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A TAUBERIAN THEOREM 
FOR THE GENERAL EULER-BOREL SUMMABILITY METHOD 

LAYING TAM 

ABSTRACT. Our main result is a Tauberian theorem for the general Euler-Borel 
summability method. Examples of the method include the discrete Borel, Euler, Meyer-
Kônig, Taylor and Karamata methods. Every function/ analytic on the closed unit disk 
and satisfying some general conditions generates such a method, denoted by (£,/). 
For instance the function/(z) = exp(z — 1) generates the discrete Borel method. To 
each such function/ corresponds an even positive integer p = p(f). We show that if a 
sequence (sn) is summable (E,f) and 

(*) s m - s n —> 0 

as n —• oo, m > n, (m — r^rT1!^ —• 0, then (sn) is convergent. If the Maclaurin coef
ficients of/ are nonnegative, then p(f) = 2. In this case we may replace the condition 
(*) by Hm(sm — sn) > 0. This generalizes the Tauberian theorems for Borel summability 
due to Hardy and Littlewood, and R. Schmidt. We have also found new examples of the 
method and proved that the exponent —pif) in the Tauberian condition (*) is the best 
possible. 

1. Introduction. The main result of this paper is a Tauberian theorem for the gen
eral Euler-Borel summability method. The method is also called the Sonnenschein 
method and was first studied in detail in [1]. We begin with its definition. 

Let/Xz) be a function analytic at the origin. The general Euler-Borel method generated 
by /(z), denoted by (£,/), is the sequence-to-sequence transformation defined by the 
matrix (0n*)n>o,*>o» where ank satisfies 

oo 

k=0 

Thus if (sk) is a sequence of numbers such that £ ^ 0
 ank^k is convergent for all large n 

and Hindoo E£L0
 ankSk exists and is equal to S, then we say that (sk) is summable (£,/) 

to S. We denote this fact by 
sk^S(E9f). 

Examples of the method (£,/) include the following. 
1. The Euler method (E, q), q > 0. 

sk —• S(E, q) means (1 + q)~n V ( , I qn~ksk —> S as n —> oo. 
k=o W 
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e~nnk 

2. The discrete Borel method B. 

w g "IT 

sk —• S(B) means V ,, sk —> S as n —> oo. 

3. The Meyer-Kônig method Sn0 <r < 1. 

oo /w — 1 + A 
S(Sr) means (1 - r)" £ I I r*j t -» S as « —• oo. 

4. The Taylor method Tn 0 < r < 1 

OO Af — 1 + # \ 
^ —• S(7V) means (1 — r)rt J2 \ , I ^^W —» S as AZ —> oo. 

*=o \ * / 

5. The Karamata method £(a, /?), where a < 1, /? < 1, and a + /? > 0. 
oo 

ty —• S{E(a, /?)) means ]T] c „ ^ —-»• S as « —• oo, where 

We will refer to the discrete Borel method as the Borel method. 
The functions defining the above methods are, respectively, 

l.f(z)=.(z + q)/(l+q)9q>09' 
2./(z) = exp(z - l ) , 
3./(z) = ( l - r ) / ( l - r z ) , 0 < r < l , 
4. /(z) = (1 - r)z/(l -rzl0<r< 1, and 
5. /(z) = (a + (1 — a — /3)z)/(l — /fe), where a and /3 satisfy the above conditions. 

Most of these examples have been studied thoroughly. They are all regular. In other 
words, they sum a convergent sequence to its limit. Tauberian theorems for them are 
known. For further references of the method see [14]. 

Regarding the general Euler-Borel method we have Theorems A, B, and 1 below. 
Theorem A, due to Bajsanski [1], and Theorem B, due to Bajsanski [1] and Clunie and 
Vermes [5], are criteria for the regularity of the method. Theorem 1, our main result, is a 
Tauberian theorem for the method. 

THEOREM A. The following conditions are sufficient for the regularity of(E,f). 
1. f(z) is analytic for \z\ <R,R> 1. 

2. \f{z)\<\for\z\<\,z±\. -
3. / ( D = 1. 
4. Let the numbers p and A ^ 0 be defined by 

m-e=Af{z- \f + o{\)(z- \f, z -» 1, a = / ' ( l ) . 

Then &4 ^ 0. 

Assuming that conditions 1-3 of the theorem hold, then the seemingly complicated 
condition 4 is also necessary for the regularity of the method. See Theorem B. 
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If a function/^) satisfies the conditions of Theorem A then we denote the parameters 
A, a, and p in condition 4 by A(f), a(f), and p(f), respectively. 

It is proved in [1] that under the assumptions of Theorem A, 

Wi(f) < 0, a(f) > 0, and p(f) is an even integer. 

We note that for each of our examples of the method (£,/),/(z) satisfies the condi
tions of Theorem A. Moreover, A(f) is a real number and p(f) = 2. The preceding two 
conditions hold whenever the coefficients ank are nonnegative (see [1, pp. 134-135]), as 
in the examples, except the Karamata method. 

THEOREM B. Suppose that 

1. f(z) is analytic for \z\ < R, where R > 1, and is not a monomial, i.e., f(z) ^ f1, 
where m is a non-negative integer. 

Then (£,/) is regular if and only if the following conditions are satisfied. 

2. \f(z)\ < lfor\z\ < 1 except at finitely many points Ç 

3. /(I) = 1. 
4. If\f(Q\ = 1, hç(z) =f((,z)/f(Q, ocç — hf

a(l), andp^ and the nonzero number A^ 
are defined by 

hc(z) - za< = A^(z - i r + o(l)(z - i y \ z -> 1, 

then ÎMC ^ 0. 

