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Abstract

Consider a sample Xn = {X1, . . . , Xn} of independent and identically distributed
variables drawn with a probability distribution PX supported on a compact set M ⊂ R

d .
In this paper we mainly deal with the study of a natural estimator for the geodesic distance
on M . Under rather general geometric assumptions on M , we prove a general convergence
result. Assuming M to be a compact manifold of known dimension d ′ ≤ d, and under
regularity assumptions on PX , we give an explicit convergence rate. In the case when M

has no boundary, knowledge of the dimension d ′ is not needed to obtain this convergence
rate. The second part of the work consists in building an estimator for the Fréchet
expectations on M , and proving its convergence under regularity conditions, applying
the previous results.
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1. Introduction

Let PX be a probability distribution supported on a compact set M ⊂ R
d , d ≥ 2; that

is, M is the smallest closed set in R
d of probability 1. Let Xn = {X1, . . . , Xn} be a sample of

independent and identically distributed (i.i.d) variables drawn on M with the distribution PX.
Our first aim is the study of a rather classical estimator of the geodesic distance on the unknown
set M .

The way to build this estimator is quite intuitive (see, for example, [18]): given r > 0, build
a graph interconnecting all the pairs (Xi, Xj ) of the sample Xn such that ‖Xi − Xj‖ ≤ r . The
geodesic distance between any two points Xk and Xl of the sample is then estimated by the length
of the shortest path connecting Xk and Xl in the graph (see Definition 2.1 for details). This path
(and its length) can be computed with optimal complexity by using Dijkstra’s algorithm (see,
for example, [3] for a presentation of this algorithm). As usual in such problems, r = rn must
be a conveniently chosen sequence. First, it must converge to 0 as n → ∞. Moreover, this
convergence has to be slow enough for the path realizing the estimator to be smooth enough.
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To the best of the authors’ knowledge, the asymptotic behavior of such an estimator has not
been studied yet. In a similar framework, the estimator

L̂p(Xi, Xj ) = min

{ K∑
k=1

‖Xik+1 − Xik‖p, i1 = i, iK = j

}
, p ≥ 1,

was studied in [8], generalizing the results in [7] when M is a compact manifold without
boundary. The minimum was computed on all the paths in the graph connecting Xi to Xj .
The estimator studied in this paper roughly reads as follows (see Definition 2.1):

min

{ K∑
k=1

‖Xik+1 − Xik‖, i1 = i, iK = j for all k such that ‖Xik+1 − Xik‖ ≤ rn

}
,

where (rn) is a conveniently chosen sequence converging to 0 as n → ∞. Here the minimum
is then computed over the paths whose vertices satisfy a proximity criterion.

As mentioned earlier, L̂p is computed on the whole graph. We have L̂1(Xi, Xj ) = ‖Xi −
Xj‖, whereas a power p > 1 tends to ‘select’ a path in the graph which is ‘close to’ the
manifold. When M is a d ′-manifold without boundary, and the probability distribution PX has
a density fX, Hwang et al. [8] proved that, for p > 1,∣∣∣∣ L̂p(Xi, Xj )

Cd ′,p n(1−p)/d ′ − Lp(Xi, Xj )

∣∣∣∣ a.s.→ 0, for all (i, j), n → ∞,

where Cd ′,p is a positive constant and Lp(x, y) is the geodesic distance on M endowed with
the metric f

2(1−p)/d ′
X Id ′ (where Id ′ is the identity matrix of size d ′). Thus, the estimator L̂p

can only estimate the canonical geodesic distance (that is, M endowed with the identity) when
observations are uniformly drawn, while our estimator does not requires such an hypothesis.
Moreover, we obtain convergence rates while none are provided for L̂.

We will show, under quite general assumptions on the support M , that choosing rn =
dh(Xn, M)2/3 appears to be convenient (Theorem 2.1). Here and throughout the paper,
dh(A, B) denotes the Hausdorff distance between the sets A and B; that is,

dh(A, B) = max
{

sup
a∈A

(
inf
b∈B

‖a − b‖
)
, sup
b∈B

(
inf
a∈A

‖a − b‖
)}

.

