VOLUME 111 SUPPLEMENT 1995

Parasitology

Supplement to Parasitology 1995

Ecology of wildlife host-parasite interactions EDITED BY B. T. GRENFELL

CO-ORDINATING EDITOR L. H. CHAPPELL

567

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011–4211. All orders must be accompanied by payment. The subscription price (excluding VAT) of volumes 110 and 111, 1995 is £258 (US \$478 in the USA, Canada and Mexico), payable in advance, for ten parts plus supplements; separate parts cost £23 or US \$42 each (plus postage). EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country's rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions (including ASP delivery) are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo 156, Japan. Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to *Parasitology*, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573–4930.

ISBN 0 521 56744 0

Front cover illustration: 'A recently emerged nematode, Parasitodiplogaster obtusinema, and its fig wasp host, Pegoscapus hoffmeyeri.' Photograph by Edward Allen Herre.

© Cambridge University Press 1995

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in Great Britain by the University Press, Cambridge

Parasitology

Volume 111 Supplement 1995

Ecology of wildlife host-parasite interactions

EDITED BY B. T. GRENFELL

CO-ORDINATING EDITOR L. H. CHAPPELL

Contents

List of contributions

Introduction: Ecological impact of parasitism on wildlife host	
populations	S3
Introduction	S3
Impact of parasitism on natural host	
populations	S3
Evidence for the impact of parasitism on	
host dynamics	S5
Prospectus for this special issue	S9
Acknowledgements	S 9
References	S9

S1

Evolutionary pressures in the spread and persistence of infectious agents in

vertebrate populations	S15
Summary	S15
Introduction	S15
The demographic impact of infection	S16
Microparasites	S16
Macroparasites	S19
Measuring the impact of infection	S20
Evolution of virulence	S21
Genetic variation in helminth parasites of	
vertebrates	S25
Discussion	S28
References	S29

Maintenance of a microparasite infecting several host species: rabies

in the Serengeti	S33
Summary	S33
Introduction	S33
Materials and methods	S35
Study areas	S35
Rabies surveillance, diagnosis and virus	
characterization	S35
Rabies serology	S35
Dog demography	S35
Mathematical models of dog rabies	S37
Results and discussion	S38
Reservoir hosts in the Serengeti	S38
Evidence for maintenance in dogs	S38
Evidence for maintenance in wildlife	S38
Sequence of epidemics in dogs and	
wildlife	S39
One host – one virus	S40
Control	S40
Mechanisms of maintenance	S41
Threshold population density – dogs	S41
– wildlife	S41

Atypical rabies infections	S42
Rabies serology	S42
Atypical infections and rabies dynamics	S44
Implications for control	S44
Acknowledgements	S45
References	S45
Persistence and transmission of tick-	
borne viruses: Ixodes ricinus and	
louping-ill virus in red grouse	
populations	S49
Summary	S49
Introduction	S49
Louping-ill system	S50
Host-vector ratios (N_2/N_1)	S51
Seasonal variation in vector and susceptible	
host abundance	S51
Availability of susceptible hosts:	
population sinks	S52
Host-behaviour	S52
Alternative hosts for vector and virus	S53
Host infectious period $(1/\gamma_1)$	S55
Non-viraemic transmission through co-	
feeding	S55
Consumption of vectors	S56
Latency in vertebrates	S56
Tick infectious period $(1/\gamma_2)$	S56
Vertical transmission	S56
Tick survival	S56
Discussion	S56
Acknowledgements	S57
References	S57

Wildlife disease and conservation in Hawaii: Pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected liwi (Vestiaria coccinea) S59 Summary S59 Introduction S59 Materials and methods S60 Capture and care of experimental hosts S60 Diagnosis of malarial infections S60 Experimental infections S61 Necropsy techniques S62 Rechallenge of survivors S62 Data analysis S62 Results S63 Parasitaemia and mortality S63 Food consumption and weight S63 Gross and microscopic pathology S64 Discussion S65

Contents

Pathogenicity	S65
Coevolution and conservation	S67
Acknowledgements	S68
References	S68
Models of intermediate complexity in	

models of intermediate complexity in	
insect-pathogen interactions:	
population dynamics of the	
microsporidian pathogen, Nosema	
pyrausta, of the European corn	
borer, Ostrinia nubilalis	S71
Summary	S71
Introduction	S71
Age structure and seasonality	S72
Ostrinia and Nosema natural history	S73
Existing tactical models	S74
A new model of intermediate complexity	S75
Model structure	S75
Parameter estimates	S78
Results: within-season dynamics	S79
Results: long-term dynamics	S82
Discussion	S85
Acknowledgements	S87
References	S87

Evolutionary ecology of vertically transmitted parasites: transovarial transmission of a microsporidian sex ratio distorter in *Gammarus*