The sufficiency of these conditions follows from Theorem A. (See [1]). Their neces
sity is due to Clunie and Vermes [5]. 

The above results of Bajsanski and Clunie and Vermes were rediscovered by Newman 
[10], whose proof is considerably shorter. 

In this paper we will consider regular methods (£,/) where/ satisfies the conditions 
of Theorem A. We will not repeat this assumption. 

Here is our Tauberian theorem. 

THEOREM 1. (a) If a sequence of complex numbers (s^) is summable (E,f) and 

\im(sm -sn) = 0 

as n —• oo, m > n, and (m — n)ri~l'p^ —• 0, then s^ is convergent. 
(b) If all the coefficients ank of the method (E,f) are nonnegative (so thatpif) = 2), a 

sequence of real numbers (sk) is summable (E,f), and 

!im(sm - sn) > o 

as n —» oo, m > n, and (m — ri)n~xl2 —> 0, then (sk) is convergent. 

Theorem 1 clearly implies the following 
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COROLLARY, (a) If a sequence of complex numbers (Sk) is summable (E,f), and 

sk-sk_{=0(k-l^\ 

then (s>) is convergent. 
(b) If all the coefficients ank of the method (E,f) are nonnegative, a sequence of real 

numbers (sk) is summable (£",/), and there is a positive constant M such that for each k, 

Sk-Sk-i >-Mk~ll\ 

then (sjc) is convergent. 

Theorem 1(b) contains, for instance, the Tauberian theorem for the Borel method of 
summability [8, Theorem 241] and that for the Meyer-Kônig method [11]. Indeed, as we 
have remarked earlier, examples 1-5 of the method (£,/) satisfy p(f) = 2. This fact and 
the validity of Theorem 1 explain why these methods have the same Tauberian condition. 

The corresponding result for the Karamata method is new. A Tauberian theorem for 
the Karamata method has been obtained by Fridy and Powell in [6]. Their Tauberian 
condition, s> = 0(1) and sk — s^-i — o(l/k), is stronger than ours. Bingham [3] has 
found our Tauberian condition for two principal special cases (a = 0 and /? = 1 — a) 
of the method. He has also treated the Karamata-Stirling method, which is related to the 
Karamata method, in [4]. 

We also note that as p(f) increases, the Tauberian condition in Theorem 1 becomes 
weaker. Hence if (EJ) and (£, g) are regular methods and p(f) > p(g) then the former 
is, loosely speaking, closer to convergence than the latter. 

So far we have mentioned examples of methods (£,/) withp(f) = 2 only. [5] contains 
the following question: is there a regular method (£,/) with a single maximum of \f(z)\ 
on |z| = 1 and with p(f) > 2? We will answer the question positively. In Section 2 
we will show that for each positive even integer there is a regular method (£,/) with 
p{f) equal to that integer. (Recall that p(f) is always even.) We will prove Theorem 1 
in Section 3. The proof relies on Pitt's Tauberian theorem. In Section 4 we show by an 
example that the exponent —l/p(f) in Theorem 1 is the best possible. 

2. More examples of the method. Let 

f(z) = z2k-((z-D/2f, 

where k is a positive integer. Then/ clearly satisfies conditions 1 and 3 in Theorem A. 
For 0 < t < 27T we have 

yf* _ ((e* _ 1 ) / 2 ) 4 * | = \e™< - e2ki'((eil/2 - e-"'2)llfk\ 
= | l -s in 4 *(f /2) |< 1. 

Hence by the maximum modulus principle/(z) satisfies condition 2. Since/'(1) = 2k 
and 

/ (z ) -z 2 * = -(l/2)4*(/)4*(z-D4* 
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f(z) satisfies condition 4 as well. By Theorem A, (£,/) is regular. Moreover the last 
equality shows that p(f) = 4k. 

Similarly we can prove that if 

g(z) = z2'+1 + ( ( z - l ) / 2 ) 4 ' + \ * > 0 

then (E, g) is regular and p(g) = 4k + 2. 
Thus for each positive even integer there is a method (£,/) with p(f) equal to that 

integer. 

3. Proof of Theorem 1. First we will prove part (a) of the theorem. Thus, we as
sume that/ satisfies the conditions of Theorem A, so that (E,f) is a regular method, (fy) 
is summable (E,f) to S, and 

lim(sm -sn) = 0 

as n —-> oo, m > n, and (m — n)n"xlp<^ —• 0. 
Without loss of generality we may assume that 5 = 0. For otherwise we just have to 

consider tk — sk — S. Hence, 
00 

lim ]T anksk = 0. 

We will denote constants by K, not necessarily the same at each occurrence. But a 
letter with a subscript, e.g., K\, denotes always the same constant. For simplicity we will 
write p, A, and a instead of p(f), A(f), and a(f). 

We need seven lemmas. The proof of the first one is similar to that of Lemma e in [ 13] 
(or [8, Theorem 239]) and will be omitted. 

LEMMA 1. Let (s^) be a sequence which satisfies the given Tauberian condition. Then 
there is a constant M\ > 0 such that if m > n, we have 

\sm — sn\ < M\(m — ri)n~llp + 1. 

LEMMA 2. If the hypotheses of Theorem 1 are satisfied then (s*) is bounded. 

PROOF. Suppose we have shown that the subsequence (s[an])n>o is bounded. Then 
we can prove the lemma easily as follows. For every positive integer k, there exists n 
such that an < k < a(n + 1), and we have 

\Sk\ < kjfc-S[cm]| + k a n ] | 

< \Sk-S[an]\ +0(1) 

< Mi(k - [an])[an]'l/p + 1 + 0(1), by Lemma 1, 

<Mxcc[ocn\-llp + 0(\). 