Assuming that M is a d ′-manifold, d ′ ≤ d, and assuming some regularity for the dis-
tribution PX, we show that dh(Xn, M) = O(ln n/n)1/d ′

everywhere almost surely (e.a.s.),
allowing us to find the convergence rate of our estimator when the dimension d ′ is known
(Corollary 2.1). When d ′ is unknown, and M is supposed to have no boundary, Corollary 2.2
contains an estimator of rn which allows us to obtain the same convergence rate.

Eventually, we will apply these results to the estimation of the Fréchet expectations, as
defined in [13], of the distribution PX on M (Theorem 2.2).

Using the estimated geodesic distance in place of the Euclidean distance has become frequent
in different fields of application in order to take the nonlinearity of the data into account. In [18],
the authors proposed to apply the multidimensional scaling (see, for example, [9]) to the array
of geodesic distances between points. This idea opened the way to the use of the geodesic
distance in dimension reduction (see [5], [10]–[12], and [16]). In [2] and [6], the question of
intrinsic dimension estimation using graph-based statistics was studied. In particular, in [6] the
authors proposed a generalization of the correlation dimension where the Euclidean distance is

https://doi.org/10.1017/jpr.2018.66 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.66


Estimators of geodesic distances and Fréchet expectations 1003

replaced by the (estimated) geodesic distance. This approach has the advantage that it is less
sensitive to the (difficult) question of the choice of parameter (see also [17]). In [13], the author
raised the question of the generalization of classical statistical quantities (such as the mean and
median) to the case of data supported on Riemannian manifolds.

The paper is organized as follows. In Section 2 we state the general framework, main
definitions, and results. In Section 2.1 we present the results concerning the estimation of
the geodesic distance on the support M (Theorem 2.1 and Corollaries 2.1 and 2.2), while
in Section 2.2 we present the theorem for the Fréchet expectations estimator (Theorem 2.2).
Section 3 is devoted to the proofs of the results.

2. General framework and main results

2.1. Estimating geodesic distances

Let us first start with the definition of our estimator.

Definition 2.1. Let Xn = {X1, . . . Xn} be a set of n i.i.d. random variables with distribution
PX supported on a compact set M ⊂ R

d , d ≥ 2. With rn > 0 being a given number, let
Grn(Xn) be the graph whose edges are the segments [Xi, Xj ] such that ‖Xi − Xj‖ ≤ rn.

For (i, j) ∈ {1, . . . , n}2, let, if it exists, γ̂rn(Xi, Xj ) be the shortest path (in the Euclidean
norm) connecting Xi and Xj in Grn(Xn), and |γ̂rn(Xi, Xj )| its length.

We aim to prove, for a class of convenient compact sets in R
d , that |γ̂rn(Xi, Xj )| is an

estimator of the geodesic distance γ (Xi, Xj ) on M , with good convergence properties.

Definition 2.2. Let M ⊂ R
d be a compact set, M is said to be KM -geodesically smooth (GS)

for some positive number KM if:

(i) for all (x, y) ∈ M2, there exists a geodesic path γx→y of class C1 that links x to y;

(ii) there exists a real function β such that limt→0 β(t)=0 and, for all (x, y) ∈ M2, |γx→y | ≤
β(‖x − y‖);

(iii) let �x→y : [0, |γx→y |] → R
d be the parametrization of γx→y such that �x→y(s) is the

point of γx→y that is at a (curvilinear) distance s from x (along the geodesic curve). For
all (x, y) ∈ M2, the gradient of �x→y , denoted

•
�x→y , is KM -Lipschitz continuous.

A compact manifold of class C2 with no boundary satisfies the assumptions of Definition 2.2,
but we can build more general examples of such sets (that is, compact sets with C1 geodesic
curves which have KM -Lipschitz tangent maps). As an example, in Figure 1 we present two
examples of GS-sets (sets 1 and 2), and one which is not. Note that the middle panel in Figure 1,
while satisfying the GS property, is not a manifold.

