<\epsilon_{n}, \quad z \in K_{2 n} \cup K_{n},
\end{align*}
$$

$$
\begin{aligned}
& \left|\frac{\partial\left(r_{n}-q_{n}\right)}{\partial x}\right|<\epsilon_{n}, \quad z \in K_{1 n} \cup K_{n}, \\
& \left|\frac{\partial\left(r_{n}-q_{n}\right)}{\partial y}\right|<\epsilon_{n}, \quad z \in K_{1 n} \cup K_{n}, \\
& \left|\frac{\partial\left(r_{n}-q_{n+1}\right)}{\partial x}\right|<\epsilon_{n}, \quad z \in K_{2 n} \cup K_{n}, \\
& \left|\frac{\partial\left(r_{n}-q_{n+1}\right)}{\partial y}\right|<\epsilon_{n}, \quad z \in K_{2 n} \cup K_{n} .
\end{aligned}
$$

Let

$$
t_{n}(z)=\sum_{\nu=1}^{n-1}\left(r_{\nu}(z)-q_{\nu+1}(z)\right) .
$$

Since

$$
\left(\mathbf{C}-\bar{D}_{0}\right)-G \subseteq\left(\mathbf{C}-\bar{D}_{0}\right)-G_{n}, \quad n=1,2, \ldots
$$

the sequence $\left\{t_{n}\right\}$ converges uniformly in $\left(\mathbf{C}-\bar{D}_{0}\right)-G$ by the second inequality in (16). In particular, if we set

$$
t(\zeta)=\lim _{n} t_{n}(\zeta), \quad \zeta \in \partial G,
$$

then t is continuous on ∂G.
Consider $\zeta \in \partial G \subseteq K_{2 n}$ and $z \in K_{2 n}$. Let $\zeta=\xi+i \eta, z=x+i y$. Then

$$
\begin{aligned}
& \left(r_{j}(z)-q_{j+1}(z)\right)-\left(r_{j}(\zeta)-q_{j+1}(\zeta)\right) \\
& =\frac{\partial\left(r_{j}-q_{j+1}\right)}{\partial x}(\zeta) \cdot(\xi-x) \\
& +\frac{\partial\left(r_{j}-q_{j+1}\right)}{\partial y}(\zeta) \cdot(\eta-y)+\delta_{1}^{j}(\xi-x)+\delta_{2}^{j}(\eta-y)
\end{aligned}
$$

where

$$
\delta_{1}^{j}, \delta_{2}^{j} \rightarrow 0 \quad \text { as }|\xi-x| \rightarrow 0 \quad \text { and } \quad|\eta-y| \rightarrow 0 .
$$

Hence from (16) we have

$$
\begin{aligned}
\left|t_{n}(z)-t_{n}(\zeta)\right| & \leqq \sum_{j=1}^{n-1} \epsilon_{j}(|\xi-x|+|\eta-y|) \\
& +\sum_{j=1}^{n-1} \delta_{1}^{j}|\xi-x|+\delta_{2}^{j}|\eta-y|
\end{aligned}
$$

$$
\leqq 2|\zeta-z| \epsilon+|\zeta-z| \sum_{j=1}^{n-1}\left(\delta_{1}^{j}+\delta_{2}^{j}\right) .
$$

For fixed n, we may choose z close to ζ so that

$$
\delta_{1}^{j}+\delta_{2}^{j}<\epsilon_{j}, \quad 1 \leqq j \leqq n-1
$$

whenever $|z-\zeta|<\delta(n)$. Then for $k \geqq n$, consider

$$
z \in F_{k+1}-F_{k} \subseteq K_{2 n},
$$

where k is chosen sufficiently large, say $k \geqq N(n)$ so that

$$
|z-\zeta|<\delta(n)
$$

Then for

$$
z \in\left(F_{k+1}-F_{k}\right) \cap\{z:|z-\epsilon|<\delta(n)\}
$$

we have

$$
\begin{aligned}
\left|t_{n}(z)-t_{n}(\zeta)\right| & \leqq 2|z-\zeta| \epsilon+|\zeta-z| \frac{\epsilon}{2} \\
& =\frac{5}{2} \epsilon|z-\zeta|
\end{aligned}
$$

while the second inequality in (16) implies

$$
\left|t_{n}(\xi)-t(\zeta)\right|<\sum_{n}^{\infty} \epsilon_{\nu}
$$

Hence, we have

$$
\begin{equation*}
\left|t_{n}(z)-t(\zeta)\right|<\frac{5}{2} \epsilon|z-\zeta|+\sum_{n}^{\infty} \epsilon_{\nu}, z \in F_{k+1}-F_{k}, k \geqq N(n) . \tag{17}
\end{equation*}
$$