Hence sk = 0(1). 
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Since E ^ 0
 ank$k = o(l), to prove that S[an] = 0(1) it suffices to show that 

oo 
Y2<*nkSk —S[an] = 0(1). 
k=0 

Since 
00 

f(l)=l = (f(l))n = J2ank, /i = 0 , l , . . . 
k=0 

we have 
OO 00 OO OO 

Y2 ankSk — s[ccn] = J2 ankSk ~ S[an] Y2 ank = 1 ] Clnk{sk — S[an]). 
k=0 k=0 k=0 k=0 

Let 0 < H < 1. We will prove that the following three sums 

J2 ank($k ~ S[an]), J2 ank(sk ~ S[an]), 
0<k<(l-H)an (l-H)an<k<(\+H)an 

a n d X ank(Sk ~ S[an]) 
(l+H)an<k 

are bounded. 
By Lemma 1, 

for every k. Hence 

\Sk -sk-x\ <Mxk~llp + \ 

Thus we can estimate the first and third of the above sums as follows. 

| I ] ank(sk - s[an])\ <K J2 n\ank\ = KSU and 
0<k<(\~H)an 0<k<(l-H)an 

I Yl ank(sk - S[an])\ <K J2 k\ank\ = KS2, 
(l+H)an<k (1+H)an<k 

where S\ and 52 have the obvious definitions. 
By Lemma 1 again, we estimate the second of the above sums. 

I Y, ank(*k -%m]) | 
(\-H)an<k<(\+H)an 

< £ (Kn-l'p(an-k)+l)\ank\ 
(\-H)an<k<an 

+ E {Kn-l/i>(k-[an])+ l)\ank\ 
an<k<(\+H)an 

<Kn~llp £ (cxn-k)\ank\ 
{\-H)an<k<an 

oo 

+Kn-lip z (* - [<*«])k*l + £ M 
an<k<(l+H)an &=0 

oo 

= KS3+KS4 + J2\ankl say. 
k=0 
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Since/ satisfies the conditions of Theorem A, (£,/) is regular. By the Toeplitz-Schur 
theorem £ ^ 0 \ank\ = 0(1), n —* oo. Hence to complete the proof it suffices to show that 
Si, 52, S3, and S4 are bounded. In fact we will see that Si and S2 tend to zero as n —• 00. 

The rest of the proof of Lemma 2 is similar to that of Théorème 1 in [1]. 
Let g(z) = z~af(z) and ^(r,f) = \og\g(reif)\. Then (see [1, pp. 137-138]) there are 

positive numbers e, 8, No, and K such that No is so large that/(z) is analytic on \z\ < 
1 + A ^ , 

(1) l / W ) | < 1 — « for |r| > e a n d | r - 1| <N~l/p, and 

(2) £ \g(relt)\n dt = £ e"^ dt < Kn'x'p, 

where r = 1 ± n -1/^, and n > No-
Let Cn be the circle centered at the origin with radius 1 — n~xlp. By Cauchy's integral 

formula we have, with r = 1 — n~xlp and n > No, 

5i=(n/27r) £ | / . ( / « ) n ^ _ 1 * | 
0<k<(l-H)an" 

<(n/27r) £ J11"'\f{r^)\nr-k dt 
0<k<(\~H)an£ 

+ n £ f lf(^)|wr-*A 
0<*<(l-tf)an £ 

< 11(1 - 5)n £ r~* + n £ ran~k f |g(re'f)|n A, 
0<JK(l-//)cm 0<fc<(l-//)an , / _ e 

by (1) and the definition of g. 
Since r = 1 — n~xlp the first term on the right is less than or equal to 

fl{\ - 8f{\ - n-1/P)-d-H)«n £ (1 - n-UPf-H)an-k 
0<k<(l~H)an 

00 

< n(\ -W(l-n-lh~{X~mmY,(l--rrl'p)k 

k=0 

< n(l - 6)n(l - n-l/pr{l-H)a" 1 

\-(l-n-{/P) 
< nx+x/p(l -8)n{\ - n-i/P)-V-m«n 

— oil) as n —*• 00. 

To estimate the second term we apply inequality (2). We have 

n £ ran~k f W ) | n * < n E fpn"kKrTxlp 

<Knx~xlp £ (\-n-xlp)an-k 

0<k<(\-H)an 

<Kn(\-n-xlp)Han 

= o(l) as n —• 00. 
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Hence S\ = o(l) as n —-> oo. 
The proof that S2 = o(\) as n —•+ 00 is similar. Here we represent ank as a Cauchy 

integral over a circle centered at the origin with radius 1 + n~x/p, where n > No. We omit 
the details. 

Next we show that 53 is bounded. Again we represent ank as a Cauchy integral over 
the circle Cn. We have, with r = 1 — n~xlp and n> No, 

S3 = n-'IP £ (an - *)|(1/2TT) / (f(*)) V * " 1 dz 
(l-H)an<k<an ' 7 C " 

< (n-l'p/27r) Y, (an - k) r~£ \f(n?)\nr-k dt 
(l-H)an<k<an JE 

+ n~l'p £ (™ ~ k) f \f(^)\nrk dt 
(\-H)an<k<an J E 

<n-llp(\-èf J2 (ocn-k)r~k 

(\-H)an<k<an 

+ n~xlp £ (an - k)ran-k f \g(reu)\n dt, 

by (1) and the definition of g, 

< n~xlp(\ - 8)n Y, (an ~ k>~k 

{\-H)an<k<an 

+ n~l/p £ (an-k)ran-kKn-l'p, by (2), 
{\-H)an<k<an 

< n-llp{\ - èf £ (an ~ *)0 ~ n~l'prk 

(l-H)an<k<an 

+ Kn~2lp J2 (an ~ *)(! - n-l'p)an~k. 
(l-H)an<k<an 

It is easy to see that the first term on the right = o(\) as n —-> 00, the dominant factor 
being (\-b)n. Since 

00 

Ykak-x=(\-a)-2 

k=0 

if\a\ < 1, the second term is less than 

Kn-2'p(l-(l-n-lh)~2=K. 