Figure 1: The sets are the shaded areas. Left: this is GS (with some geodesic curves depicted). Middle:
this is also GS (but is not a manifold). Right: this is not GS: some geodesic curves are not smooth enough.
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Theorem 2.1. Let γ̂rn be the estimator introduced in Definition 2.1. Assume that there exists
a sequence ρn

a.s.→ 0 such that ρn ≥ dh(Xn, M) (e.a.s), and let (rn) be a sequence such that
rn > 2ρn and ρn/rn

a.s.→ 0. Then

max
i,j

||γ̂rn(Xi, Xj )| − |γXi→Xj
|| = O

(
max

(
rn,

ρ2
n

r2
n

))
e.a.s. (2.1)

Assuming that rn > 2ρn ensures the existence of |γ̂rn(Xi, Xj )| for all i and j . The first part
of the proof will clearly illustrate this fact (see Section 3.1).

We can then assume that the sequence rn = dh(Xn, M)2/3 is an optimal choice. However,
even though it is known that dh(Xn, M)

a.s.→ 0 (see [4]), the rate of this convergence is unknown
in general. Thus, in order to obtain a convergence rate for our estimator, we need to make extra
assumptions on the set M and the probability distribution PX.

Definition 2.3. Let δ > 0. A probability measure PX supported on M ⊂ R
d is said to

be δ-standard with respect to a measure μ if there exists λ > 0 such that PX(B(x, ε)) ≥
δμ(B(x, ε)) for all x ∈ M and ε ∈]0, λ].

We then have the following result.

Corollary 2.1. Let M ⊂ R
d , d ≥ 2, be a d ′-dimensional compact manifold of class C1

satisfying the GS property for some number KM > 0. Let PX be a probability distribution
on M . Assume, for some number δ > 0, that PX is δ-standard with respect to the measure
induced on M by the Lebesgue measure in R

d .
If the sequence (rn) in Definition 2.1 is such that(

A0
ln n

n

)2/3d ′

≤ rn ≤
(

A1
ln n

n

)2/3d ′

,

with A0 > 0 and A1 > 0, then

max
i,j

||γ̂rn(Xi, Xj )| − |γXi→Xj
|| = O

((
ln n

n

)2/3d ′)
e.a.s.

As usual when dealing with estimation problems, the sequence of radii (rn) in the previous
theorem remains abstract. In particular, the dimension d ′ of the support is generally unknown.
However, making extra assumptions on the support M and the density of the distribution, we
can accurately estimate the sequence of radii, with no need for estimating d ′. This last fact is
indeed worth emphasizing, since knowledge of the geodesic distance is known to be useful for
a good estimation of the dimension of a manifold (see, for example, [6]).

Let Ln = maxi (minj �=i ‖Xi − Xj‖) and let θn be the longest edge of the minimal spanning
tree of the sample. Up to a rescaling of the data, we can suppose that maxi (maxj ||Xi −Xj ||) ≤
1. Then we have Ln = maxi (minj �=i ‖Xi − Xj‖) ≤ 1 and θn ≤ 1; hence, L

2/3
n ≥ Ln and

θ
2/3
n ≥ θn.

Choosing a sequence of radii satisfying rn ≥ θn ensures the existence of the estimator
|γ̂rn(Xi, Xj )|. Conjecturing that the results of [14] can be generalized to the case of data drawn

on a smooth manifold with a density close to the uniform one leads to the choice of rn = c.θ
2/3
n

with c ≥ 1. If the conjecture is correct, this would guarantee the existence of the estimator
and provide optimal convergence rates. More practically, in order to prove a theoretical result,
we are led to choosing rn in relation to Ln. This only ensures the existence of our estimator
asymptotically.
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Corollary 2.2. Let M ∈ R
d , d ≥ 2, be a d ′-dimensional compact manifold, d ′ < d of class

C2 with no boundary, and PX be a probability distribution on M with continuous probability
density fX bounded from below on M by a positive constant f0. Then, for any c > 0, setting
rn = c(maxi (minj �=i ‖Xi − Xj‖))2/3 in Definition 2.1, we have

max
i,j

||γ̂rn(Xi, Xj )| − |γXi→Xj
|| = O

((
ln n

n

)2/3d ′)
e.a.s.

The assumptions of this corollary imply those of Theorem 2.1; they allow us to explicitly
build a convenient sequence of radii (rn) only from the sample. To prove Theorem 2.1 we use
a result due to Penrose (see [15]) which applies only in the case when M has no boundary.
However, numerical simulations on C2 sets with a boundary satisfying the GS assumption lead
us to think that the result is also true for such sets.

