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Abstract
Building cooperative communities is a crucial problem for human societies. Much research suggests that
cooperation is facilitated by knowing who the cooperators and defectors are, and being able to respond
accordingly. As such, anonymous games are thought to hinder cooperation. Here, we show that this con-
clusion is altered dramatically in the presence of conditional cooperation norms and heterogeneous beliefs
about others’ behaviours. Specifically, we show that inaccurate beliefs about other players’ behaviours can
foster and stabilise cooperation via social norms. To show this, we combine a community’s population
dynamics with the behavioural dynamics of their members. In our model, individuals can join a commu-
nity based on beliefs generated by public signals regarding the level of cooperation within, and decide to
cooperate or not depending on these beliefs. These signals may overstate how much cooperation there
really is. We show that even if individuals eventually learn the true level of cooperation, the initially
false beliefs can trigger a dynamic that sustains high levels of cooperation. We also characterise how
the rates of joining, leaving and learning in the community affect the cooperation level and community
size simultaneously. Our results illustrate how false beliefs and social norms can help build cooperative
communities.

Keywords: Community emergence; conditional cooperation; expectations; social norms

Social media summary: In a model, we show how distorting beliefs can get cooperative communities
started and sustain them.

1. Introduction

The ecological and evolutionary success of our species is in large part dependent on our ability to start
and grow cooperative communities where individuals work together for common aims beyond their
immediate kin. Humans are exceptionally good at cooperating with one another, and understanding
the underpinnings of such cooperation has been a primary goal of evolutionary human sciences for
decades. Extensive experimental evidence shows that human cooperation (and any other social behav-
iour) is contingent and is affected by others’ behaviours (Chaudhuri, 2011; Fischbacher, Gächter, &
Fehr, 2001; Frey & Meier, 2004) and social norms about own and others’ behaviours (Bicchieri &
Chavez, 2010; Bicchieri, Dimant, Gächter, & Nosenzo, 2020; Kimbrough & Vostroknutov, 2016).

Social norms can be defined as the rules of the game in social interactions (Bicchieri, 2006). Many
norms prescribe what norms holders should do given what others do or what situations individuals
encounter. The content of these norms evolves culturally (Gelfand & Jackson, 2016), yet humans have
an innate predisposition for internalising culturally acquired norms (Gintis, 2003). Such social norms
can instigate group-beneficial behaviours (Akçay & Van Cleve, 2021; Gavrilets & Richerson, 2017;
Gintis, 2003) or coordinate social behaviours for mutual gain (Gintis, 2010; Morsky & Akçay, 2019).
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Importantly, adopting a social norm does not mean that individuals blindly follow them: rather, social
norms frequently act to shape preferences or default behaviours of individuals, who still make decisions
that are responsive to their payoffs or other signals and beliefs. For example, an important social norm
is conditional cooperation (Bicchieri, 2010; Bicchieri, Dimant, & Sonderegger, 2020b), wherein norm
holders will cooperate if they believe that others are cooperating. This kind of conditional behaviour
can be generated by individuals having ‘relational utilities’, i.e. utility of non-material ‘goods’ arising
from social interactions such as the enjoyment gained by watching a movie with friends (Traxler &
Spichtig, 2011). Relational utility earned from cooperating can make cooperation more rewarding (or non-
cooperation more aversive) if individuals know or expect others to cooperate. If the proportion of such
norm holders is high, then this reciprocity norm can sustain cooperation. Such conditionally cooperative
preferences can account for the emergence of cooperative clusters in social networks even if partner choice
for cooperators is weak (Ehlert, Kindschi, Algesheimer, & Rauhut, 2020).

Yet, building a cooperative community through conditionally cooperative norms faces an obvious
problem: if others are not cooperating, conditional cooperators will not either. Furthermore, a robust
finding from experimental games is that even if one starts out with substantial amounts of cooperation,
the presence of selfish individuals or imperfectly conditional cooperators almost invariably unravels
cooperation over time (Fischbacher & Gachter, 2010; Fischbacher et al., 2001; Thöni & Volk, 2018).
Conditional cooperation norms therefore cannot by themselves get cooperation off the ground, and
are subject to erosion even when starting from high levels of cooperation.

A related problem is that if a community is not cooperative, there will be little incentive to join it
and strong incentives to leave it, such that communities that cannot maintain cooperation might cease
to exist altogether. Thus, concurrently with the problem of maintaining cooperation among their
members, communities also face the problem of recruiting and retaining members.

Human societies had to solve these problems over and over again in history to build and maintain
cooperative communities. They are still extremely salient in contemporary life, including in online
communities, which represent a rich substrate to study how cooperative communities emerge and
are maintained. One example that has been studied in some detail is file-sharing software that relies
on users’ willingness to provide uploads of files for others. These communities have instituted a variety
of rules to mitigate free-riding (downloading data without uploading; Harris, 2018), and previous
models have explored the roles of reputation (Lai, Feldman, Stoica, & Chuang, 2003), micropayments
(Golle, Leyton-Brown, Mironov, & Lillibridge, 2001) and reducing congestion (Krishnan, Smith,
Tang, & Telang, 2004) on facilitating cooperation.

Strahilevitz (2003) termed technology that exploits social mechanisms to induce cooperation
amongst its users ‘charismatic code’. Charismatic code can work by distorting participants’ normative
expectations by masking cheating, exaggerating levels of cooperation and promoting collective iden-
tity and prosocial norms. For example, the file-sharing software Morpheus would depict the total
number of users and files being shared, which suggested a very high share rate per person
(Strahilevitz, 2003). However, this hid the underlying heterogeneity in sharing where the majority
of users shared relatively little. This omitted truth portrayed a cooperative community in which
everyone gave back what they took. This in turn fuelled internal norms of reciprocity and conditional
cooperation, which have been found among file sharers (Cenite, Wanzheng Wang, Peiwen, & Shimin
Chan, 2009), thereby stimulating more cooperation than there otherwise would be. Charismatic code
therefore provides an explanation for why there can be substantial trust and cooperation in anonym-
ous groups of file sharers.