Thus S3 is bounded. Similarly, representing ank as a Cauchy integral over the circle 
centered at the origin with radius 1 + n~xlp we can prove that S4 is bounded. This com
pletes the proof of Lemma 2. 

Lemma 2 plays a crucial role in the proof. Assuming that (5>) is bounded and S* —> 
0(E,f) we can prove Lemmas 3-6, as we will see. This remark will be important in the 
proof of Theorem 1 (b). 

LEMMA 3. lim^oo £logn<|an_*|<niA>logn n~xlpsk<j)((an - k)n~xlp) = 0, where 

(j)(x) = f exp(A^ + ixt) dt. 
J—00 
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PROOF. Girard's paper [7], which is based on his doctoral thesis, contains the essen
tial ingredients required for the proof of Lemma 3. Since 

ank=T / - / V V 
2TT-

and, by Lemma 2, (s^) is bounded, it follows from the proof in [7, pp. 362-364] that for 
each e > 0, we have 

E "ntsk = 5 - E ** /_ / V V * A + *(1) as n — oo. 

We choose e so small that the following three conditions hold. 
(A)For|r| <e, 

f(^)e-
iat = 1 + Aipe~iat(eit - If + 0(f+l) = exp(Af + G(0), 

where \G(t)\ < K{\t\
p+l for some constant K\. 

Such a function G exists because of condition 4 of Theorem A and the fact that if \t\ 
is small enough, then 

Aipe-ioct(elt -If = Aip{\ + 0(t))((itf + 0(f+l)) 

= Ai2pf + 0(f+l) 

= Af + 0(f+l), 

since p is an even integer. 
(B)3t4 + £ i £ < 0 . 
(C) | exp(;c) - 1| < 2|JC| if |JC| < K{e

p+l. 
For simplicity let T(ri) = {k : logrc < \an—k\ < nllp log n). We note that the number 

of elements in T(n) is less than 2nl/p log n. 
By condition A we have 

£ sk[
e f"(eu)e-ik'dt= £ * f (/VV to) V"""»'* 

= E skf {^^fe^-^dt 
keT(n) J £ 

= J2 sk I exp(nAf+nG(t) + i(an-k)t)dt. 
keT(n) 

Making the substitution v = nl/pt'm the preceding integrals we have 

E^£/VV^^ 
keT(n) 

= E V*~1//? H , exp(Av^ + nG(n~x/pv) + /(an - /:)n"1//?v) rfv 

= E skn~l,p ^ i/ptxp(A\^+i(an-k)n-l/pv)dv + U9 
keT(n) 
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where U = 

£ skrTllp H {expfvV + i(an - k)rTllpv) ) Uxp(nG(n~l/pv)) - 1 

We write 

Skn-llp{ , + / + / )---rfv 
*67Xn) Vi-Ên'/M î) J£nifi*i»i) J-£nUp J 

= Ui+U2 + l/3. 

First we show that f/i = o(l) as rc —• 00. 

If |v| < / i 1 / ^ then l/i"1 /^! < e. Hence by condition A we have 

(3) \nG(n~l/pv)\ < nKx\rrxlpv\p^ = KxrCllp\v\p+l. 

If in addition we have |v| < £n
l/p(p+l) then |v|^+1 < nllpep+x. Hence by (3), 

\nG{n-{lpv)\ <Kxn-xlpnllpep+l = Kxe
p+l. 

It follows from this inequality and condition C that 

| t / i | < E h\n~l/p
 l/.l texVmS)}2\nG(n-l'pv)\dv. 

keT(n) J~5n 

Hence by (3) and the fact that (sk) is bounded, 

<Kn~2lp £ 1 

*e7Xn) 
< J & i - 2 ^ ^ 1 /^ log n), 

since the number of elements in T(n) is less than 2nllp log n. 

This shows that (7i —• 0 as « —• 00. 

Next we prove that U2 —• 0 as « —+ 00. 

For |v| < éTz1/^, or |/2~1/^>v| < e, we have, by condition A, 
n\G{n~llpv)\ < nKi(n-l/p\v\Y+l < Kx{rrl/p\v\)\v\p < Kxe\v\p. 

Therefore if |v| < enxlp then 
|exp(«G(n~1//7v)) - l | < Qxip(K{s\v\pl 

Hence 
renxlp 

\U2\<Kn-1/» Y, / 1 / W p +exp(5iA|v|0exp(^£ |vr)rfv. 
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Since 3îA + K\s < 0 (by condition B) we have, 

\U2\<Kn^£/^)^p{m+K1e)\v\P)dv £ 1 
J£n k<ET(n) 

< Kn-l/pnl/p\ogn f°°, exp((KA + K{£)\v\p) dv, 

since the number of elements in T(n) is less than 2nxlp log n, 

< Klogn £ ^ + 1 ) exp((3îA + £ l £)v) dv, if enl'p(p+» > 1, 

< *logn * exp((&4 + tf^y/'^e) 

= 6>(l)as n —• oo. 

Similarly we can show that f/3 —» 0 as n —> 00. 

