
The 13th European Nutrition Conference (2019) was held at the Convention Centre, Dublin on 15–18 October 2019

Conference on ‘Malnutrition in an obese world: European perspectives’
Postgraduate Competition

Potential of food intake biomarkers in nutrition research

Aoife E. McNamara1,2 and Lorraine Brennan1,2*
1UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, Ireland

2UCD Conway Institute, UCD, Belfield, Dublin 4, Ireland

The influence of dietary habits on health/disease is well-established. Accurate dietary assess-
ment is essential to understand metabolic pathways/processes involved in this relationship.
In recent years, biomarker discovery has become a major area of interest for improving diet-
ary assessment. Well-established nutrient intake biomarkers exist; however, there is growing
interest in identifying and using biomarkers for more accurate and objective measurements
of food intake. Metabolomics has emerged as a key tool used for biomarker discovery,
employing techniques such as NMR spectroscopy, or MS. To date, a number of putatively
identified biomarkers were discovered for foods including meat, cruciferous vegetables and
legumes. However, many of the results are associations only and lack the desired validation
including dose–response studies. Food intake biomarkers can be employed to classify indi-
viduals into consumers/non-consumers of specific foods, or into dietary patterns. Food
intake biomarkers can also play a role in correcting self-reported measurement error, thus
improving dietary intake estimates. Quantification of food intake was previously performed
for citrus (proline betaine), chicken (guanidoacetate) and grape (tartaric acid) intake.
However, this area still requires more investigation and expansion to a range of foods.
The present review will assess the current literature of identified specific food intake biomar-
kers, their validation and the variety of biomarker uses. Addressing the utility of biomarkers
and highlighting gaps in this area is important to advance the field in the context of nutrition
research.

Biomarkers: Dietary assessment: Food intake: Metabolomics

It is well established that environmental and lifestyle fac-
tors, such as dietary intake and habits, influence health
and disease outcomes(1). Epidemiological evidence has
reported associations between dietary intake and positive
health effects for CVD(2,3), diabetes(4) and certain can-
cers(5–7). In order to interpret the effect of diet on health,
it is critical to accurately measure an individual’s, or a
population’s, dietary intake. Traditional self-reported
dietary assessment techniques, including FFQ, dietary
recalls and weighed food records, are subject to well-
documented limitations. For example, self-reported
methods are at risk of reporting inaccuracy, subjective
estimation of portion sizes, recall bias and

misreporting(8–11). Consequently, there is a need for the
development of more accurate and objective dietary
assessment measures, such as dietary biomarkers.

The discovery of dietary biomarkers is an area of
increasing interest. Presently, there are only a few bio-
markers for dietary assessment that are well-established,
capturing intake of salt, protein, sucrose and fructose(1).
Twenty-four-hour urinary nitrogen is a well-known bio-
marker of protein(1) and is often used to validate self-
reported intake(12), or to compare the accuracy of two
dietary assessment methods(13). Urinary concentrations
of sucrose and fructose are dose-responsive and predict-
ive biomarkers of dietary sugars(14,15). However, many

*Corresponding author: Lorraine Brennan, email lorraine.brennan@ucd.ie
Abbreviations: AUC, area under the curve; ROC, receiver operating characteristics..

Proceedings of the Nutrition Society (2020), 79, 487–497 doi:10.1017/S0029665120007053
© The Authors 2020. Published by Cambridge University Press on behalf of The Nutrition Society
First published online 2 July 2020

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665120007053 Published online by Cambridge University Press

https://orcid.org/0000-0002-7711-7499
mailto:lorraine.brennan@ucd.ie
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0029665120007053&domain=pdf
https://doi.org/10.1017/S0029665120007053


studies investigating sucrose/fructose as a potential
intake biomarker have been observational, with associa-
tions appearing low to moderate(16), perhaps due to
between/within-subject variation in urinary sucrose/fruc-
tose absorption, tissue uptake and excretion(14). While
these biomarkers are accepted as more accurate and use-
ful, they are reflective of dietary nutrient habits instead of
consumption of specific foods, highlighting the need for
food intake biomarkers.

