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1. Introduction. It is the purpose of this paper to show that many of 
the enumerative techniques available for counting rooted plane trees may be 
extended to tree-rooted maps, that is, rooted maps in which a spanning tree is 
distinguished as root tree. For example, tree-rooted maps are enumerated by 
partition, and the average number of trees in a rooted map with n edges is 
determined. An enumerative similarity between Hamiltonian rooted maps 
(that is, rooted maps with a distinguished Hamiltonian polygon) and tree-
rooted maps is discussed. A 1-1 correspondence is established between tree-
rooted maps with n edges and Hamiltonian rooted trivalent maps with 2n + 1 
vertices in which the root vertex is exceptional, being divalent, both of which 
are in 1-1 correspondence with non-separable Hamiltonian-rooted triangular-
ized digons with n internal vertices, where both the latter are as defined in (2). 

2. A map is a finite, connected topological graph embedded in the closed 
Euclidean plane. Such a map is rooted if it is the vertex map or if an edge 
(distinguished as the root edge) is assigned a positive sense of description and 
right and left sides are specified for it. The negative end of the root edge is 
called the root vertex, and the face on the left of the root edge is called the 
root face. A rooted map is tree-rooted if a spanning tree in it is distinguished as 
root tree. The spanning tree may or may not contain the root edge. We refer 
to edges not in the spanning tree as being in the co-tree. Two rooted maps are 
equivalent if each can be transformed into the other by a homeomorphism 
of the plane onto itself which preserves incidence and rooting. The term tree 
in this paper will refer exclusively to a plane tree. 

A rooted tree will be called coloured if some of its non-root monovalent vertices 
are distinguished as blue vertices. The remaining non-root vertices will be 
called ordinary. 

3. LEMMA 1. Let M be a tree-rooted map with v = i + 1 vertices and f — j + 1 
faces. Then M determines a pair of rooted trees, one of which, T\, is coloured, 
having i ordinary vertices and 2j blue vertices; the other, T2, having f vertices. 
Conversely such a pair of trees determines a map. 

Proof. Suppose we are given a map M with v vertices and / faces. Let T* 
be the co-tree of the root tree T in M. In M, on each edge of the co-tree dis­
tinguish two interior points as blue vertices. Each pair defines an open interval 
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of their edge which contains no vertex of M. Delete this interval from each 
co-tree edge of M. The result is a plane tree V which is to be rooted by the 
following convention : if the root edge E of M is an edge of 7\ it is retained as 
the root edge of V ; if E belongs to the co-tree, then the segment containing the 
negative end u of E (after the above deletion) is used as root edge of V with 
u retained as negative end. T', thus rooted, is called 7\. T\ has i ordinary 
vertices, namely those vertices of T\ which correspond to the ordinary vertices 
of the map M. The root vertex of T\ corresponds to the root vertex of M and is 
therefore colourless. By the Euler formula, there are j co-tree edges in M; each 
of these adds two blue vertices to 7\ which therefore has 2j blue vertices. 
However, 7\ does not give a complete description of M, since, given 7\, 
generally we do not know what pairs of blue vertices to identify to obtain M. 
Before completing our store of information about M in the form of a pair of 
trees, let us further consider M and its dual M. 

It is well known that if T is the spanning tree of the map M, the correspon­
dents of the co-tree edges relative to T in M form, when taken with the vertices 
of M, a spanning tree in M. Let us denote this tree of M by the symbol f. 

Returning to the problem of obtaining a complete description of M by 
means of a pair of trees, let us root the tree f by the following device. There 
are two cases to consider. 

Case 1. If M is itself a tree, then T = M, and the tree T of M consists of a 
single vertex, which is to be considered here as a rooted tree by definition, 
having a root vertex but no root edge. 

Case 2. If T is a proper submap of M, (i.e. T ^ M), let us use the following 
procedure. 