This phenomenon can be seen in other contexts as well (Strahilevitz, 2003). An example is binge
drinking norms (Lewis & Neighbors, 2006; Perkins, 1997), which can be fostered by conspicuous sig-
nalling and conditional following of the norm (here the norm is to binge drink). Students often over-
estimate the level of binge drinking and thus drink more than they otherwise would. Those who are
heavily intoxicated are likely to be more visible than those not, which contributes to this. Thus, these
beliefs can become self-fulfilling prophecies. Understanding this, campus programmes that publicise
the lower than expected levels of binge drinking have lowered its prevalence (Haines, 1996). In a
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similar way, publicising compliance can increase compliance via conditional cooperation with respect
to tax compliance (Coleman, 1996; Traxler, 2010). The interplay between expectations and norms also
has implications for vaccination decision making (Xia & Liu, 2014). These examples suggest that dis-
torted or hidden information can affect the success of cooperation and other social norms in commu-
nities through changing individuals’ beliefs. Yet the joint dynamics of beliefs, behaviours and
community formation in the face of distorted information remain relatively unexplored.

Our goal in this paper is to understand how distortions in the signals individuals are getting about
others’ behaviours can affect the dynamics of conditional cooperation norms. Specifically, we are
interested in when such distortions can get cooperative communities started and maintain them.
To explore these questions, we build a mathematical model of the growth and decline of a community
as individuals join and leave it, as well as the joint dynamics of individual behaviour and beliefs as a
consequence of (potentially distorted) signals and individual learning.

We model individuals within the community that earn material utility from a public goods game,
as well as experiencing ‘relational utility’ which represents internalised conditional cooperation norms
(Akçay & Van Cleve, 2021; Gavrilets & Richerson, 2017; Traxler & Spichtig, 2011). Specifically, we
assume that individuals experience utility (‘warm glow’) or disutility (‘guilt’) based on their own
cooperation level relative to their perception of the mean cooperation level in the community.
Depending on the strength of this relational utility, each individual has a threshold perceived level
of cooperation at which they too cooperate. Individuals within the community can learn the true
level of cooperation through social learning (Rendell et al., 2010), which is ubiquitous in human
behaviour and a salient factor when cooperative environments foster further cooperation (Ehlert
et al., 2020). Those outside of the community also have a perception of the level of cooperation within
the community, which may be a high naive amount or a low amount (for those who were previous
members but now discouraged). Outsiders that view the community positively may then enter it
with that belief determining the level of cooperation they will engage in, while insiders who have
learned the true level of cooperation can become discouraged and leave the community. We show
that the relative rates of entering communities, learning the true level of cooperation and leaving deter-
mine whether a cooperative community can exist and how much cooperation can be sustained.

2. Model

2.1. Basic conditional cooperation model

We begin with a model of a public goods game with a norm of conditional cooperation from Traxler
and Spichtig (2011), in which individuals cooperate (donate to a public good) if a sufficient proportion
of the community cooperates. Individuals have a choice of whether to donate to a public good or not,
and they make it by maximising their utility, which is a combination of components both material, the
public good and cost to donate, and relational, the ‘warm glow’ from obeying or guilt from disobeying
the norm. In the case of the file-sharing example, material utility is derived from files downloaded
while relational utility comes from the feeling of giving back to the community. Calculating the max-
imum utility leads to thresholds at which individuals will donate. These thresholds will depend upon
the proportion of others who donate as well as an individual’s own sensitivity to the norm. With the
norm varying within the population, this framework produces a threshold effect akin to the classic
Granovetter–Schelling model, where individuals are assumed to change their behaviour once the
population average behaviour crosses some threshold. Schelling used this framework to study segrega-
tion (Schelling, 1969, 1971). Granovetter and Soong further developed threshold models to understand
the emergence of riots, innovation, rumours, voting, migration, strikes and consumer demand
(Granovetter, 1978; Granovetter & Soong, 1983, 1986, 1988).

In our model, we define F( p) to be the cumulative density function of the norm sensitivity, i.e. F( p)
is the proportion of the population that will cooperate given that proportion p of the community is
cooperating (we use f( p) = F

′
( p) for the probability density function). This function may be derived
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from utility maximisation as in Traxler and Spichtig (2011) (see Supporting Information-1 for details)
or simply assumed. Individuals will change their behaviour relative to the difference between their
normative value and the level of cooperation. Thus, assuming that individuals can observe the true
level of cooperation, the dynamics are determined by the equation

ṗ = F(p) − p, (1)

which is a continuous time version of the Granovetter–Schelling model of threshold behaviour
(Granovetter, 1978; Granovetter & Soong, 1983, 1986, 1988; Schelling, 1969, 1971). This dynamic
can be interpreted on different time scales. With respect to the file-sharing example, learning occurs
for an individual over a period of their life. However, we can also interpret this dynamic as cultural
evolution where this learning dynamic occurs over longer time scales (Henrich & McElreath, 2003).

The dynamics in eqn (1) reach equilibrium when p∗=F(p∗), which can happen at multiple points.
At least one such equilibrium exists and is stable (which for parameters we are concerned with will be
for low cooperation). In some parameter regimes, we can have three equilibria: one stable low cooper-
ation, one unstable intermediate cooperation and one stable high-cooperation equilibrium, relatively
speaking. Figure 1a depicts both the three and one equilibria cases, which we will denote as the coord-
ination dilemma (blue curve) and the cooperation dilemma (red curve), respectively. The coordination
dilemma is thus a bistable system, where the population is stable when either most cooperate or few
do. The cooperation dilemma is stable only at low levels of cooperation. The type of dilemma switches
between these depending on the parameters of the F( p) curve. This model is our base setting.
Although it is framed in terms of cooperation, it applies more generally to conditional adherence
to a behaviour. Below, we show that distorting the beliefs about the behaviour within the community
can alter these equilibria to maintain a stable community with high levels of cooperation.