The question of the choice of the sequence (rn) remains a difficult subject. In our framework,
we propose the following decision rule: first, in the absence of a priori knowledge on the data,
and when the support M can have several arcwise connected components (that is, data classes),
we choose rn of order L

2/3
n . This sequence of radii will converge to 0 and allow us to identify

the different classes in the data with optimal convergence rate (although the existence of the
estimator is only ensured asymptotically). If we know a priori that the support is arcwise
connected, choosing rn = c.θ

2/3
n with c ≥ 1 may be a convenient choice, even if the asymptotic

properties of the estimator are conjecture-based.

2.2. Estimating Fréchet expectations

In this section we assume the set M to be a compact d ′-manifold of class C2. Following
the ideas of Pennec (see [13]), we consider the Fréchet expectations of the random variable X

(which distribution is supported on M), that is,

E
Fr
k (X) = arg minx∈M E(|γx→X|k), k ∈ N

∗, (2.2)

which are generalizations of the expected value for k = 2 and of the median (or depth) for
k = 1. As pointed out in [13], these expectations are not necessarily unique. For example,
if M is a sphere and PX the uniform distribution, then obviously all the points of M realize the
minimum in (2.2) (for any k ≥ 1).

To avoid dealing with such situations, we are going to make the following assumption,
considering that k is fixed:

(A) 
(x) = E(|γx→X|k) admits a unique minimum x∗ ∈ M, 
 is of class C2 in a neigh-
bourhood of x∗, and H
(x∗) is positive definite,

where H
 denotes the hessian matrix of 
 (that is, (H
)i,j = ∂2
/(∂xi, ∂xj )).

Remark 2.1. We must note that 
 is a continuous function on M . Indeed, the triangle and
Minkowski inequalities yield |
(x)1/k − 
(y)1/k| ≤ |γx→y | for any (x, y) ∈ M2. The extra
(local) regularity in assumption(A) is required for the sake of simplicity, allowing us to apply
basic differential calculus results at the optimal point x∗.

The first part of this assumption is very strong, but the second part is not. For example,
when d ′ = 1 and M is homeomorphic to a segment, explicit computations show that (A)
holds for k = 1 if and only if fX(x∗) �= 0. For k = 2, when M is a bounded closed convex
set of dimension d , the geodesic distance on M coincides with the Euclidean distance, the
expectation E(X) lies in M , it minimizes the function 
(x), and assumption (A) is satisfied

https://doi.org/10.1017/jpr.2018.66 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.66


1006 C. AARON AND O. BODART

(with H
 ≡ 2Id ). This leads us to think that, for k = 2, this condition is general enough and
may hold for a wide class of regular submanifolds of R

d .
In this section we study the behavior of the natural estimator of E

Fr
k (X), that is,

Ê
Fr
k,rn

(Xn) = arg minXi∈M

1

n

∑
j

|γ̂rn(Xi, Xj )|k. (2.3)

Theorem 2.2. Assume that M ⊂ R
d , d ≥ 2, is a d ′-dimensional manifold, d ′ < d of class

C2 with no boundary, and that PX is a probability distribution on M with a continuous and
bounded from below probability density fX. Moreover, suppose that assumption (A) holds.
Then, choosing rn = c(maxi (minj ||Xi − Xj ||))2/3 in the definition of γ̂rn , we have

|EFr
k (X) − Ê

Fr
k,rn

(Xn)| = O

((
ln n

n

)min(1/4,1/3d ′))
e.a.s.

3. Proofs of the results

Let us start with a result which is a direct consequence of the regularity of the set consid-
ered here.

Proposition 3.1. If M ⊂ R
d is KM -geodesically smooth then there exist rM > 0 and AM > 0,

depending only on M , such that

‖x − y‖ ≤ rM ⇒ |γx→y | ≤ ‖x − y‖ + AM‖x − y‖2 for all (x, y) ∈ M2.

Proof. Let (x, y) ∈ M2. Consider the parametrization �x→y of the geodesic curve γx→y

as in Definition 2.2. The map
•
� being KM -Lipschitz continuous, for all t0 ∈ [0, |γx→y |], there

exists εt0 : [0, |γx→y |] → R
d such that

•
�(t) = •

�(t0) + KM |t − t0|εt0(t), ‖εt0(t)‖ ≤ 1 for all t ∈ [0, |γx→y |].
Thus, ∫ |γx→y |

0

•
�(t) dt =

∫ |γx→y |

0
(

•
�(t0) + KM |t − t0|εt0(t)) dt;

that is,

y − x = •
�(t0)|γx→y | + KM

∫ |γx→y |

0
|t − t0|εt0(t) dt.