The edges incident with the root face of M can be listed in order of occurrence 
as they surround the root face beginning with the left side of the root edge and 
proceeding around the face in the direction indicated by the orientation of the 
root edge from negative to positive. Some edges may be incident with the root 
face twice, in which case they are listed twice. Evidently there will be at least 
one edge of the co-tree of T in this list; otherwise M would be itself a tree. 
Let E' be the first edge of the co-tree to occur in the above list. Now let us 
consider the image of the co-tree as a spanning tree f of the dual map M. 
Let us consider the image of the edge Ef as being the root edge of f with the 
vertex of M corresponding to the root face of M being taken as negative end. 
The tree f, thus rooted, is called T2. The pair of trees (Tlt T2) is the pair 
required for the lemma. (Left and right sides are assigned to the above root 
edges consistently with the assignment of left and right to the root edge of M.) 

Conversely given the pair (7\, T2) satisfying the conditions of the lemma, 
one lists the edges of T2 as they occur beginning on the right side of the root 
edge and proceeding away from the root vertex. In such a list every edge will 
occur twice as the entire tree is traversed ; thus the list contains 2/ members. 
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The list of edges is transferred to the 2j blue vertices as they occur about 11, 
beginning on the left side of the root edge and proceeding away from its root 
vertex, the first member of the list being assigned to the first vertex encountered, 
etc. Vertices labelled with the same edge E are then joined by an arc such that 
the obvious planarity constraints are not violated. That this can be done can 
be proved in a straightforward manner. After reducing the blue vertices to the 
status of internal points of their arcs, we have the required map M. 

4. The number of coloured trees. The reader is reminded that the term 
coloured, as used here, refers only to rooted trees. Let us denote by cik the 
number of coloured trees with i ordinary vertices and k blue vertices. Let us 
define C(x, y) by the formal power series, 

(4.1) C(x,y) = f) £***' / . 

Let us divide all coloured trees into three disjoint classes, the vertex tree, 
which consists of a single vertex (the root) and has no edges, the class of trees 
in which the positive end of the root edge is an ordinary vertex, and the class 
of trees in which the positive end of the root edge is blue. 

Examining the first class, recalling that the root vertex is neither ordinary 
nor blue, we find c0o = 1. 

Any tree of the second class may be obtained by joining the roots of two 
coloured trees by a directed edge, then specifying that the positive end of this 
edge be considered ordinary, using some convention such as that the root edges 
(if they exist) in the parent trees follow immediately after the adjoined edge 
when a clockwise sense of direction is taken about their respective root vertices. 
Thus trees in this class are counted by 

(4.2) xC2(x,y). 

Recalling that only monovalent vertices may be blue, we find in a similar 
fashion that trees in the third class are enumerated by 

(4.3) yC(x,y). 

Thus 

(4.4) C(x, y) = 1 + yC(x, y) + xC2(x, y), 

which may be written as 

C(Xy y) = (1 — y)~l + (1 — y)~lxC2(x, y), 

and hence can be expanded by the Lagrange power series method to yield 

(4.5) 
OO CD 

î=0 k=0 
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The first few trees counted by this series are shown in Figure 1. 
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FIGURE 1. Rooted coloured plane trees with i ordinary and k blue vertices: O, ordinary 
vertex; # , blue vertex; X, rooted vertex. 

As a corollary, employing Lemma 1, the number of tree-rooted maps with 
i + 1 vertices and j + 1 faces is 

(4.6) (2* + 2j)l 

By the Euler polyhedron formula, the number of edges in such a map is i + j . 
Therefore the number of tree-rooted maps with n edges is 

(4.7) E 2n\ (2n)l (2^ + 2)! 
=iw! (v - 1)! (» + 2 - v)\ (» + 1 - w)! »! [(» + l)!]2 (w + 2)! * 

It has been shown by Tutte (4, p. 254) that the number of rooted maps with 
n edges is 

2 (2n)!3n 

n\ (n + 2)!' 