Hence we have 

00 1 r£ 

£<W* = T- E ** / / W ' ^ + od) 
fc=0 Z7r *er(n) •/_e 

= x - E •**" / p / exp(A\P + i(an-k)n-l/pv)dv 
Z7T ur^F<„\ J-enxIP v y 271" fcer(n) 

as n —• 00. 

We now show that we may extend the limits of the last integrals to infinity. For every 

real number rnk, we have 

exp(Av^ + irnk)dv\ 

£o renllp I 

expCAv̂  + irnkv) dv — / exp(Av^ + irnkv) dv\ 

/•OO 

2 / expCîîAv^) dv, since /? is even, 
Jenxlp 

2 / , exp(3Mv)dv, i f£« 1 / p > 1, 
Jenl/P 

2exp(menl/p) 

< 

< 

< 
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Hence if enxlp > 1 then 

hn~llP{(t>{{ocn-k)n-llp)- /~ 
lk£T(n) 

E skn-x'p{(t)({an - k)n~l/p) - j™ ' e x p ^ + i(an - k)n~^pv) dv) 

<Kn-llp E exp(&W^) 
keT(n) 

< Kn-xlpnxlp(\ogn)exv($Aenllp\ 

since the number of elements of T(n) is less than 2nxlp log«, 

<K(logn)exp(?RAenx/p) 

= o{\) as n—• oo. 

It follows that 

oo 1 

(4) E Wk = 7 " E skn-l'pcj>((an - k)n~xlp) + *(1), 
k=0 ^ k£T(n) 

as n —• oo. By the hypothesis that E^Lo ̂ n**5* - • 0, we have 

lim E skn-llp(j)Uan-k)n-llp) = 0. 

The proof of Lemma 3 is complete. 

LEMMA 4. l i m ^ ^ r c - 1 / ^ j(0^((aw - t)n~xlp) dt = 0, w/iéTé? s(t) = s[t], where 
in turn [t] denotes the greatest integer in t. 

PROOF. We begin with a few remarks about the function (j>. Since <f> is the inverse 
Fourier transform of the function exp(Af), which is rapidly decreasing, it itself is rapidly 
decreasing. Hence <j> is bounded, infinitely differentiable and integrable on the real line. 
Also, for every nonegative integers m and n, x^^Xx) is bounded, where as usual </>(0) = 
4> and </>(w) is the nth derivative of <j> if n > 1. It follows that the integral in Lemma 4 
exists. Finally we note that 0 is an even funtion, since/? is an even integer. 

We will prove (5)-(9) below, which imply the lemma. 

(5) lim n'llp H*0*" s(t)<l>((an - 0« _ 1 / p) dt = 0. 
n—>oo Jan—\ogn v ' 

(6) lim n-llp r i s(t)<\>Uan - t)n~xlp) dt = 0. 
n—KX> Jan+nl/P log n v ' 

, / ran—nl'p\ogn , . , x 

(7) lim n~1/p / s(t)<j)((an - t)n'x/p) dt = 0. 
n—+00 70 v ' 

(8) lim "~1//7( / s(t)<f>((an - t)n~x/p) dt - E ^</>((«n - Â:)n"1//?)} = 0, 
n-^oo UU(n) keU(n) ' 
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where U(n) denotes the open interval (an — nl lp log n, an — log n). 

(9) lim rTl'p\ f s(t)<j)((an - t)n~l'p) dt - V sk(f>Uan - k)rTl/p)\ = 0, 
n-»oo {JV(n) v ' k(zV(,

 v ') k£V(n) 

where V(n) denotes the open interval (an + log n,an + n l'p\ogn). 
Since s(t) and <\> are bounded we have 

rcm+log n 

-log 

and (5) follows. 
To prove (6) we note that since </> is an even function and is integrable, 

n-i/p rn+1°sn s^fan _ t)n-Vp\ dt\ < Kn~l/p\ogn, 

n-x'p r , s(t)M(an-t)n-llp)dt\ 
Jan+nl/P\ogn v ' I 

Jan+nl/P log n1 v y 

TOO 

< K / |^(v) 
Jlogn 

= 0(1) 

dv 

dt 

as n —» oo. 
Similarly we can prove (7). 
Since 

n" 1 /^i/ (») 5 ( f )^ ( a n"°n" 1 / P )* 
- £ j^an-fc)*"1/')} 

*GÏ/(n) 

= "~1//? E \[+ s(t)<f>{(an-t)n-{/p)dt 

- ^ + 1 s(t)<t>{(an - k)n~{/p) dt 

Jan—n 

an—nl/p\ogn]+\ 
s(t)<t>((an-t)n-l/p)dt 

n]/p\ogn 

+ n~xlp fan~logn
 S(t)(t>((an- t)n~l/p) dt, 

J[an—logn] ^ ' 

since the last two terms of the preceding line = o(l) as n —• oo, since analogous state
ments hold for the interval V(n), and since s(t) = %] is bounded, to prove (8) and (9) it 
suffices to prove that 

n~l/p E /fc+1 |<A((an-Ow"1//7)-</>((an-fc)n-1//?)|^ = o(l), 
keT(n) Jk 

where T(n) is defined in the proof of Lemma 3. 
By the mean value theorem, if t G [k, k + 1] then 

|4>((cw - t)n~xlp) - <t>((an - k)n~l/p)\ < n~l/p\<j)f(0\ 
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for some £ satisfying {an — t)n~xlp < £ < {an — k)n~xlp. 
Since <j> is rapidly decreasing, <j>' is bounded. Hence if t G [Jc,k+ 1] then 

\(j>({an - t)n~xlp) - 4>({an - k)n~xlp)\ < Kn~xlp. 

