Theorems connected with Simson's Line.

By A. G. Burgess, M.A.
[A digest of Mr Burgess' paper is given below.]
Figure 16.
(i) If XYZ is the Simson Line $\mathrm{P}(\mathrm{ABC})$; if PM is perpendicular to XYZ and cuts the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ in $\mathrm{U}, \mathrm{V}, \mathrm{W}$:
then \quad PU.PV. $P W=P A . P B . P C=4 R^{?} . P M$.
(ii) If $\mathrm{PX}_{1}, \mathrm{PY}_{1}, \mathrm{PZ}_{1} ; \mathrm{PX}_{2}, \mathrm{PY}_{2}, \mathrm{PZ}_{2}$ are the two sets of three straight lines which make angle a with the sides of the triangle ABC; so that $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$ are collinear, and $\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}$; and if $X_{1} Y_{1} Z_{1}, X_{2} Y_{2} Z_{2}$, intersect in Q :
Q is shown to lie on PM, and the Simson Line $P(A B C)$ is shown to be the following Simson Lines

$$
\mathbf{P}\left(\mathrm{QX}_{1} \mathrm{X}_{2}\right) \text {, etc. } ; \mathrm{P}\left(\mathbf{A} \mathrm{Y}_{1} \mathrm{Z}_{1}\right) \text {, etc. } ; \mathbf{P}\left(\mathbf{A} \mathbf{Y}_{2} \mathrm{Z}_{2}\right) \text {, etc. }
$$

(iii) When $a=45^{\circ}$,
M is the mid-point of $P Q$; and if O is the orthocentre of $A B C$, $O Q$ is therefore parallel to XYZ (since XYZ bisects OP). The locus of \mathbf{Q}, as \mathbf{P} moves on the circle, is given by the equation

$$
\rho=2 \mathrm{R}[\cos \mathrm{~A} \cos \theta-\sin \theta \sin \{2 \theta-(\mathrm{B}-\mathrm{C})\}]
$$

with reference to O as pole and $O A$ as initial line. The curve has three loops of different sizes and can easily be traced from the fact that $O Q$ is at right angles to $P Q$.

If, in particular, $\triangle B C$ is equilateral (so that O is the circumcentre), the locus of Q is given by $\rho=\operatorname{Rcos} 3 \theta$, a hypotrochoid with three loops each of which is in area one-twelfth of the circle.

Figure 17.
If $\mathrm{PX}_{1}, \mathrm{PY}_{1}, \mathrm{PZ}_{1} ; \mathrm{PX}_{2}, \mathrm{PY}_{2}, \mathrm{PZ}_{2}$ makeangle a_{1} with thesides of ABC ; and $\mathrm{PX}_{3}, \mathrm{PY}_{3}, \mathrm{PZ}_{3} ; \mathrm{PX}_{4}, \mathrm{PY}_{4}, \mathbf{P Z}$. if Q_{1}, Q_{2} are the two corresponding positions of Q and if the four lines $X_{1} Y_{1} Z_{1}$, etc., intersect one another besides in $T_{1}, T_{2}, T_{3}, T_{4}$ and intersect the Simson Line $P(A B C)$ in $L_{1}, I_{2}, L_{3}, L_{4}$:
(i) $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ lie on a circle which has P as centre and cuts orthogonally the circles $T_{1} Q_{1} Q_{3}, T_{2} Q_{1} Q_{2}, T_{3} Q_{1} Q_{2}, T_{4} Q_{1} Q_{2}$;
(ii) $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}$ are the mid-points of $\mathrm{T}_{1} \mathrm{~T}_{3}, \mathrm{~T}_{2} \mathrm{~T}_{4}, \mathrm{~T}_{3} \mathrm{~T}_{4}, \mathrm{~T}_{2} \mathrm{~T}_{3}$; and $\mathrm{T}_{1} \mathrm{~T}_{2}, \mathrm{~T}_{3} \mathrm{~T}_{4}$ are parallel to XYZ and equidistant from it ;
(iii) the Simson Line $\mathrm{P}(\mathrm{ABC})$ is also the following 34 Simson Lines:-
$\mathrm{P}\left(\mathrm{AY} \mathrm{Y}_{1} \mathrm{Z}_{1}\right)$, etc.; $\mathrm{P}\left(\mathrm{BZ}_{1} \mathrm{X}_{1}\right)$, etc. ; $\mathrm{P}\left(\mathrm{CX}_{1} \mathrm{Y}_{1}\right)$, etc. ;
$P\left(Q_{1} X_{1} X_{2}\right), P\left(Q_{2} X_{3} X_{4}\right)$, etc., etc. ; $P\left(Q_{1} T_{1} T_{4}\right), P\left(Q_{1} T_{2} T_{3}\right)$,
$\mathrm{P}\left(\mathrm{Q}_{2} \mathrm{~T}_{1} \mathrm{~T}_{3}\right), \mathrm{P}\left(\mathrm{Q}_{2} \mathrm{~T}_{2} \mathrm{~T}_{4}\right) ; \mathrm{P}\left(\mathrm{T}_{1} \mathrm{X}_{1} \mathrm{X}_{3}\right), \mathrm{P}\left(\mathrm{T}_{2} \mathrm{X}_{2} \mathrm{X}_{4}\right), \mathrm{P}\left(\mathrm{T}_{3} \mathrm{X}_{1} \mathrm{X}_{4}\right)$,
$P\left(T_{1} X_{2} X_{2}\right)$, etc., etc.
If $A_{1}, A_{2}, A_{3}, A_{4}$ be four concyclic points; O_{1}, \ldots, O_{4} the orthocentres of the four triangles formed by them :
the quadrilaterals $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{2} \mathrm{~A}_{4}, \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$ are equal in all respects, and if C, F be their circumcentres, the four Simson Lines of $\mathbf{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ are concurrent at the mid-point P of CF , which is also the mid-point of $\mathrm{A}_{1} \mathrm{O}_{1}, \ldots, \mathrm{~A}_{4} \mathrm{O}_{4}$.