A newly defined flexible classification scheme for bio-
markers related to food intake was recently published(17).
The authors outline six subclasses of dietary and health
biomarkers to be included under the previously suggested
major classes of biomarker: exposure, effect and suscep-
tibility. Four of these subclasses are associated with diet-
ary intake and are as follows: (1) food compound intake
biomarkers: nutrients or non-nutrients reflective of diet-
ary intake; (2) food intake biomarkers: nutrients or non-
nutrients reflective of intake of a specific food; (3) dietary
pattern biomarkers: a set of food intake biomarkers that
can distinguish between different dietary habits or indicate
a high adherence to a pre-defined diet (e.g. Mediterranean
or Nordic diets); (4) food compound status biomarkers:
nutrients and non-nutrients indicating accumulated stores
of compounds in the body. The final two subclasses (effect
and physiological markers) are not products of dietary
intake and therefore are not covered by this review.
Biomarkers of food intake can be single metabolites, or
a combination of metabolites, reflecting the consumption
of either a specific food or food group, displaying a
clear time– and dose–response after intake(17).

Metabolomic techniques for food intake biomarker
discovery

Through the use of metabolomics, a number of food intake
biomarkers have emerged in the literature. At the broadest
definition, metabolomics is the study of endogenous or
exogenous metabolites in a biological sample. The
human metabolome is influenced by multiple factors such
as genetics, the microbiome(18) and environmental factors
including diet and lifestyle(19). Analysis of metabolites is
usually performed using NMR spectroscopy, or MS,
which can be coupled with a separation technique such
as LC or GC(20,21).

In brief, NMR is a popular metabolomics platform
frequently employed for the discovery and identification
of novel food intake biomarkers. NMR captures
quantitative metabolite data in a robust fashion. It is a
non-destructive method, relatively fast and requires little
sample preparation(22). NMR has a comparatively lower
sensitivity and requires larger sample volumes compared
to other analytical techniques such as MS methods
of analysis(23). However, the reproducibility across
multiple laboratories of NMR analysis is very high.
This technique is useful for broad-based analyses and
high abundance metabolites(24). MS-based techniques
are extremely sensitive and can analyse small sample
volumes, however samples are non-recoverable after ana-
lysis. Furthermore, sample preparation is more laborious

than NMR. MS techniques coupled to LC or GC separ-
ate compounds based on their physiochemical properties,
which are eluted at various retention times. These com-
pounds are then ionised, determining their mass: charge
ratio (m/z)(25). Compound identification can be made
by combining retention times information with m/z
along with additional analyses, such as fragmentation
patterns from tandem MS, to compare against standards
and spectral libraries. Different chromatographic techni-
ques, coupled with MS, can identify different metabo-
lites. Examples of routinely measured metabolites are
polar and volatile compounds, amino acids, biogenic
amines, peptides, intact lipids, organic acids, bile acids
and fatty acids as well as other macromolecules(26,27).

In the context of applying metabolomics to food
intake studies, a number of challenges exist. These
include the generation of a large amount of data to be
processed and identification of metabolites to a high
confidence level(22). Currently, identification of metabo-
lites is reliant on the availability of analytical standards
for confirmation and the availability of comprehensive
spectral libraries and databases. Unfortunately, many
such databases contain few food-related compounds.
Notwithstanding these challenges, biomarkers have
been identified for a number of foods.

Study designs to identify food intake biomarkers

To date, studies were performed to identify potential
food intake biomarkers for multiple foods and food
groups, covering a wide range of components of the
human diet(28–32). Numerous study designs can be
employed to identify food intake biomarkers. Previous
successful designs include acute intervention studies,
short/medium-term interventions and cross-sectional
cohort studies(28,33). The intervention study designs
involve the consumption of specific food(s) over a
defined period of time and biofluids, such as blood and
urine, are collected at specific time-points depending on
research interests. Human intervention studies make it
possible to control potential confounding factors and
allow the focused investigation of the effect of specific
food/food group intake on biological samples.
However, intervention studies are often performed in
smaller sample sizes, and results may not be directly
applicable to free-living populations. In order to over-
come this limitation, it is important that identified poten-
tial food intake biomarkers are validated in other, larger,
less-controlled populations.

Using samples from epidemiology studies enables
examination of the relationships between self-reported
food intake and biomarkers measured in urine or blood
samples. Epidemiological studies collect dietary data
from large sample sizes, are relatively low burden on par-
ticipants and more likely to be indicative of a free-living
setting. However, because of the uncontrolled setting,
there is the potential for confounding variables. One of
the potential limitations of using epidemiological data
for food intake biomarker identification is that biomar-
kers identified may be present in more than one food
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or food group, further highlighting the need for bio-
marker validation. Ultimately, the design of the research
will be guided by the research question, taking into con-
sideration the limitations of each approach. The choice
of biofluid examined is also important as some metabo-
lites will appear exclusively, or are more concentrated,
in some biofluids(26). There are multiple biofluids which
can be used for food intake biomarkers identification;
however, urine and blood samples are most frequently
employed as they are easily accessible and contain
numerous compounds of biological importance, includ-
ing food intake metabolites(22,34).