2.2. Model of community and belief dynamics

Our goal is to ask how unfounded and potentially inaccurate beliefs might affect the social dynamics in
a community. To do that, we extend the model above to include agents who (perhaps mistakenly)
believe that the community is highly cooperative when they enter it. These unfounded beliefs might
be due to optimism bias (McKay & Dennett, 2009; Sharot, 2011), deliberate misrepresentation and
obscuring, or to salience biases (see Discussion for more on this). After joining the community, how-
ever, individuals can learn about the true level of cooperation, and if disillusioned, leave. To represent
these dynamics, we use a compartmental model (as depicted in Figure 1b) with four classes of indi-
viduals: two currently belonging to the community in which the public goods game is played (insi-
ders), and two that do not belong to it (outsiders). Individuals can transition between these classes
as depicted in Figure 1b.

The community recruits new members from outsiders that are susceptible. Specifically, susceptibles
enter the community as new naive members at a rate proportional to their contact rate with commu-
nity members: iSI/K where i . 0 is the inflow rate and K is the total population size. This captures the
intuition that susceptible outsiders will become aware of the community (and joining opportunities)
by meeting community members, or being exposed to them, both of which are more likely the bigger
the community is. Insiders in turn belong to two classes: ‘naive’ and ‘savvy’ (fractions 1− y and y,
respectively). All newly joined individuals are initially naive, and believe that the level of cooperation
in the community is q̂, regardless of the true level of cooperation. Thus, a fraction q = F(q̂) of naive
individuals will cooperate initially.

However, the naivety cannot last forever: we assume that naive insiders learn the true level of
cooperation from their own interactions or observations of others. When this happens, naive indivi-
duals turn into savvy individuals. Depending on what the true level of cooperation is, savvy individuals
might cooperate less than naive ones. We assume that the rate at which naive individuals learn is pro-
portional to how different the naive beliefs are from reality. In particular, we assume that naive insiders
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become savvy at per capita rate ℓ(q̂− �p) where ℓ is the parameter that modulates learning speed,
�p = yp+ (1− y)q is the mean (actual) level of cooperation among insiders, p is the frequency of
cooperation among savvy insiders and y is the proportion of insiders that are savvy. This equation
captures the intuition that big differences between expectations of naive individuals and reality will
be apparent faster than small differences. Note that p and y (and therefore �p) are state variables
that depend endogenously on the community dynamics.

Once they become savvy, individuals might become disillusioned and leave the community. We
assume that leaving occurs at a rate proportional to the difference between their expectations and real-
ity, v(q̂− �p), where ω is an outflow rate parameter. This again captures the intuition that a bigger gap
between initial expectations and reality would create stronger disillusionment and a more powerful
motivation to leave the community. Note that we assume that naive beliefs are higher than the true
level of cooperation, as our main concern is to evaluate if rosy beliefs might bootstrap cooperation.
In the opposite case where naive beliefs are lower than the true level, the maintenance of cooperation
would be more difficult, although as savvy individuals (being pleasantly surprised) would actually
increase their cooperation level and never leave, the influx of naively pessimistic newcomers could
drive down cooperation.

Figure 1. (a) The frequency of cooperation given that a proportion p are cooperating for two different distributions of norm sen-
sitivity. Here, F( p) is the cumulative distribution function of a normal distribution with means μ = 0.5 and 0.7 for the coordination
(blue curve) and cooperation (red curve) dilemmas, respectively; the variance is σ2 = 0.04 for both. For the coordination dilemma,
we have a bistable system with stable states of high cooperation and low cooperation. For the cooperation dilemma, we have a sole
stable fixed point with low cooperation. Note here that there is no deception or misinformation; players know the true level of
cooperation. (b) Diagram of the four-compartment model. Susceptible individuals enter the community as new naive insiders.
Learning through community interactions, they may become savvy insiders who know the true level of cooperation. If there is
a discrepancy between the true level of cooperation and the naive expectations, savvy insiders may become discouraged and
leave the community. Discouraged players then can become susceptible (again).
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Savvy players that have left the community become discouraged outsiders and are not directly sus-
ceptible to reentry. However, we assume that their discouragement can wane, and thus discouraged
individuals might become susceptible again at a rate w, reflecting the waning of the memory of
their experience in the community.

The following equations describe the dynamics explained above, using four state variables: the
number of susceptibles (S) and insiders (I ), the proportion of insiders that are savvy ( y) and the fre-
quency of cooperation among savvy insiders ( p) (see Table 1 for a list and description of variables and
symbols; Supporting Information-2.1 gives the full derivation of these equations from the system in
Figure 1b.):

Ṡ = w(K − S− I) − iI
S
K
,

İ = iI
S
K

− v(q̂− �p)yI,

ẏ = (q̂− �p)(1− y)(ℓ− vy) − iy
S
K
,

ṗ = F(�p) − p.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Throughout, we consider both the coordination and cooperation dilemmas. Although our analyt-
ical results apply to any distribution of thresholds F of the shapes given in Figure 1a, for numerical
results and graphing purposes, we assume that F is the cumulative distribution function of a normal
distribution with means μ = 0.5 and 0.7 for the coordination and cooperation dilemmas, respectively,
and, unless otherwise stated, variance σ2 = 0.04. Note that the normal distribution is defined over
(−∞, +∞), whereas we are restricted to the domain [0, 1]. Thus, F(0) > 0 and F(1) < 1 mean that
some fraction of individuals will cooperate even if no others do and some fraction will never cooperate
even if all others do. We also assume for our plots that the naive belief is the high-cooperation solution
to eqn (1) in the coordination dilemma with the above parameters (q̂ ≈ 0.993). We determine the
joint equilibria for insider and outsider populations, their compositions and the cooperation level
amongst the insiders. In doing so we explore the parameters, as summarised in Table 1, to see how
they impact the qualitative behaviour of the model.