Choosing t0 = 1
2 |γx→y |, and noting that with the chosen parametrization we have ‖ •

�(t0)‖ = 1,
we obtain

‖x − y‖ ≥ |γx→y | − 1
4KM |γx→y |2 for all (x, y) ∈ M2.

Now assuming that ‖x − y‖ ≤ K−1
M , the following alternatives hold:

(i) either |γx→y | ≥ (2 + 2
√

1 − KM‖x − y‖)/KM ,

(ii) or |γx→y | ≤ (2 − 2
√

1 − KM‖x − y‖)/KM .

For ‖x − y‖ small enough, the case (i) is impossible due to Definition 2.2(ii). Therefore, there
exists rM ≤ K−1

M such that, for ‖x −y‖ ≤ rM , the alternative, case (ii), holds. Making a Taylor
expansion of ‖x − y‖ completes the proof. �
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3.1. Proof of Theorem 2.1

Let (i, j) ∈ {1, . . . n}2, i �= j , and let γij be the geodesic curve between Xi and Xj .
Consider a partition {x0, . . . , xK} of γij such that

x0 = Xi, xK = Xj , (3.1)

K =
⌈ |γXi→Xj

|
rn − 2ρn

⌉
, (3.2)

|γxk→xk+1 | = |γXi→Xj
|

K
, (3.3)

so that

|γxk→xk+1 | = rn − 2ρn, k = 0, . . . , K − 2, |γxK−1→xK
| < rn − 2ρn. (3.4)

We have

|γXi→Xj
| =

K−1∑
k=0

|γxk→xk+1 | ≥
K−1∑
k=0

‖xk − xk+1‖. (3.5)

From the definition of ρn, for any k ∈ {0, . . . , K}, there exists ik ∈ {1, . . . , n} such that
‖Xik − xk‖ ≤ ρn. For the sake of simplicity, denote

Yk = Xik , εk = Yk − xk, Uk = xk − xk+1

‖xk − xk+1‖ .

Recall that
‖εk‖ ≤ ρn, k = 0, . . . , K − 1. (3.6)

For k ∈ {0, . . . , K − 1},
‖Yk − Yk+1‖2 = ‖εk + (xk − xk+1) − εk+1‖2

= ‖xk − xk+1‖2 + 2〈xk − xk+1 | εk − εk+1〉 + ‖εk − εk+1‖2

= ‖xk − xk+1‖2 ×
(

1 + 2
〈Uk | εk − εk+1〉

‖xk − xk+1‖ + ‖εk − εk+1‖2

‖xk − xk+1‖2

)
;

that is, taking the square root of this equality, and noting that
√

1 + t ≤ 1 + 1
2 t, t ≥ −1,

‖Yk − Yk+1‖ ≤ ‖xk − xk+1‖ ×
(

1 + 〈Uk | εk − εk+1〉
‖xk − xk+1‖ + 1

2

‖εk − εk+1‖2

‖xk − xk+1‖2

)

≤ ‖xk − xk+1‖ + 〈Uk | εk − εk+1〉 + 1

2

‖εk − εk+1‖2

‖xk − xk+1‖ .

In view of (3.1)–(3.4), the length of the last segment, that is, ‖xK−1 − xK‖, is not bounded
from below, hence, we shall treat the cases k < K − 1 and k = K − 1 separately. From (3.5),
we have

|γXi→Xj
| ≥ ‖xK−1 − xK‖ +

K−2∑
k=0

‖Yk − Yk+1‖ − 1

2
S1 − S2, (3.7)

with

S1 =
K−2∑
k=0

‖εk − εk+1‖2

‖xk − xk+1‖ , S2 =
K−2∑
k=0

〈Uk | εk − εk+1〉. (3.8)
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We first study S1. From (3.4) and Proposition 3.1, we have for k ∈ {0, . . . , K − 2},
rn − 2ρn − AM(rn − 2ρn)