Validation of food intake biomarkers

Currently, there are extensive research efforts in the iden-
tification of food intake biomarkers; however, efforts in
validation of the biomarkers are still lacking. To address
this issue, a number of criteria were recently developed
for the validation of food intake biomarkers (Fig. 1).
The criteria include the following eight points: plausibil-
ity, dose–response, time–response, robustness, reliability,
stability, analytical performance and reproducibility(35).
Examining the plausibility of a food intake biomarker
includes confirming food specificity and establishing
any food chemistry/food processing/experimental expla-
nations for increased concentration after consuming the
food. The food intake biomarker’s response to different
portions of specific food should be examined, taking
into account a range of intakes, habitual baseline levels,
bioavailability, excretion timeline and saturation levels.
The biomarker’s time–response, half-life and kinetics of
the biomarker are explored both after a single exposure
and repeated measures over time, examining its stability
as an estimate of longer-term intake. Biomarkers must be
robust by demonstrating suitability in multiple free-living
populations, and any food interactions identified.
Investigating the reliability of a biomarker requires com-
paring the biomarker with a gold standard, other bio-
markers of the food or other dietary assessment
methods which provide a good measure of true exposure.
To be effective in nutrition research, food intake biomar-
kers chosen must be stable within the biofluid used for
analysis. The analytical performance of a biomarker
must be well-documented, its precision, accuracy and
detection limits, and any inter-/intra-batch variation
assessed. The results of a biomarker’s performance and
efficacy should be reproducible with validated methods
established for comparing results across different labora-
tories. Applying these validation criteria to the large
number of potential food intake biomarkers will allow
for the development of robust and valid biomarkers.

Applications of food intake biomarkers in nutrition
research

At present, there are a number of putative specific food
intake biomarkers identified, with varying levels of
fulfilled validation criteria. Furthermore, there is a lack

of research which demonstrates the multitude of applica-
tions of these biomarkers. Food intake biomarkers are
extremely useful tools which can not only determine diet-
ary exposure but be applied to correct for self-reported
measurement error and the classification of dietary
patterns.

Using food intake biomarkers to classify intake

There are many examples in the literature where biomar-
kers were used to classify individuals into consumers or
non-consumers of specific foods (Table 1). In the
INTERMAP study, urinary proline betaine was used to
classify participants as citrus consumers or non-
consumers(30). Using receiver operating characteristics
(ROC) curves, proline betaine was able to identify citrus
consumers with a specificity and sensitivity of 92⋅3 and
80⋅6%, respectively. A study investigating Nordic diets
was able to differentiate between consumers and controls
of specific plant foods (cabbage, beetroot, strawberries
and walnuts) based on peak areas of potential food
intake biomarkers identified in 24 h urine by ultra-high
performance LC quadrupole time of flight MS(36).
Urine samples from the SU.VI.MAX2 study were used
to identify coffee intake biomarkers, many of the iden-
tified biomarkers performed well at separating samples
from high and low coffee consumers(32). Atractyligenin
glucuronide had the highest ROC area under the curve
(AUC) and outperformed caffeine (AUC= 0⋅95 v. 0⋅72,
respectively). As part of the WHOLEheart study, alkyl-
resourcinols, biomarkers of wholegrain intake, were
quantified in plasma samples by GC–MS. Plasma con-
centrations were significantly different between the con-
trol (low wholegrain intake, <30 g/d) and intervention
groups (high wholegrain intake, 60 or 120 g/d; P≤
0⋅0073 across analyses) demonstrating they could distin-
guish between consumers and non-consumers(37). These
plasma alkylresourcinols concentrations were also cap-
able of distinguishing quartile of wholegrain intake at a
slight to fair level (misclassification rate of 9–12 %)(37).
A recently published paper examined non-fasting serum
samples to identify the most predictive biomarkers for
forty-two food items or food groups using ROC AUC
to separate high and low consumers by quintiles of
intake(38). The average AUC was 0⋅75 (ranging from
0⋅65 to 0⋅98); however, the authors were unable to distin-
guish metabolites which were food intake biomarkers
and metabolites resulting from diet-induced changes in
metabolism.