Table 1. Summary definitions of parameters and variables

Parameter/variable Description

μ Mean norm sensitivity

σ2 Variance in norm sensitivity

i Inflow rate

ℓ Learning rate

ω Outflow rate

w Resusceptiblity rate

I The number of insiders

K The total number of individuals

S The number of susceptible individuals

y The proportion of insiders that are savvy

p The frequency of cooperation among savvy insiders

q The frequency of cooperation among naive insiders

q̂ The naive insiders’ belief of the frequency of cooperation
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3. Results

3.1. Coordination dilemma

We first consider a coordination dilemma, which is characterised by three equilibria in the basic model
without community dynamics. In the community dynamics model, the high-cooperation equilibrium
is always a stable equilibrium where all players are in the community and are cooperating at the same
high level (see Supporting Information-2.2, Theorem 1).

Whether or not we have more equilibria depends on two ratios: the ratio of outflow to learning
rates, ω/ℓ, and the ratio of the inflow rate to the rate at which insiders become discouraged,

R0(y
∗, p∗) = i

v(q̂− �p∗)y∗
, (3)

evaluated at equilibrium (see Supporting Information-2.2). To take up the latter first, R0 effectively
measures whether the community will grow from zero, analogous to the concept of the basic repro-
duction number in epidemiology. Accordingly, a mixed equilibrium, where some of the population is
in the community and some outside, exists only if R0 . 1. This mixed equilibrium of insiders and
outsiders as functions of R0 is:

S∗= K
R0

, I∗=K
R0 − 1
R0 + i/w

. (4)

If R0 , 1, the only stable equilibrium is one where everyone is an outsider, capturing the intuition
that for the insider population to be positive at equilibrium, its growth rate from zero has to be
positive.

The ratio of outflow to learning rates, ω/ℓ, affects the existence and stability of additional equilibria
through changing the fraction of savvy individuals y and the mean cooperation level �p. At a low ratio
of outflow to learning rates, there may be two equilibria in addition to the high cooperation one: one
stable with low cooperation and another unstable with moderate cooperation. These equilibria both
solve p∗=F(�p∗); in other words, they are obtained when the savvy individuals’ cooperation rate equals
the cumulative distribution of norm sensitivities at the true (averaged between savvy and naive indi-
viduals) cooperation rate (see Supporting Information-2.2 for the stability conditions for these equi-
libria). Both of these equilibria will have a mixture of insiders and outsiders, given by eqn (4). As the
ratio of outflow to learning rates increases, these two solutions converge until they annihilate each
other, leaving only the high-cooperation equilibrium described before. Thus, by decreasing the rate
of learning by naive individuals or increasing the rate at which savvy individuals leave, a low-
cooperation community can shift to become a high-cooperation community (Figure 2).

How this transition happens can be seen by first considering the proportion of savvy insiders at
equilibrium. Provided that both the insider and outsider communities are non-zero at equilibrium,
the equilibrium proportion of savvy insiders is y∗ = 1/(1 + ω/ℓ). The proportion of savvy insiders
will decrease as the ratio of outflow to learning rates increases, since savvy individuals leave faster
than naive individuals become savvy. Because naive individuals cooperate at higher levels than
savvy individuals, this increases the average level of cooperation in the community, in turn inducing
more savvy individuals to cooperate as well. This means that the blue curve F(�p) from Figure 1a is
shifted up, as depicted in Figure 3a. The higher the ratio of outflow to learning rates is, the lower
the fraction of savvy individuals at equilibrium, and the more the curve will be shifted upwards.
For a sufficiently large shift upwards, all but the high equilibrium can be annihilated. Figure 2a
shows that as the ratio of the outflow to learning rate increases, the intermediate equilibrium of ṗ
decreases while the low-cooperation equilibrium increases. These two equilibria meet and annihilate
one another at a bifurcation point, a point where the system’s behaviour qualitatively changes. This
happens when the norm sensitivity curve becomes tangent to the diagonal at the equilibrium
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cooperation level of the savvy insiders, given by p∗=F(�p∗). For outflow to learning rate ratios higher
than this point, the only equilibrium is high cooperation.

Interestingly, the threshold ratio of outflow to learning rate where the low-cooperation equilibrium
disappears decreases as the variance in norm sensitivity increases, as Figure 2b shows. This means that
as more individuals become unconditional (or almost unconditional) cooperators and defectors (with
high and low norm sensitivities), the high cooperation-only state becomes easier to reach. The intu-
ition behind this is that, as the variance increases, the lowest equilibrium p∗ increases towards the mid-
dle equilibrium, as more individuals will be close to unconditional cooperators. As such, the solid blue
curve in Figure 3a needs to be shifted up less for the low-cooperation equilibrium to be destroyed. This
makes highly cooperative communities globally stable at higher learning (or lower outflow) rates.

Next, we consider the impact of the parameters on the community size, i.e. the total number of
insiders, I∗, and total amount of cooperation across all individuals. The number of insiders increases

Figure 2. (a) The solid black and dashed magenta curves represent the stable and unstable equilibria, respectively, while the dot-
ted line marks a qualitative change in the system. Increasing the ratio of outflow to learning rates annihilates the lower and
medium equilibria leaving only the high-cooperation equilibrium. (b) The bifurcation point at which this shift occurs is decreasing
for increasing variance in the normsensitivity.