2 ≤ ‖xk − xk+1‖ ≤ rn − 2ρn ≤ rn, (3.9)

with AM > 0 depending only on M .
Then, for n large enough to have un = 2ρn/rn +AM((rn − 2ρn)

2/rn) < 1 and applying the
fact that 1/(1 − u) ≤ 1 + u when u ∈ [0, 1[, we have, for all k ∈ {0, . . . , K − 2},
‖εk − εk+1‖2

‖xk − xk+1‖ ≤ 4ρ2
n

rn − 2ρn − AM(rn − 2ρn)2 ≤ 4ρ2
n

rn

(
1 + 2ρn

rn
+ AM

(rn − 2ρn)
2

rn

)
. (3.10)

Thus,
‖εk − εk+1‖2

‖xk − xk+1‖ ≤ 4ρ2
n

rn
(1 + o(1)).

The definition of ρn implies that rn − 2ρn ∼ rn. Moreover, since the set M is compact and
satisfies the GS assumption, γXi→Xj

is uniformly bounded for all (i, j) ∈ {1, . . . , n}2. Hence,
there exists a constant LM > 0 such that

0 < K ≤ LM

rn
, (3.11)

where K is defined by (3.2), and we have

S1 ≤ LM

(
4ρ2

n

r2
n

+ o

(
ρ2

n

r2
n

))
. (3.12)

Note that the bound in (3.10) is uniform in (i, j); therefore, the same holds for (3.12).
Now, since the set M is KM -geodesically smooth we obtain, reasoning as in the beginning

of the proof of Proposition 3.1,

‖‖xk+1 − xk‖(Uk − (rn − 2ρn))
•
�xk→xk+1(0)‖ ≤ 1

2KM(rn − 2ρn)
2.

Thus, applying Proposition 3.1 for k ∈ {0, . . . , K − 2}, we have Uk = •
�xk→xk+1(0) + Zk

with ‖Zk‖ ≤ (AM + 1
2KM)(rn − 2ρn) uniformly in (i, j). Now, noting that

•
�xk→xk+1(0) =•

�x0→xK
(k(rn − 2ρn)) and due to the Lipshitz continuity of

•
�, we have

‖Uk − Uk+1‖ ≤ (
AM + 3

2KM

)
(rn − 2ρn). (3.13)

We can now write S2 as

S2 =
K−2∑
k=1

〈Uk − Uk−1 | εk〉 + 〈U0 | ε0〉 − 〈UK−2 | εK−1〉;

hence, in view of (3.6), (3.9), (3.11), and (3.13) we have

|S2| ≤ (
LM

(
AM + 3

2KM

) + 2
)
ρn.

Combining this last inequality with (3.7), (3.8), and (3.12), we obtain the existence of explicit
constants BM > 0 and CM > 0 depending only on M such that, for large enough n and for all
(i, j),

|γXi→Xj
| ≥

K−2∑
k=0

‖Yk − Yk+1‖ − BMρn − CM

ρ2
n

r2
n

.
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Thus,

|γXi→Xj
| ≥

K−1∑
k=0

‖Yk − Yk+1‖ − ‖YK−1 − YK‖ − BMρn − CM

ρ2
n

r2
n

.

Recall that, for all k ∈ {0, . . . , K −1}, we have ‖Yk −Yk+1‖ = ‖(xk −xk+1)−(εk −εk+1)‖;
hence, the triangle inequality, (3.4), and (3.6) yield

‖Yk − Yk+1‖ ≤ rn, k ∈ {0, . . . , K − 1}. (3.14)

Applying (3.14) for k = K − 1, we first obtain

|γXi→Xj
| ≥

K−1∑
k=0

‖Yk − Yk+1‖ − rn − BMρn − CM

ρ2
n

r2
n

. (3.15)

From (3.14), the path Y0, . . . , YK belongs to the graph Grn(Xn), so we clearly have

|γ̂rn(Xi, Xj )| ≤
K−1∑
k=0

‖Yk − Yk+1‖;

therefore, since ρn = o(rn) and in view of (3.15), we have, for large enough n,

|γ̂rn(Xi, Xj )| ≤ |γXi→Xj
| + rn + BMρn + CM

ρ2
n

r2
n

. (3.16)

We now prove the following inequality:

|γ̂rn(Xi, Xj )| ≥ |γXi→Xj
| − 2AMLMrn. (3.17)

For the sake of clarity, we omit the superscripts in Definition 2.1 and denote Z0 = Xi, Z1, . . . ,

ZL1 , ZL = Xj the nodes of the graph G
i,j
n realizing the path γ̂rn(Xi, Xj ). Proposition 3.1

yields

|γXi→Xj
| ≤

L−1∑
k=0

|γZk→Zk+1 | ≤
L−1∑
k=0

(‖Zk − Zk+1‖ + AM‖Zk − Zk+1‖2).