Tatio distorter in Gummurus	
duebeni	S91
Summary	S91
Introduction	S91
General introduction	S91
General review	S92
Strategies involving manipulation of host	
fitness	S92
Cytoplasmic incompatibility (CI)	S93
Parthenogenesis	S93
Sex ratio distortion	S93
Case studies: feminization	S95
Mechanisms of transovarial transmission	S97
Materials and methods	S99
Laboratory investigations	S99
Models	S99
Distribution independent of host	
cell lineage	S99
Lineage-dependent distribution:	
unbiased segregation to daughter cells	S99
Results	S100
Transmission efficiency to eggs	S101
Parasite growth rate	S101
Parasite distribution within embryos	S101
Frequency of uninfected cells	S101
Distribution independent of host cell	
lineage	S102
Distribution lineage dependent:	
unbiased segregation between daughter	
cells	S102
Discussion	S103

Acknowledgements	S105
References	S105
Patterns of macroparasite abundance	
and aggregation in wildlife	
populations: a quantitative review	S111
Summary	S111
Introduction	S111
Methods	S112
Characterization of parasite data	S112
Statistical analysis of parasite burdens	S112
Mean parasite burden	S112
Prevalence-mean analysis	S112
Variance/mean analysis	S113
Tree-based statistical models	S113
The database	S114
Ecological and physiological processes	0444
involved in infection	S114
Results	S117
Overall comparative patterns	S117
Mean parasite burden	S117
Prevalence of infection and mean	S117
parasite burden Dispersion patterns of parasites between	5117
hosts	S117
The variance/mean relationship for	5117
parasite burden	S118
Estimates of the negative binomial	0110
parameter, k	S118
Patterns of abundance and aggregation	
associated with specific host-parasite	
systems	S119
Patterns in log mean parasite burden	S119
Tree-based model of log mean parasite	
burden	S120
Patterns in aggregation	S121
Discussion and conclusions	S121
Patterns of abundance and aggregation	S122
Acknowledgements	S122
References	S122
Appendix	S122
Modelling patterns of parasite	
aggregation in natural populations:	
trichostrongylid nematode-ruminan	t
interactions as a case study	S135
Summary	S135
Introduction	S135
Modelling parasite aggregation	S135
Ecological consequences of parasite	

Modelling parasite aggregation	S135
Ecological consequences of parasite	
aggregation	S135
Causes of parasite aggregation	S136
Interpreting observed aggregation	
patterns	S136
Data sets and models	S137
Epidemiological data	S137
Experimental infections	S137
Naturally-regulated hosts: St. Kilda	
parasite counts	S137

iv

Contents

The model	S137
Results and discussion	S139
Experimental infections	S139
Mean patterns of parasitism	S139
Patterns of variability in worm counts	S140
Egg count variability	S141
Relationship between worm and egg	
counts	S142
Field infections	S143
Model interpretation of field patterns	S144
Conclusion	S146
Acknowledgements	S147
Appendix	S147
Model definition	S147
Model equations	S147
Moments	S148
Asymptotic approximations	S150
References	S150

Parasitic disease in amphibian	s: control	
the state of the s	here and a second	C

i arasitie disease in ampinolans. control	
by the regulation of worm burdens	S153
Summary	S153
Introduction	S153
Parasitic disease in Xenopus	S154
The parasites of Xenopus	S155
Pathogenic interactions	S156
Population dynamics	S157
Infection levels	S159
Factors regulating infection levels	S160
Parasite longevity	S160
Ecological factors	S161
Host immunity	S161
Outcome of the host-parasite interactions	S162
Parasitic disease in Scaphiopus	S162
The parasites of Scaphiopus	S162
Pathogenic interactions	S164

Infection levels	S166
Population dynamics	S167
Factors regulating infection levels	S168
Experimental infections of <i>Rhabdias bufonis</i>	
in Bufo	S170
Pathogenic interactions	S170
Natural infection levels	S172
Dynamics of infection levels	S173
Discussion	S174
Characteristics of amphibians in host-	
parasite interactions	S174
Factors influencing pathogenic interactions	S174
Evolutionary considerations	S175
Acknowledgements	S176
References	S176

Factors affecting the evolution of		
virulence: nematode parasites of fig		
wasps as a case study	S179	
Summary	S179	
Introduction	S179	
Natural history	S180	
Fossil history and phylogenetics: temporal		
patterns of the evolution of virulence	S183	
The relationship of virulence to		
population structure	S184	
Selection among nematodes among fruit	S185	
Selection among individual nematodes		
within the same fruit	S185	
Selection among individual nematodes		
within the same host	S185	
Discussion	S186	
Acknowledgements	S188	
References	S188	
Appendix	S190	