Thus 
, / _ rk+\ 

k£T(n) JK 
\(j>({an --t)n~llp) — (f>({an — k)n 

<n~x lp Y, Kn~l/p 

keT(n) 

<Kn~ •2/P ^ ! 

keT(n) 

<Kn~ 2lp2nxlp\ogn 

= o{l] ) as n —-> oo. 

This completes the proof of (8) and (9). 

LEMMA 5. linv_+oo x xlp JQ° s{t)(t>({a/x)xlp{t — JC)) dt = 0, w/^re x w a continuous 
variable. 

PROOF. Let n — [x/œ]. Since <j> is an even function it follows from Lemma 4 that 

lim x~x/p l°° s(t)<l>((t - an)n~xlp) dt = 0. 

Thus it suffices to show, since s{t) is bounded, that 

/ = x~xlp J°°\<t>({t - an)n~xlp) - <t>{{a/x)xlp{t -xj)\dt - • 0 

as x —* oo. 
Making the change variable u — {a/x)xlp{t — x) we have 

I=al/P QyH-Mmu + 7W) " m\du 

< axlp j°° \(t>((3{x)u + l{x)) - (j>{u)\ du, 

where (5{x) = {x/an)xlp and l{x) = {x — an)n~xlp. Since n = [x/a], we have (3{x) —> 1 
and 700 —• 0 as x —• oo. 

Since <j> is continuous <j)(f3{x)u + 7(x)) — </>(«) —• 0 for each u as x —> oo. On the other 
hand there exists a positive constant K such that \(j>{u)\ < K/{u2 + 1), <j> being rapidly 
decreasing. Also (/3{x)u + 7(*)) > w2/4 when x is large enough and \u\ > 1, since 
f3{x) —> 1 and 7(x) —• 0. Hence for large x and |u\ > 1 

By Lebesgue's dominated convergence theorem / —> 0 as JC —• oo. This proves 
Lemma 5. 
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LEMMA6. linv^o J™ s{ax~qf)(f)[q{x-t)) dt = 0, where q satisfies 1 /p+1 /<? = 1. 

PROOF. The proof is similar to that in [8, pp. 313-314]. By Lemma 5 we have 

lim x~xlp r s(t)<t>(ocllpx-xlpt - axlpxx'xlp)dt = 0. 
x—+oo JO 

Let q satisfy l/p+l/q= 1, let JC = ax~qyq and make the substitution t — ax~quq in 
the preceding integral. We have 

x-\/p = a{\-q)2/qy\-q9 

axlpx-xlpt = yx-quq, 

axlpxx~xlp =y, and 

<fr = qax~quq~x du. 

It follows that 

lim a 0 - * > 7 y - « [°° S{ax-quq)(j){yx-quq -y)qax-quq-x du = 0, or 

lim J™(s(al-qrf))(-)q-l<l>(yl-%rf -yq))du = 0. 

Since s ( a 1 - ^ ) is bounded Lemma 6 follows from the fact that 

J = j°°\^{q(y - II)) - (-)q-l<t>(yl-q(rf - yq))\du -> 0 as y -> oo, 

which we will now prove. 
Since we will let y —• oo we may assume that y > 1. Let u = y + w. Since </> is an 

even function we have 

J = Q<t>(qw) - ((y + uO/y)*~ V( / " ' ( 0> + w)« - / ) ) | dw. 

Let 

A(jc)=i ; i f * > - l , * ^ 0 , 
[# if JC = 0. 

It is easy to see that A(JC) is continuous and has a positive minimum ra, say, on [— 1, oo). 
Furthermore we have 

yx'q((y + w)q - yq) = w\(w/y). 

Hence 
J = J_^\<Kqw)- ((y + w)/y)^ (/)(wA(w/y))|(iw. 

Let a satisfy 0 < 3a < 1. 
We write 

J = 7i + 72, 
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where 

Jx = f \<Kqw)- ((y + w)/y)q~ <j)(w\(w/y))\dw, and 

2̂ = / \<Kqw) ~((y + w)/y)q <t>(w\(w/y))\dw. 

Notice that since y > 1 and 0 < a < 1, the restriction w > — y is satisfied in J2. 
First we show that J\ —•» 0 as y —* oo. Thus we assume that |w| > yf1. Since y > 1, if 

w > 0 then we have 
w>ya>\. 

Hence if y is large enough then 

v + w 
(10) w <y(w- 1), or - < w. 

y 
On the other hand since X(x) has a positive minimum m on [—1, oo), if w > 0 then 

wA(w/v) > wm. 

Since <j> is rapidly decreasing there is a constant ^ > 0 such that 

(11) |</>(wA(w/v))| < #|wA(w/v)|-3 < Km~3w-\ w > 0. 

Since l/p+l/q = 1 and/7 > 2 we have g < 2. So 

(12) q-4<-2. 

Finally the fact that <j> is an even function, (10), (11), and (12) yield, for large y, 

A < / \4>{qw)\dw+ j (iy + w)/y)q~l\(t>(wX(w/y))\dw 

< [ \è(qw)\dw + [ wq~lKm~3w-3dw 
- J\w\>r J\w\>y 
< / \6(qw)\ dw+ Km~3 / w~2 dw. 
- J\w\>r J\w\>y° 

Hence J\ —• 0 as y —> oo. 
Next we consider J2. Here we assume that \w\ < yf1. So w/y = Oiy"'1). Hence, 

{(y + w)/y)q~l = (i + w/y)^-1 = 1 + o(ya-1). 

If JC is small then X(x) = q + 0{x). Hence 

wX(w/y) = w(# + 0(w/y)) = w(q + 0(yq~1)) =wq + 0(y2a~x). 