Noting, from Definition 2.1, that ‖Zk − Zk+1‖ ≤ rn, we obtain

|γ̂rn(Xi, Xj )| ≥ |γXi→Xj
| − AMLr2

n. (3.18)

We now obtain a bound for the number of nodes L in the path γ̂rn(Xi, Xj ). Necessarily, by
construction, we have

‖Zk − Zk+1‖ + ‖Zk+1 − Zk+2‖ > rn, k = 0, . . . , L − 2. (3.19)

Indeed, if this was not the case, we would have ‖Zk − Zk+2‖ ≤ rn; hence, the path {Zk, Zk+2}
would be shorter in the graph G

i,j
n than the path {Zk, Zk+1, Zk+2} which is impossible. There-

fore, summing up (3.19) for k ∈ {0, . . . , L − 2}, we obtain

Lr2
n ≤ 2 |γ̂rn(Xi, Xj )| + r2

n;
hence, in view of (3.16), (3.18), and recalling that |γXi→Xj

| is uniformly bounded, we
obtain (3.17).
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This inequality and (3.16) finally imply that

||γ̂rn(Xi, Xj )| − |γXi→Xj
|| ≤ DM max

(
ρ2

n

r2
n

, rn

)
,

where the constant DM > 0 only depends on the manifold M . This yields the estimate (2.1)
and concludes the proof.

3.2. Proof of Corollary 2.1

Reasoning as in [1], since M is of class C1, we can cover M with νn ≤ C n (with C > 0)
deterministic balls of radius εn = (1/n)1/d ′

with centers xi ∈ M, i ∈ {1, . . . , νn}. Let ωd ′
be the volume of the d ′-dimensional unit ball. Recall that PX is δ-standard with respect to the
d ′-dimensional measure. We then classically have, for all a > 0,

PX

(
dh(Xn, M) ≥

(
2a

δωd ′
ln n

n

)1/d ′)

= PX

(
there exists x ∈ M; B

(
x,

(
2a

δωd ′
ln n

n

)1/d ′)
∩ Xn = ∅

)
.

The triangle inequality thus implies

PX

(
dh(Xn, M) ≥

(
2a

δωd ′
ln n

n

)1/d ′)

≤ PX

(
there exists i; B

(
xi,

(
2a

δωd ′
ln n

n

)1/d ′

− εn

)
∩ Xn = ∅

)
.

Since PX is standard, we have, for large enough n, ((2a/δωd ′)(ln n/n))1/d ′
< λ. Thus,

PX

(
dh(Xn, M) ≥

(
2a

δωd ′
ln n

n

)1/d ′)
≤ νn

(
1 − δωd ′

((
2a

δωd ′
ln n

n

)1/d ′

− εn

)d ′)n

.

A Taylor expansion of the right-hand side of the above inequality yields

PX

(
dh(Xn, M) ≥

(
2a

δωd ′
ln n

n

)1/d ′)
≤ Cn1−2a+o(1) for any a > 0.

Applying the Borel–Cantelli lemma, we deduce that, for any a > 1,

dh(Xn, M) ≤
(

2a

δωd ′
ln n

n

)1/d ′

e.a.s.

Eventually, applying Theorem 2.1 completes the proof.

3.3. Proof of Corollary 2.2

Let
tn = max

i

(
min

j
‖Xi − Xj‖

)
.

Applying [15, Theorem 5.1, p. 958], we have

nωd ′ td
′

n

ln n

a.s.→ f −1
0 .
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Therefore, we easily deduce that(
1

2f0 ωd ′
ln n

n

)1/d ′

≤ tn ≤
(

2

f0 ωd ′
ln n

n

)1/d ′

e.a.s.