Figure 3. The presence of naive individuals shifts the norm sensitivity of savvy individuals, F (solid coloured), up to the dashed
curves. This shift occurs in both the coordination (a) and cooperation (b) dilemmas.
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with respect to increasing inflow and resusceptibility rates. Further, since the equilibrium values y∗ and
p∗ are not affected by these parameters, increasing the number of insiders will increase the total
amount of cooperation in the population. The impact of learning and outflow rates are more compli-
cated. Figure 4a and b shows that for low learning rates, there is no equilibrium with both insiders and
outsiders; the entire population will be in the community. However, sufficiently increasing the learning
rate produces two new equilibria: one unstable and one stable with a relatively lower community size
and total level of cooperation. Figure 4c and d depicts the results for varying outflow rates. For low
outflow rates, there are three equilibria, and for high outflow rates there is only one. Up to the
point where this change occurs, increasing the outflow rate reduces the community size of both smal-
ler community size equilibria. However, it increases the total level of cooperation for the stable equi-
librium and decreases it for the unstable one.

3.2. Cooperation dilemma

We next turn to the cooperation dilemma, which is characterised by a norm sensitivity curve that
mostly lies below the diagonal, like the red curve in Figure 1a. This means that a community of all

Figure 4. (a,b) Increasing the learning rate creates two new equilibria. Here, i = w = 1 and ω = 0.2. (c,d) Increasing the outflow rate
will reduce the community size yet increase the total amount of cooperation. For sufficiently high outflow rate, the low and middle
equilibria are destroyed. Here, i = ℓ = w = 1. The solid black and dashed magenta curves represent the stable and unstable equi-
libria, respectively, while the dotted lines mark qualitative changes in the system.
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savvy individuals would have low cooperation, and even naive individuals that come in with a high
estimate of frequency of cooperation themselves will not cooperate at that high level. Nonetheless,
our results show that depending on the ratio of the outflow to learning rates, a highly cooperative
equilibrium community can be achieved.

The only possible equilibria in the cooperation dilemma are one where everyone is an outsider
(when R0 , 1) and the one where there is a mixture of insiders and outsiders given by eqns (4).
For the latter case, Figure 5a–c shows how the cooperation level within the community changes
with the ratio of the outflow to learning rates, and how this behaviour is modulated qualitatively by
the variance in norm sensitivity. For low variance (Figure 5a), the system is in fact a coordination
dilemma, with the same patterns as in the previous section. For higher variance (Figure 5b), we
have a genuine cooperation dilemma, and for low ratios of outflow to learning rate, there is only a
single equilibrium with low cooperation. The frequency of cooperation increases with the ratio of
the outflow to learning rates, until two more equilibria are created. One of these is high-cooperation
equilibrium and stable, and the other intermediate cooperation and unstable. Further increasing the
ratio of outflow to learning rates causes the latter equilibrium to collide with and annihilate the low-
cooperation equilibrium, leaving us with only one stable, high-cooperation equilibrium. However, this
equilibrium still falls short of the aspirational cooperation rate, q̂, expected by naive individuals,
because even naive individuals are not willing to cooperate at that level. For yet higher variance a single
stable equilibrium exists throughout where the frequency of cooperation increases smoothly with the
ratio of outflow to learning rates (Figure 5c). The aspirational cooperation rate q̂ is not sustainable nor
is there a discrete jump in cooperation. Yet we can increase cooperation at equilibrium as we increase
the outflow rate relative to the learning rate, simply through increasing the proportion of naive
individuals.

Figure 5d summarises the dynamical regimes we can observe. For low variance in norm sensitivity,
we observe a coordination dilemma. The bifurcation point, i.e. the ratio of outflow to learning rates at
which we switch from three equilibria to only one high cooperation one, decreases as the variance
increases, as in Figure 2b. However, at σ2≈ 0.025 for these parameter values, the cooperation dilemma
emerges, which features either one or three equilibria. The difference between the two curves is the
region in which there are three equilibria. Above the higher curve, we have a sole relatively
high-cooperation equilibrium. Below the lower curve, we have a sole relatively low-cooperation one.
For sufficiently large variance, the bifurcation points disappear and the equilibrium level of cooper-
ation simply monotonically increases as the ratio of outflow to learning rates increases. As in the
coordination dilemma, cooperation is boosted by the presence of inaccurate beliefs about the level
of cooperation, shifting the norm sensitivity (reaction curve) up as depicted in Figure 3b.

Figure 6 shows the impact of the learning and outflow rates on the community size and total popu-
lation. Increasing the learning rate generally reduces both the community size and total cooperation, as
it reduces the fraction of naive individuals and the total rate at which individuals leave the community.
Note that three equilibria can be created and then destroyed as the learning rate is increased (Figure 6a
and b). Unsurprisingly, increasing the outflow rate from near zero will initially decrease the commu-
nity size. More surprisingly, however, increasing the outflow rate further, the community size will start
to increase again. This is because, as the fraction of savvy individuals declines mean cooperation levels
go up and the actual leaving rate of savvy individuals (dependent on the difference between naive
expectations and reality) will decline. Increasing the outflow rate further first creates a higher commu-
nity size (and cooperation) and intermediate community size equilibrium, the latter of which again
annihilates the lower community size equilibrium. After this point the community size plateaus,
even though the total amount of cooperation in the population keeps increasing with the outflow rate.

3.3. Community crash and cycling

We next consider the conditions under which the cooperative community crashes in the cooperation
dilemma. A community crash is when the number of insiders goes to zero and does not rebound. This
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occurs if R0 , 1 and f (�p∗) , 1 at this state (see Supporting Information-2.2, Theorem 2). Figure 7
plots the effects of different parameters on the existence of the crashing state. For low enough inflow
rate, the crashing equilibrium is stable (equivalently, R0 , 1; Figure 7a). However, as the inflow rate
increases, a positive community size can also be stable in conjunction with the crashing equilibrium.
Above a threshold inflow rate, the crashing equilibrium disappears and only the equilibrium with posi-
tive community size is stable. This pattern highlights the potential for path dependence (hysteresis) in
the development of a community. For instance, consider a new community with an initially high
inflow rate, e.g. because of its novelty or active recruitment efforts by the founders. If this initial inflow
rate is sufficiently high, then the community can become established, and it can survive (albeit at smal-
ler size) even if the inflow rate is reduced over time to a level that would have been insufficient to get
the community off the ground.