Thus we find that the average number of trees per map is 

(4.8) 

(4.9) 
1 (2w + 1)! 
3"w! ( « + l ) ! -
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This average is asymptotically, as n 

(4-10) ~7T ^ Q , 

It is shown in (2) that the number of almost trivalent Hamiltonian rooted 
maps with divalent root vertex and 2n other vertices is also given by the right 
side of (4.7), as is the number of non-separable Hamiltonian-rooted triangu-
larized digons with n internal vertices. A direct proof of the 1-1 correspondence 
between the tree-rooted maps and almost trivalent Hamiltonian rooted maps 
is given later in this paper. 

5. Tree-rooted maps by partition. The degree of a vertex in a map 
is the number of edges incident upon the vertex, loops being counted twice. 
For our purposes the partition of a tree-rooted map is given by the vector 

(5.1) V= (v*;vuvi,...) 

where v* is the degree of the root vertex and vt is the number of non-root 
vertices of valence i. Formally this vector has infinitely many components; 
but only a finite number of them are non-zero. 

Knowing the number of rooted plane trees with a given partition, it is possible 
to deduce the number of tree-rooted maps of a given partition by means of 
Lemma 1. Tutte has enumerated planted plane trees by partition in (5). 
(A planted tree is a tree in which one monovalent vertex is distinguished as 
root vertex.) Using the fact that a rooted plane tree with root degree k is 
equivalent to an ordered set of k planted trees, we use this result to find that 
the number r(k, V) of rooted plane trees with partition 

(k;vi,V2, . . . , i ' m , . . . ) 

is zero unless there is an integer n such that 

n - k =^2 (m — l)vm and n = X) vm, 
77i=l m = l 

in which case the number is 

(5.3) Hn - 1)1 / f[ (vm)\. 

The integer n is, of course, the number of non-root vertices of the tree. This 
result may be obtained as follows. 

Explicitly Tutte shows that r ( l , V) is the coefficient of 

*<">-Stools) ™f 
in the expansion of the function Q in terms of derivatives of an arbitrary, 
infinitely differentiable function/(x) where 

Q=f(x + Q). 
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Since ir obeys the law ir(V + W) = -n(V)-ir(W), and since every rooted 
plane tree with root degree k is equivalent to an ordered set of k planted trees, 
r(ky V) is the coefficient of ir(V) in the expansion of Qk. But, by Lagrange's 
theorem (6, pp. 151, 153) 

which, by arguments analogous to those of Tutte (5, p. 274), produces (5.3) 
when expanded. 

Since all coloured trees with 2j blue vertices and with partition vector 
(vi,vz, . . . ,vm) can be obtained from a rooted plane tree whose ordinary 
vertices have partition vector (vi + 2/, z/2, V&, . . . ,vm, . . .) simply by selecting 
2j of the vi + 2/ monovalent ordinary vertices of the latter, we find that the 
number of coloured rooted plane trees with 2/ blue vertices, root degree v*, 
and in which the ordinary vertices have partition (vu v%, . . . , vm . . .) is 

(5.5) (Wl + 2 j ) v* (i + 2j - 1) ! / [ (Vl + 2j) ! fl ( O ! 

where i is the number of ordinary vertices. This reduces to 

(5.6) v* (* + 2j - 1) ! / 1 (2j) ! fl (»») !| • 

But the total number of vertices in a map with partition (t/*; Vi, V<L, . . . , 
Vm, • • •) IS 

6 = 2 L + ^ m^m J J 

and by the Euler polyhedron formula, the number of faces is 

Also by the Euler polyhedron formula, and the definition of i and j , we have 
i + 2/ — 1 = ^ + / — 2, and (5.6) may be written as 

(5.7) »*(*+ / -2) ! (2j)!n (V»)! 