Since we have rn = (c tn)
2/3, the assumptions of Corollary 2.1 are fulfilled, which allows to

conclude the proof.

3.4. Proof of Theorem 2.2

In view of assumption (A) and (2.3), we introduce the estimators


(x) = 1

n

∑
i

(|γx→Xi
|k),


̂(x) = 1

n

∑
i

(|γ̂rn(x, Xi)|k). (3.20)

First, we prove that there exists a deterministic constant D > 0 such that

max
i

|
̂(Xi) − 
(Xi)| = D

(
ln n

n

)min{2/3d ′,1/2}
e.a.s (3.21)

Indeed, the manifold M being compact, one can apply the Hoeffding inequality and obtain

PX(|
(x) − 
(x)| ≥ εn) ≤ 2 exp

(
−2nε2

n

L2k

)
for all x ∈ M,

where L > 0 is the constant introduced in the proof of Theorem 2.1. Hence,

PX(there exists i ∈ {1, . . . , n}; |
(Xi) − 
(Xi)| ≥ εn) ≤ 2n exp

(
−2nε2

n

L2k

)
.

Setting εn = √
2Lk

√
ln n/n in this last inequality yields

PX

(
max

i
|
(Xi) − 
(Xi)| ≥ εn

)
≤ 2n−3

so that the Borel–Cantelli lemma allows to conclude that

max
i

|
(Xi) − 
(Xi)| = O

(
ln n

n

)1/2

e.a.s. (3.22)

Now, noting that the assumptions of Corollary 2.2 are fulfilled, we have

max
i

|
̂(Xi) − 
(Xi)| = O

(
ln n

n

)2/3d ′

e.a.s.

Combining this with (3.22), we obtain (3.21).
Next, since 
 is continuous on the compact set M , and in view of assumption (A), the gradient

of 
 vanishes at the (unique) minimum point x∗; hence, there exist r0 > 0, c0 > 0, c1 > 0,

and ε0 such that


(x) ≥ 
(x∗) + ε0 for all x ∈ M ∩ Bc, (3.23)

c0‖x − x∗‖2 ≤ 
(x) − 
(x∗) ≤ c1‖x − x∗‖2 for all x ∈ M ∩ B, (3.24)
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where B = B(x∗, r0) is the open ball in R
d of center x∗ and radius r0. The second inequality

holds due to the positiveness of the Hessian matrix H
(x∗).
Now, since the assumptions of Corollary 2.2 are satisfied, there exists C > 0 such that

dh(Xn, M) ≤ C(ln n/n)1/d ′
. Thus, e.a.s., there exists i0 ∈ {1, . . . , n} such that

‖Xi0 − x∗‖ ≤ C

(
ln n

n

)1/d ′

.

For large enough n, we have r0 > C(ln n/n)1/d ′
; hence, in view of (3.24), Xi0 satisfies


(Xi0) ≤ 
(x∗) + c1C
2
(

ln n

n

)2/d ′

,

and from (3.21),


̂(Xi0) ≤ 
(x∗) + c1C
2
(

ln n

n

)2/d ′

+ D

(
ln n

n

)2α

,

with

α = min

{
1

3d ′ ,
1

4

}
;

that is, for large enough n, there exists i0 ∈ {1, . . . , n} such that


̂(Xi0) ≤ 
(x∗) + 2D

(
ln n

n

)2α

. (3.25)

Assume now that n is large enough so that ε0 > 4D(ln n/n)2α . For any i ∈ {1, . . . , n} such that

‖Xi − x∗‖ ≥ 2D√
c0

(
ln n

n

)α

,

in view of (3.23) and (3.24), this point satisfies


(Xi) ≥ 
(x∗) + 4D

(
ln n

n

)2α

.

Thus, in view of (3.21), we have

‖Xi − x∗‖ ≥ 2D√
c0

(
ln n

n

)α

⇒ 
̂(Xi) ≥ 
(x∗) + 3D

(
ln n

n

)2α

. (3.26)

Finally, let i∗ ∈ {1, . . . , n} such that Xi∗ realizes the minimum (2.3). From (3.20) and
(3.25), it is clear that


̂(Xi∗) ≤ 
(x∗) + 2D

(
ln n

n

)2α

,

and (3.26) allows us to conclude the proof.
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