Thus 
h = ^ |<K*w) " (1 + 0( / - 1 ) )^(w^ + OO^"1))! rfw 

< ( , k ( ^ ) - <t>(wq + O^-1))) dw 
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Since <j>' is bounded, the mean value theorem implies that the first term on the right is 
less than 

Ky2a~l [ ldw = 2Ky3a-\ 
J\w\<y° 

which tends to zero as y —» oo, 3a < 1. 
Since <f> is bounded the second term is 0(y2a~l), which also tends to zero. 
This proves Lemma 6. 

LEMMA 7. s(ax~qfl) is a slowly oscillating function. 

PROOF. By definition (see [8, p. 286]), we have to prove that 

\im{s{al-quq) - s(ax-qvq)} = 0, 

as v —• oo, u > v, u — v —• 0. 
For simplicity let y = al~quq and z = a 1 - ^ . Then 

(y - z)z-
{/p = (al'quq - al-qvq)(al'qvqrl/p 

= a - 1 / " v ( ( ^ - l ) . 

Since p >2,q<2. Since u> v, u/v> 1. Hence 

(y -z )z - I / "<a- , / / ' v ( ( - ) 2 - l ) 
V 

.»*->? 
V 

= K(u - v)(- + 1) 
V 

= 0(1) 

when v —̂  oo, w > v, w — v —* 0. By the Tauberian condition, S[y] — %] —> 0. The lemma 
is proved. 

PROOF OF THEOREM 1 (A). We have to prove that sn —• 0. By Lemma 2 and Lemma 7, 
s(al~quq) is a bounded and slowly oscillating function. It will follow from Lemma 6 and 
Pitt's Tauberian theorem [8, Theorem 221] that s(al~~quq) —> 0 as u —• oo provided that 
the Fourier transforms of (f>(qu) has no zeros. But <j> is the inverse Fourier transform of 
the function exp(A^) and is rapidly decreasing. Hence by the Fourier inversion theorem 
we have 

[°° (f>{qu)e-ixudu= r <i>(t)e-i{xlq)t-dt= - Qxp(A(x/qf). 
J-oo J-oo q q v y 

This function indeed has no zeros. Let u = {naq~x)llq. Then we have 

s(al~quq) = s(n) = sn —• 0 

as n —> oo. We have proved Theorem 1(a). 
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PROOF OF THEOREM 1(B). We will sketch the proof. We replace Lemma 1 by [8, 
Theorem 239] or [13, Lemma e], according to which there exist positive numbers a and 
b such that for q > p > 1, 

(13) sq-sp> -a(^/q - y/p) - b. 

Using (13) we can prove that 
M 

X>„* —• 0 

as M —y oo, n —> oo, and ^fotn — \[M —> oo, and 

f2ank(Vk-VN)->0 
k=N 

as TV —> oo, n —•> oo, and \/5v — \/cw —* oo. 
The proofs of these statements are similar to that of Lemma 2. With these facts on hand 

we next modify the proof of Theorem 238 in [8] to conclude that (s[an])n>\ is bounded. 
Let k be an arbitrary positive integer. There exists n such that an < k < a(n + 1). By 
(13) we have 

Sk - S[an] > ~a{\fk - y/[an]) - b 

^ _ , k - [an] x 
a^y/k + y/ïân~Y 

Vk + y/[an] 

Since (s[an]) is bounded, this inequality implies that (^) is bounded from below. On the 
other hand we have 

S[a(n+\)] -s/c> -a(y/[a(n+l)] - Vic) - b, 

and we can similarly prove that (^) is bounded from above. 
Since (sk) is bounded Lemmas 3-6 hold, as we have remarked earlier. Instead of 

Lemma 7 we show that s(al~qf!) is a (real valued) slowly decreasing function. We then 
apply Pitt's Tauberian theorem to complete the proof. 

4. The Tauberian condition. Can we replace the Tauberian condition in Theo
rem 1(a) by the weaker condition \im(sm — sn) — 0 as n —> oo, m > n, and (m — 

n)n
c~l/p^ —> 0, where 0 < c < l/p(f), or more generally, by lim(^m — sn) = 0 as 

n—>oo,m>n, and (m — n)rnn~l/p(f) —• 0, where (rn) is an increasing sequence which 
tends to oo, such that decreasing and tends to 0? If so then we could weaken 
the O-condition in the corollary of the theorem. Theorem 2 shows that this cannot be 
done. Thus the exponent —l/p(f) in Theorem 1 is the best possible. 

The proof of the theorem is a modification of an example due to Kwee [9]. 
For the best possible nature of Tauberian conditions in this and related context, see 

also [2] and [12]. 
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THEOREM 2. Let po be a positive even integer. Let (rk) be a sequence of increasing 
positive numbers tending to oo. Then there is a bounded divergent sequence (sk) which 
is summable by every regular method {E,f) with p(f) — po and which satisfies 

sk-sk-{ = 0(rkk-l/p»). 

PROOF. Let (mk) and (qk) be two sequences of positive integers with the following 
properties. 

1. 2k<rqk,k = 1,2,... . 
2. \{qk)

xlr»<kmk < (qk)
xlp\k= 1,2,... . 

3. 2(qk + 2mk)<qk+uk = 1,2,.... 

Property 2 implies that 
4. mk < qk,k = 1,2,... . 

By property 3 (qk) is an increasing sequence. 
Now we define (sk). If k is outside intervals of the form (qk, qk + 2mk) then let sk = 0. 