The learning rate has the opposite threshold effect. For the crashing equilibrium to exist, the learn-
ing rate needs to be high enough (Figure 7b), and above this threshold there is again a range of learn-
ing rates where both the crashing and non-crashing equilibria are stable. Thus, the learning rate also

Figure 5. (a) For low variance, σ2, we have a coordination dilemma. (b) For higher variance, increasing ω/ℓ increases the equilib-
rium value of cooperation. For intermediate values, three equilibria are present. (c) With sufficiently high variance, there is only one
equilibrium. (d) For low σ2, the system is a coordination dilemma as in (a), and thus the bifurcation point is decreasing for increas-
ing variance in the norm sensitivity. As we increase σ2, we have two bifurcation points as in (b). For higher variance, we have no
bifurcations and �p∗ is increasing as in (c). For (a)–(c), the solid black and dashed magenta curves represent the stable and unstable
equilibria, respectively, while the dotted lines mark qualitative changes in the system.
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exhibits potential for hysteresis, although in the opposite direction from the inflow rate. If the learning
rate can be initially sufficiently suppressed (e.g. by making interactions within the community opa-
que), the community can emerge and stabilise. Once such a community is established the community
will be robust against an increasing learning rate (up to a point).

Finally, the effect of the outflow rate differs from the inflow and learning rates in that it is non-
monotonic (Figure 7c). For a low outflow rate, the community size is positive but decreasing as the
outflow rate increases until the crashing equilibrium is the only stable equilibrium. This is intuitive:
as individuals leave the community faster, it gets smaller and may not be able to sustain itself. Less
intuitive is the fact that there is another threshold outflow rate above which the crashing equilibrium
is unstable again, and a positive community size is stable. This happens because the high potential
leaving rate of savvy individuals initially leaves the community mostly composed of naive ones and
high cooperation, which reduces the realised leaving rate of savvy individuals. This allows the coopera-
tive community to be stable again. The coordination dilemma exhibits similar threshold behaviour at

Figure 6. (a,b) Increasing the learning rate decreases the size of the community and the total amount of cooperation. Here the
parameters are i = v = w = 1. (c) Increasing the outflow rate will initially reduce the equilibrium number of insiders, after
which it increases and eventually plateaus. (d) Increasing the outflow rate increases the total amount of cooperation in the popu-
lation. For (c) and (d), i = ℓ = w = 1. The solid black and dashed magenta curves represent the stable and unstable equilibria,
respectively, while the dotted lines mark qualitative changes in the system.
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which the community can crash (see Supporting Information-3). The regions of parameter space
where crashing occur are depicted qualitatively in Supporting Information-2.2.

The cooperation dilemma, unlike the coordination case, can also produce an oscillating dynamical
regime. In this case, cooperators may initially establish a high cooperation community, but are unable
to maintain it because of the insufficiently steep norm sensitivity curve, akin to how cooperation unra-
vels in repeated game experiments (Fischbacher et al., 2001). That leads to savvy individuals getting
disillusioned and leaving at higher rates, making community size come down. However, as the com-
munity reverts to mostly naive individuals again, high cooperation can take over again, starting the
cycle anew. Figure 8 depicts an example times series of fluctuations present in our model. In
Figure 8a, we observe two outcomes: community size either stabilises (represented by the green curves)
or fluctuates around that stable value (the black curves). On the other hand, Figure 8b depicts a case
where the community grows and crashes in a relatively short period of time. Between these bursts of
activity, the community size is minuscule. In this case, there is no stable equilibrium. See Figure SI-2 in
Supporting Information-2.2 for the parameter regions that feature these cycles. Such cycling regimes

Figure 7. The parameters i, ℓ and ω determine whether or not the community may crash. (a) Low and high inflow rates always lead
to a crashing or stable community, respectively, while intermediate rates lead to bistability. Here the parameters are ℓ = ω = w = 1.
(b) Slow and fast learning always leads to a stable or crashing community, respectively, while intermediate rates lead to bistability.
Here the parameters are i = 0.1 and ω = w = 1. (c) There is a window in which the community can crash. Outside of this window, it
cannot. Here the parameters are i = 0.2 and ℓ = w = 1. The solid black and dashed magenta curves represent the stable and
unstable equilibria, respectively, while the dotted lines mark qualitative changes in the system.
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resemble the ‘chasing’ dynamics observed in the laboratory (Ahn, Isaac, & Salmon, 2008; Ehrhart,
Keser, et al., 1999; Robbett, 2016), where cooperative groups are undermined by free riders joining
and cooperators subsequently moving away. However, in our model the cycling is more closely related
to ‘bubbles’ caused by initially optimistic beliefs that subsequently crash before coming back up.

4. Discussion

Between the concepts of homo economicus and homo socialis, there is a middle ground where indi-
viduals have evolved preferences and acquired social norms that nonetheless are subject to ‘rational’
optimisation with constraints (Akçay, Van Cleve, Feldman, & Roughgarden, 2009; Alger & Weibull,
2013; Fehr & Fischbacher, 2002; Gintis, 2007, 2014; Morsky & Akçay, 2019). Conditional cooperation
is an example of this phenomenon. Traxler and Spichtig (2011) showed that conditional cooperation
based on norm-dependent relational utilities can sustain cooperation in a community – provided that
cooperation is already at a high level. The classic Granovetter–Schelling model also features this
tipping-point phenomenon (Granovetter, 1978; Schelling, 1969, 1971). Here, we integrate conditional
cooperation norms with a model of community dynamics and show that cooperation can be built from
the ground up by judiciously misrepresenting how much people cooperate. Bootstrapped by rosy pro-
spects of prosociality, prosocial communities can emerge and stabilise, overcoming coordination
dilemmas and boosting cooperation. Interestingly, this emergence can be quite abrupt, happening
in the form of bifurcations that destroy low-cooperation equilibria. These complicated dynamics

Figure 8. We observe cycles for the cooperation
dilemma. (a) The time series for inflow and
resusceptibility rates i = 0.9 and w = 0.09.
Time series for initial conditions within 1.5%
of the stable equilibrium are plotted in green.
Other trajectories that lead to the stable cycles
are plotted in black. (b) depicts the time series
for i = 0.5 and w = 0.009. For both figures, the
learning and outflow rates are ℓ = 1 and ω =
0.85.
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can explain sudden changes in population behaviour and the rise of communities adopting new social
norms.