Figure 18.

If A_{1}, \ldots, A_{5} are points on a circle whose centre is $C ; O_{1}, \ldots, O_{5}$ the orthocentres of the five triangles formed by sets of three consecutive vertices of the pentagon $A_{1} A_{2} A_{3} A_{4} A_{5} ; Q_{1}, \ldots, Q_{5}$ the orthocentres of the five triangles formed each by one side and the opposite vertex ; if $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{5}$, are the mid-points of the sides, and G_{1}, \ldots, G_{5} the mid-points of the diagonals; if F_{1}, \ldots, F_{s} are the circumcentres of the five cyclic quadrilaterals (see above) formed by orthocentres of triangles whose vertices are chosen from $\mathbf{A}_{1}, \ldots, \mathbf{A}_{5}$; and $\mathrm{P}_{1}, \ldots, \mathrm{P}_{5}$ are the mid-points of $\mathrm{CF}_{1}, \ldots, \mathrm{CF}_{5}$:

It is clear that the pentagon $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}$ has its sides parallel to and half the length of the sides of the original pentagon; and if D is the circumcentre of this cyclic pentagon, and S the point of trisection such that $C S=2 S D$, the five straight lines $A_{1} P_{1}, \ldots, A_{5} P_{5}$ are concurrent at S which is a point of trisection of each, as also of the other ten lines $\mathrm{O}_{1} \mathrm{~B}_{1}, \ldots, \mathrm{O}_{5} \mathrm{~B}_{5}, \mathrm{Q}_{1} \mathrm{G}_{1}, \ldots, \mathrm{Q}_{5} \mathrm{G}_{5} ; \mathrm{S}$ being the centre of homology of the two similar and similarly-situated pentagons.

Again the pentagon $\mathrm{F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{3} \mathrm{~F}_{4} \mathrm{~F}_{5}$ is equal in all respects to $A_{1} A_{2} A_{3} A_{4} A_{5}$ and similarly situated to it ; and if E be its circumcentre, D bisects $C E$ and is the centre of homology of $A_{1} A_{2} A_{3} A_{4} A_{5}$, $\mathrm{F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4} \mathrm{~F}_{5}$.

The theory can be extended according to the following table:-

Number of given points A_{1}, A_{2}, \ldots.	Specification of polygon.	Ratio of linear dimensions to original polygon.	Circumcentre denoted by	Centre of homology with original polygon.
4	$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$	1	F	P
5	$\begin{aligned} & F_{2} F_{2} F_{3} F_{4} F_{5} \\ & P_{1} P_{2} P_{3} P_{4} P_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~S} \end{aligned}$
6	$\begin{aligned} & E_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4} \mathrm{E}_{6} \mathrm{E}_{6} \\ & \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \\ & \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \mathrm{~S}_{5} \mathrm{~S}_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{L} \\ & \mathbf{M} \end{aligned}$
7	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{8} \mathrm{H}_{7} \\ & \mathrm{~K}_{1} \ldots \ldots \ldots \ldots \ldots \mathrm{~K}_{7} \\ & \mathrm{~L}_{1} \ldots \ldots \ldots \ldots \ldots \mathrm{~L}_{7} \ldots \ldots \ldots . \mathrm{M}_{7} \\ & \mathrm{M}_{1} \ldots \ldots \ldots \ldots \ldots \end{aligned}$	$\begin{gathered} 1 \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{4} \\ \text { etc. } \end{gathered}$	etc.	etc.