For each positive integer k, let 

{ w/mk, 1 < w < mk, 

(2mk — w)/mk, mk <w < 2mk. 
Hence 0 < sk < 1 for each k. Since sqk = 0, and sqk+mk = 1 for each /c, (sk) is 

divergent. Next we prove that sk — sk_\ — O(rkk~l/po). 
Clearly, 

l ^ - ^ - i l < \/mkifqk <j <qk + 2mk. 

By properties 2 and 1 we have 

l/mk<(2k)(qkr
1^ <rqk{qkY

xlp\ 

Since (rk) is increasing, for qk <j <qk + 2mk we have 

rj(jr'/po > rqkUrl/po > rqk(qk + 2mkr
l'p° > rqk(3qky

l'*>. 

The last inequality follows from property 4. 
Hence 

rqk(qkr
l,Po < 3l/porj(jTl/*>, ifqk <j < qk+2mk. 

It follows that for qk <j <qk + 2mk we have 

\Sj-Sj^\ < l/mk < rqk(qky
{lp« < 31^0-(/T1/ /?0. 

On the other hand if j is outside intervals of the form [qk, qk + 2mk] then Sj — Sj-\ = 0. 
Thus for every j , 

\Sj - Sj-X\ < 3l/">rj(j)-l'*> = O(r ;-0r1 /po). 

https://doi.org/10.4153/CJM-1992-067-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-067-9


A TAUBERIAN THEOREM 1119 

We still have to show that (sk) is (£,/) summable to 0 if p(f) = p0. Let (£,/) be such 
a method with matrix (ank). Since (sk) is bounded equation (4) in the proof of Lemma 3 
holds, i.e., 

00 1 
£ Wit = -z- £ J*/i"1/A,^((an - k)n-l'">) + *(1), as n — oo, 
£=0 Z 7 r Â:Gr(/î) 

where T(n) — {k : log« < \an — k\ < nl/p\ogn}, a = a(f), and </>(*) = 

We will prove that 

lim £ skn~{/po<f)((an-k)n-l/po) = 0. 
n^°°keT(n) X ' 

Then it follows that (fy) is summable (£,/) to 0. 

If n is large enough then 

an + A21//?0 logtt < 2(an - «1//7° logn). 

Since 2(qk + 2m )̂ < ĝ +i (by property 3), r(«) overlaps with at most one of the 
intervals [qk,qk + 2mk]. If it does not overlap with any of these intervals then the above 
sum is 0. If it does for some k then qk or qk + 2mk lies between an — nxlp° \ogn and 
an + nllpQ \ogn. Hence qk = O(n). So 

W-VA) = O(q;l/po). 

Also, in this case the number of non-zero terms in the sum is at most 2mk, the length of 
the interval [qk, qk + 2mk\. Since 0 < sk < 1 and </> is bounded, the sum is 

0(mkn-1^) = O(mkq;l/Po) 

= 0(k~l), by property 2, 

= o(l). 

This completes the proof of Theorem 2. 

ACKNOWLEDGEMENT. This paper contains some of the results in my doctoral thesis 
written under the supervision of Professor Bogdan Baishanski at the Ohio State Univer
sity. I would like to thank Professor Baishanski for suggesting the problem of finding a 
Tauberian theorem for the general Euler-Borel method and for pointing out, among other 
things, the importance of the function <f> in the proof of Theorem 1. Without the many 
discussions with him this paper would not have been completed. I am indebted to the 
referee for her/his comments and Dr. Man Keung Siu for introducing me to my typist. 

https://doi.org/10.4153/CJM-1992-067-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-067-9


1120 L.TAM 

REFERENCES 

1. B. BajSanski, Sur une classe générale de procédés de sommations du type d ' Euler-Borel, Acad. Serbe Sci. 
Publi. Insti. Math. 10(1956), 131-152. 

2. N. H. Bingham, On Euler and Borel summability, J. London Math. Soc. (2) 29(1984), 141-146. 
3. , Tauberian theorems for summability methods of random-walk type, J. London Math. Soc. (2) 

30(1984), 281-287. 
4. , Tauberian theorems for Jakimovski and Karamata-S tiding methods, Mathematika 35( 1988), 216-

224. 
5. J. Clunie and P. Vermes, Regular Sonnenschein type summability methods, Acad. Roy. Belg. Bull. CI. Sci. 

(5) 45(1959), 930-954. 
6. J. A. Fridy and R. E. Powell, Tauberian theorems for matrices generated by analytic functions, Pacific J. 

Math. 192(1981), 79-85. 
7. D. M. Girard, The asymptotic behavior of norms of powers of absolutely convergent Fourier series, Pacific 

J. Math. 37(1971), 357-381. 
8. G. H. Hardy, Divergent series, Oxford University Press, 1949. 
9. B. Kwee, An improvement on a theorem of Hardy and Littlewood, J. London Math. Soc. (2) 1 28(1983), 

93-102. 
10. D. Newman, Homomorphisms ofi+, Amer. J. Math. 91(1969), 37-46. 
11. Y. Sitaraman, On Tauberian theorems for the Sa-method of summability, Math. Z 95(1967), 34-^9. 
12. G. Tenenbaum, Sur la procédé de sommation de Borel et la répartition du nombre des facteurs premiers 

des entiers, Enseignement Math. 26(1980), 225-245. 
13. T. Vijayaraghavan,A theorem concerning the summability of series by BoreVs method, Proc. London Math. 

Soc. (2) 27(1928), 316-326. 
14. K. Zeller and W. Beekman, Théorie der Limitierungsverfahren, Springer Verlag, 1970. 

The Ohio State University 
Columbus, Ohio 

Current address: 
Flat 1625 
16 Lai Tak Tsuen Road 
Tsuen Wing Lau 
Hong Kong 

https://doi.org/10.4153/CJM-1992-067-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-067-9