Our model is analogous to compartmental epidemiological models. Our R0, the ratio of entrance
to exit rates of the community, plays a fundamental role in determining the presence of polymorphic
equilibria of insiders and outsiders as well as whether the community will crash. Social dynamics have
frequently been considered through an epidemiological perspective. Although we discuss our model
within the framework of cooperation, the model applies to any behaviour on which a norm of positive
feedback (i.e. the norm prescribes the behaviour the more it is observed). As such, the model has gen-
eral implications for norm compliance. Examples include the rapid formation of groups, such as
opposition to a government, and how they can be facilitated by social media (McGarty, Thomas,
Lala, Smith, & Bliuc, 2014). A further example is boom–bust cycles in the housing market. Busts
are less likely to happen after a boom if the optimism is justified as in our coordination dilemma
(Burnside, Eichenbaum, & Rebelo, 2016), but repeated booms and bust can happen if optimistic
expectations are not fulfilled, as might happen in our cooperation dilemma case. Examples are also
found in epidemiology such as conformity to social distancing and vaccination norms, which have
been shown to significantly influence the outcomes of epidemiological models (Oraby, Thampi, &
Bauch, 2014; Reluga, 2010; Weitz, Park, Eksin, & Dushoff, 2020).

A key aspect of the model is the heterogeneity in how much individuals care about the conditional
cooperation norms, as given by the distribution of thresholds for cooperating (Figure 1a). Such het-
erogeneity has been shown to both hinder and promote cooperation (Chatman & Flynn, 2001;
Heckathorn, 1993). Our results show that the effects of such heterogeneity on community dynamics
and cooperation level are complicated. On the one hand, heterogeneity can determine whether or not
we observe a coordination or cooperation dilemma: low heterogeneity can result in a coordination
dilemma where there are both high and low cooperation equilibria, and high heterogeneity can result
in a cooperation dilemma with a sole low-cooperation equilibrium (Figure 5a and c). On the other
hand, increasing heterogeneity in the coordination dilemma favours cooperation in that it makes
the high-cooperation equilibrium globally stable for faster learning (or slower outflow rates;
Figure 2b). Yet in cooperation dilemmas, higher heterogeneity moves the high-cooperation equilib-
rium down, and eventually removes the bifurcation that allows high ratio of outflow to learning
rates to switch the community to a high-cooperation equilibrium (Figure 5).

A paradigm in the cooperation literature is that anonymity hinders cooperation and onymity
(where partners’ identities and reputations are known) facilitates it (Milinski, Semmann, &
Krambeck, 2002; Wang et al., 2017). Onymous settings can promote cooperation by direct or indirect
reciprocity (van Apeldoorn & Schram, 2016), partner choice (Smith & Apicella, 2020) or punishment
(Lergetporer, Angerer, Glätzle-Rützler, & Sutter, 2014), all of which can materially incentivise cooper-
ation. Indirect reciprocity (Seinen & Schram, 2006; van Apeldoorn & Schram, 2016) as well as partner
choice through competitive altruism (Sylwester & Roberts, 2013) have been shown to maintain
cooperation in experiments. Our model can be considered as a form of partner choice where indivi-
duals choose to leave insufficiently cooperative communities (and thereby ‘associate’ with outsiders,
akin to ‘walk away’ models; Aktipis, 2004). Yet the mechanism by which such leaving fosters cooper-
ation is quite different in our model. In partner choice models, leaving effectively penalises uncoopera-
tive partners or communities, and selection between individuals or communities promotes
cooperation. Here, we do not have selection between communities (because there is only one commu-
nity). Rather, savvy individuals leaving the community directly increase the amount of cooperation
within the community by skewing the remaining community towards naivety, which makes it easier
for conditional cooperation to overcome the initial cooperation hurdle.

In this context, direct incentive mechanisms such as punishment can influence the dynamics of
conditional cooperators in complex ways. Experimental research has shown that the threat of punish-
ment can increase conditional cooperation (Fehr & Gachter, 2000; Lergetporer et al., 2014). However,
punishment has also been shown to increase cheating, which might be due to defectors compensating
for being punished by attempting to extract more from the public good (Kirchkamp & Mill, 2020).
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Players’ knowledge that cheaters can be punished can impact their behaviours. On the one hand, the
presence of punishment can signal that free-riding is permissible or prevalent (Bowles &
Polania-Reyes, 2012), leading conditional cooperators to expect less cooperation by others and not
cooperate themselves. On the other hand, players may believe that punishment will entice others to
cooperate, which will in turn induce them to cooperate more via conditional cooperation, as has
been shown in children (Lergetporer et al., 2014). Interestingly, in Lergetporer et al. (2014), the chil-
dren believed that they were more likely to be punished than they actually were, which suggests that
more accurate information, perhaps through learning, may reduce cooperation as in our model. In
addition, public punishment even in anonymous settings can increase cooperation by informing
everyone about the norm or making it more salient (Xiao & Houser, 2011) and increasing its relational
utility.