However there are (2j)\/j\ (j + 1)! = (2.;)!//! (f - 1)! plane trees which 
may be used as the second component of the pair of trees used to determine 
the map. Thus the number of tree-rooted maps of partition 

(v*;vi, v2, • . . , vm, . . .) 

is 

(5.8) v*(e+f- 2)! / ! ( / - ! ) 
m=l J 
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6, Polygons. In this section we shall exhibit a relationship between tree-
rooted and Hamiltonian (polygon) rooted maps, and show how the methods 
of the preceding sections can be applied to the enumeration of certain classes 
of Hamiltonian rooted maps. In particular we discuss the perm, a generaliza­
tion of the &-perm which occurs in (2), and show that perms are equivalent 
to coloured trees. 

A plane polygon / is said to be dissected if one of its residual domains, 
henceforth called its interior, is dissected into simply connected domains by 
a set of disjoint open arcs whose ends are vertices of / ; see Figure 2. Such a 

FIGURE 2 

dissected polygon will be called a perm if one of the interior simply connected 
domains and an incident edge are distinguished as root face and root edge, 
respectively. The root edge may be considered to be oriented such that the 
root face is on the left as one proceeds from negative to positive. The negative 
end of the root edge (necessarily on the bounding polygon J) is distinguished 
as root vertex. A perm is said to be of type in, k) if the polygon / contains 
n edges (vertices) and there are k edges bounding the root face. 

LEMMA 2. The set of (n, k)-perms is in 1-1 correspondence with the set of 
coloured trees with root degree k and n blue vertices. 

Proof. Let D be an (n} &)-perm. Take its dual D and root it by orienting 
the edge corresponding to the root edge of D away from the vertex correspond­
ing to the root face of D. Let n be that vertex of D corresponding to the exterior 
face of D. Interior to every edge Et of D which is incident with the vertex ju, 
distinguish a blue vertex juf and delete the vertex /JL and the arcs (/*, /z<)- The 
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result is a rooted coloured tree as required. Indeed, the resultant plane graph 
D* is connected since the exterior face of D is non-singular; thus ju was not a 
cut vertex. Also if D had m interior edges, it had m + 1 interior faces, so D* 
has n + m + 1 vertices and m + n edges; thus D* is a tree. Since the root face 
of D was internal, the root vertex of D* is colourless. Thus D* is a coloured 
tree with root degree k and n blue vertices. The construction can be reversed. 
Thus the lemma. 

COROLLARY. The number of perms with j external edges and i non-root interior 
faces equals the number of rooted coloured plane trees with i ordinary and j blue 
vertices. 

This result is immediate from the preceding construction. 

LEMMA 3. The set of Hamiltonian rooted maps with n vertices in which the root 
face is incident with k edges is in 1-1 correspondence with the set of ordered pairs 
(Pi, Pi) where P\ is an (n, k)-perm and P? is a dissected, rooted polygon with n 
vertices. 

The reader is reminded that a Hamiltonian rooted map is a rooted map in 
which a Hamiltonian polygon is distinguished as root polygon. 

Proof. Let H be a Hamiltonian rooted map as above. Let J be its distinguished 
Hamiltonian polygon. / separates the map into two residual domains P x and 
P2 , P i being the domain containing the root face of H. In / , there are two 
edges incident with /x, the root vertex of H. One of these, directed away from /j, 
is such that the domain P 2 is on its right. This edge, with this orientation, 
serves to root J KJ P2 , which is P 2 of the lemma. / \J Rx is taken as Pi . The 
construction can be reversed. 

Similar arguments may be used to prove 

LEMMA 4. There is a 1-1 correspondence between the class of dissected rooted 
n-gons with i internal faces and the class of planted coloured trees with i ordinary 
and n — 1 blue vertices. 