Let

$$
\begin{aligned}
m(z) & =\sum_{\nu=1}^{k+1}\left(r_{\nu}(z)-q_{\nu+1}(z)\right)+q_{k+2}(z) \\
& +\sum_{\nu=k+2}^{\infty}\left(r_{\nu}(z)-q_{\nu}(z)\right) .
\end{aligned}
$$

Note that $m(z)$ is independent of k. Then for $z \in F_{k+1}-F_{k}, k \geqq N(n)$, we have by (14), (16), (17) and the fact $z \in K_{2 p}, n \leqq \nu \leqq k+1$, that

$$
\begin{aligned}
& |m(z)-f(z)-t(\zeta)| \\
& \leqq\left|t_{n}(z)-t(\zeta)\right|+\sum_{\nu=n}^{k+1}\left|r_{\nu}(z)-q_{\nu+1}(z)\right| \\
& +\left|q_{k+2}(z)-f(z)\right|+\sum_{\nu=k+2}^{\infty}\left|r_{\nu}(z)-q_{\nu(z)}\right| \\
& \leqq \frac{5}{2} \epsilon|z-\zeta|+\sum_{\nu=n}^{\infty} \epsilon_{\nu}+\sum_{\nu=n}^{k+1} \epsilon_{\nu}+\epsilon_{k+2}+\sum_{\nu=k+2}^{\infty} \epsilon_{\nu} .
\end{aligned}
$$

Hence the difference between $m(z)-f(z)$ and $t(\zeta)$ converges to 0 if $n \leqq k$ increases and $z \in K_{2 n} \cap\left(F_{k+1}-F_{k}\right)$ converges on F to a point ζ of $\bar{F}-F$. Note m is essentially harmonic on G. Also

$$
|m(z)-f(z)|<\epsilon \quad \text { for all } z \in F
$$

(cf. [2], p. 181). So if we define $g(z)=m(z)-f(z)$ for $z \in F$ and $g(z)=$ $t(z)$ for $z \in \bar{F}-F$, then

$$
|g(z)| \leqq \epsilon \quad \text { for } z \in \bar{F}
$$

Thus the approximating functions m can be extended to $F \cup E$. Finally, since $G^{*}-F$ is connected and locally connected, we can apply a pole pushing argument (cf. [2], p. 181) to the poles of m to complete the proof of Theorem 1 .

References

1. D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis (Academic Press, 1980).
2. P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261, 169-183.
3. P. M. Gauthier and W. Hengartner, Approximation uniforme qualitative sur des ensembles non bornés (Les Presses de L'Université de Montréal, 1982).
4. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order (Springer-Verlag, Berlin-Heidelberg-New York, 1977).
5. P. Lax, A stability theorem for abstract differential equations and its applications to the study of the local behaviour of solutions of elliptic equations, Commun. Pure Appl. Math. 9 (1956), 747-766.
6. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. de l'Inst. Fourier 6 (1955-56), 271-355.
7. R. Narasimhan, Analysis on real and complex manifolds (Masson \& Cie, Paris; North-Holland, Amsterdam, 1968).
8. B. Rodin and L. Sario, Principal functions (D. Van Nostrand, Princeton, 1968).
9. A. Roth, Uniform approximation by meromorphic functions on closed sets with continuous extension into the boundary, Can. J. Math. 30 (1978), 1243-1255.
10. A. A. Shaginyan, A boundary singularity of functions that are harmonic in a ball, Doklady Acad. Sci. Arm. SSR 78 (1984), 51-52.
11. A. Stray, On uniform and asymptotic approximation, Math. Ann. 234 (1978), 61-68.

Arizona State University, Tempe, Arizona;
Michigan State University, East Lansing, Michigan