Our model by design does not include downstream incentive consequences of defection through
any kind of reciprocity, punishment or partner choice. Instead we focus on how distorted information
might interact with conditional cooperation norms. Our results show that paradoxically, under a con-
ditional cooperation norm and in a heterogeneous population, anonymity might foster cooperation if
it allows rosy distortions of reality to persist long enough. In an onymous version of our model, players
could more quickly identify others and their behaviours, thereby learning the true level of cooperation.
This points to a potential trade-off between incentive effects of onymity through mechanisms such as
punishment and partner choice and the ability of false beliefs to bootstrap cooperation. An interesting
real-world example of this trade-off comes from another online community: the file-sharing software
Gnutella introduced a feature that allowed users to only share with other sharers. Users could choose
to share only with those who were sharing some threshold number of files or more. While this feature
may incentivise cooperation, it also reveals that the sharing norm is not widespread and may constrain
growth as new users cannot download content. Our model suggests that counter-intuitively, both latter
effects will disfavour a cooperative community. Consistent with this, introducing this feature in
Gnutella did not clearly increase cooperation, and may have decreased it (Strahilevitz, 2003).

Our results have interesting implications for strategies to build cooperative communities (or a com-
munity following any new norm) in a population of conditional norm followers. We found that the
dynamics of community size and cooperation can exhibit hysteresis in important parameters like
learning inflow rates: building a cooperative community might require initially high inflow into the
community or low learning rates within the community, but once a community is established, it
can be maintained at lower inflow or higher learning rates. Likewise, we found that the effect of
the outflow rate is non-monotonic; depending on parameters, the community might exist either
with low or high outflow rates but not intermediate. Making it hard to leave the community maintains
it straightforwardly, but at the expense of increasing the proportion of savvy individuals, which in the
cooperation dilemma reduces overall cooperation levels. On the other hand, making it very easy to
leave weeds out the savvy individuals, making it possible for high cooperation levels to build up in
the community, after which savvy individuals are less likely to leave. Thus, to build a cooperative com-
munity, our model prescribes high recruitment effort, relatively opaque learning opportunities and
easy outs for savvy individuals.

Our model makes several simplifying assumptions. One significant simplification is the assumption
that individuals’ entering and leaving decisions are not correlated with their types. For example, the
community could collectively benefit from barriers to entry of individuals with high cooperation
thresholds (i.e. individuals that are unlikely to cooperate), which would foster cooperation (Guido,
Robbett, & Romaniuc, 2019). One can also consider a bias in outflow from the community, e.g.
owing to individuals having lower material or total utilities. If leaving decisions are purely based on
material utilities, this would bias the group against cooperation. If leaving is based on total (including
relational) utility, the picture becomes more complicated, as those with high thresholds for cooper-
ation can have lower relational utilities. More generally, any bias in joining or leaving that increases
the norm sensitivity of the insider population would probably increase the cooperation and the stabil-
ity of the community. Those that decrease it would probably do the opposite.
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Entering and leaving could also be a function of the state of the community: its size or the level of
cooperation. In the latter case, the community can experience positive feedback that would reinforce
the bistable dynamics. To see this, consider a highly cooperative community under the scenario where
influx increases as the cooperation level increases. The high level of cooperation will induce further
influx of naive individuals, who are more cooperative than savvy ones, thereby increasing overall
cooperation. If, however, cooperation is low, then the influx will be reduced, which in turn further
reduces the level of cooperation owing to there being relatively fewer naive individuals.

Another simplifying assumption is that norm sensitivities are distributed normally (or more gen-
erally, unimodally). Under this assumption, the basic conditional cooperation model (Section 2.1),
may produce one, two or three equilibria. However, one could consider multimodal distributions,
which may create several new equilibria beyond the ones considered here if the different modes of
the distribution contain high enough fractions of individuals (so that they will intersect with the diag-
onal in Figure 1a). Traxler (2010) considers multiple equilibria in a threshold model and how belief
shocks can impact tax compliance. Although we did not explicitly model multiple equilibria, our
model still has something to say about these cases, since the cumulative distribution functions of
such distributions will be locally similar to our scenarios between equilibria. In this case, equilibria
will still be determined where these curves cross the diagonal, and stability will still be determined
by their derivative at those equilibria. As such, we could choose some level of cooperation that the
community will broadcast to outsiders, which may be at a stable equilibrium (as in the coordination
dilemma) or where the belief is nearly at equilibrium (i.e. at a point close to the diagonal as in the
cooperation dilemma of Figure 1a). The scenarios we analyse would thus take place where cooperation
is between this naive belief and the first stable equilibrium below it. Considering this multimodal case
more generally would be an interesting avenue for future research.

Finally, in this model we take the inaccurate initial beliefs of naive individuals as exogenous. One
potential explanation is that inaccurate beliefs might arise from evolved cognitive biases, specifically
the well-established bias towards optimism about the future (McKay & Dennett, 2009; Sharot,
2011). Our results suggest that such optimism bias might have an adaptive function in conjunction
with conditional cooperation norms, as the rosy view of new communities it produces makes it easier
to build and sustain cooperation. Another interesting avenue of research is how such beliefs might
form endogenously. It is not difficult to imagine a software company trying to start an active and
cooperative community to bias information availability to skew newcomers’ beliefs. However, one
might also conjecture that such beliefs emerge endogenously if existing community members recruit
others promising higher cooperation. Salience bias (Han, Hirshleifer, & Walden, 2019) can be a con-
sequence of this as cooperation (e.g. making more files available for download) might be more visible
than shirking, leading outsiders to overestimate the level of cooperation. Furthermore, recent work by
Jackson (2019) shows that in endogenous networks with social interaction, individuals with higher
preference for a behaviour form more links with others, leading to higher visibility of such behaviour.
In our model, this would mean that individuals with high relational utility for the cooperation norm
would be more active in partnering with community members, which would lead to an overestimate of
overall cooperation levels. Note that this effect would occur even for savvy individuals, who would have
to invest actively to get more representative samples of cooperation to avoid such a bias. That can be a
constraint on learning rates in our model. False beliefs can also be due to self-interested misrepresen-
tation by community members, who benefit from an influx of newcomers that cooperate more than
the existing community members. The potential origins of biased information about cooperation
represents an interesting direction for study.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ehs.2021.30.
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