These lemmas, with suitable modification, have numerous applications in 
the enumeration of Hamiltonian rooted maps. For example, let hftV denote 
the number of Hamiltonian rooted maps with / faces and v vertices. By the 
construction of Lemma 3, we may consider any such Hamiltonian rooted 
map as an ordered pair (Pi, P2) where P £ is a dissected rooted v-gon. Suppose 
P 2 has m internal faces; then P i is a perm with v external edges and f — m — 1 
non-root interior faces. By Lemma 4, the number of dissected polygons 
suiting the description of P 2 is the same as the number of planted coloured 
trees with m ordinary and v — 1 blue vertices. Let us denote the number of 
planted coloured trees with i ordinary and j blue vertices by the symbol di%i. 
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By the corollary of Lemma 2, the number of perms answering the description 
of P i is Cf-i-mtV where citj is the number of rooted coloured plane trees as 
defined in §4. Thus 

/ - i 

flf,v = / J £/—TO—1.» U/m,v—l' 
TO=1 

However, applying the Cayley-Polya formula (1) to plane trees, we find 
that ditj = Ci-ij, and after substitution and simplification, 

(au i, 1 £ ? (2/ - 2m + y - 2)! (2m + v - 3)! 
( b , i ; hhv v\ {v- l ) ! ^ i ( / - m - l ) ! ( / - m ) ! (m - 1)1 mi' 

Also it is shown in (3) that the number of (n, k) perms in which the non-root 
interior faces are all (r + 2)-gons is 

(6.2) « t w , - r , T - « - * , : , t x = 
k{(x[r + 1] + k - 1)!} = n-k 

x\n\ ' r ' 

and that the corresponding number of rooted dissected polygons with n 
vertices in which every face is an (r + 2)-gon is 

(6.3) ^n^riyr y = ~r-
Therefore the number of Hamiltonian rooted maps in which the root face is a 
&-gon and the other faces are (r + 2)-gons, and in which there are n vertices, 
is (by the construction of Lemma 3) the product of the above numbers, 
namely 

(aA\ k{(x[r+ l] + k - l)l}(y[r+ 1])! n - k n-2 
{° } nlxlyl(n-l)l ' % r ' y ~~ r ' 

(Both x and y must be integers or the result is to be considered zero.) 

7. A direct correspondence. As mentioned in § 4, the number of almost 
trivalent Hamiltonian rooted maps with divalent root vertex and 2n trivalent 
vertices is equal to the number of tree-rooted maps with n edges. The corres­
pondence between the two classes can be demonstrated as follows. The 
Hamiltonian circuit H in a map M of the former class divides the plane into 
two regions. That on the left of the root edge will be called the outside or 
exterior, and the remaining, the inside or interior (H must contain the root 
edge since the root vertex is divalent). 

Each of these regions is dissected into simply connected domains (faces) 
by edges of the map M which terminate in distinct points of H\ see Figure 3. 
With each face / of the interior region associate an internal point of that face 
v(f)' v(fi) a n d v(fj)> i y* J* a r e joined by an edge if the frontiers of/* and fj 
share at least one edge; call these edges red. The red edges are to be open arcs 
drawn such that they do not intersect. The resulting figure is a plane tree T. 
Let E be an external edge of M; that is, E is an arc which crosses the external 
region. Its ends will be incident with the frontiers of the internal faces/* and /,-
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FIGURE 3 

which need not be distinct. We join v(ft) and v(fj) by an edge, not violating 
planarity, and do this for every external edge. The resultant is a tree-rooted 
map M* with n edges, in which the red tree is distinguished. To define the root 
edge of the map, recall that the root edge of the map M is an edge of H, since 
the root vertex is divalent. If the vertex w at its positive end is connected to an 
exterior edge, the correspondent of that in M* is taken as root edge with w as 
negative end (an appropriate orientation modification is made in the conven­
tion if this edge is a loop). If that edge is internal, its correspondent is taken as 
root edge, with the vertex corresponding to the face incident with the root 
vertex of the Hamiltonian map as negative end. The construction can be 
reversed. The tree-rooted map dual to M is obtained by interchanging the 
roles of inside and outside regions. 
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