Food intake biomarkers can also be combined to
achieve or improve classification of dietary intake.
A recently published study used five discriminative meta-
bolites to classify high and non-consumers of banana(39).
The predictive ability of these metabolites was tested
using ROC curve analysis using partial least squares-
discriminant analysis models of biomarker combinations.
The combination of all five metabolites was highly pre-
dictive (AUC = 0⋅90; error rate = 0⋅13) for high banana
consumers v. non-consumers; however, it was a combin-
ation of just two of these metabolites which performed
the best overall at classifying recent banana high
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consumers (AUC= 0⋅92; error ratetest = 0⋅11). Work
from our own research laboratory identified four food
intake biomarkers of sugar-sweetened beverages using
heat-map analysis of metabolomic urinary profiles from
the National Adult Nutrition Survey study(40). These
markers were combined in a panel and ROC curves
demonstrated that the panel could discriminate between
consumers and non-consumers of sugar-sweetened
beverages (AUC= 0⋅8) and was more predictive of
intake than the individual biomarkers themselves (AUC
ranging from 0⋅5 to 0⋅7). A multimetabolite biomarker
panel, made up of beer ingredient and food processing
biomarkers, was capable of distinguishing beer
consumption from urine samples collected before and
up to 12 h after intake of beer with excellent efficiency
(AUC= 1)(41). Using two food intake biomarkers of
wine, analysis of PREDIMED study data revealed
a stepwise logistic regression model capable of
identifying wine consumers compared to non-consumers
(AUC= 0⋅92) and detecting these consumers up to 3 d
after the last glass of wine(42). Fasting urine metabolomic
data from the PREDIMED study analysed by LC–MS
was also used to develop a multimetabolite panel capable
of predicting non-bread consumers and whole-grain
bread consumers (ROC AUC> 0⋅93 for both positive
and negative mode models)(43). The multimetabolite
panel contained alkylresourcinols, benzoxazinoids,
microbial metabolites, exogenous metabolites and a
heat-treatment product. The same authors also devel-
oped a panel of urinary food intake biomarkers for

discriminating cocoa consumers from non-consumers in
the same population (ROC AUC= 0⋅93)(44).

The afore-mentioned studies demonstrate that food
intake biomarkers can be very efficient at classifying
consumers and non-consumers of specific foods and
they have the potential to be used to validate self-
reported findings. However, this approach is qualitative
and further research into these biomarkers is necessary
to enable the field to move from qualitative to quantita-
tive assessment of food intakes.

Quantifying intake using food intake biomarkers

Examining a biomarker’s ability to quantify intake can
progress food intake biomarkers beyond the dichotomous
classification of consumers and non-consumers. Previous
work from our research group examined the potential of
the well-established marker of citrus intake, proline beta-
ine, in determining citrus intake(45). Employing calibration
curves developed from a controlled dietary intervention
study (NutriTech), urinary proline betaine concentrations
were used to determine the citrus intake in an independent
cross-sectional study of 565 individuals. There was excel-
lent agreement between the self-reported intake (estimated
from a 4 d semi-weighed dietary record) and the biomarker-
estimated intake with a low mean bias of 4⋅3 g between
methods. This study clearly demonstrates the potential
of well-validated food intake biomarkers. Our research
group also applied a similar approach to a biomarker of
chicken intake: guanidoacetate(46). Urinary guanidoacetate

Fig. 1. Outline of the recently developed criteria for the validation of food intake biomarkers
(adapted from Dragsted et al.(35)).
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demonstrated a dose–response relationship with increasing
chicken intake in the NutriTech study and a calibration
curve developed was able to discriminate between high

and non-consumers of chicken in an independent cross-
sectional study. Guanidoacetate demonstrated good agree-
ment between self-reported and biomarker-estimated intake

Table 1. Outline of approaches used to classify consumers of specific foods using food intake biomarkers

Consumer group Biofluid
Dietary

assessment Classification method Biomarkers Reference

Orange juice 24 h urine 24 h dietary
recall

ROC AUC sensitivity
and specificity = 92⋅3
and 80⋅6%
(Test set citrus fruit
consumers v.
non-consumers)

Proline betaine Heinzmann
et al.(30)

Plant foods 24 h urine 3DFD Comparison plots of
reported intake v. peak
areas (>20th percentile)
for consumers and
(</>80th percentile)
non-consumers of
specific plant foods

Cabbage: iberin N-acetyl cysteine
Beetroot:
4-ethyl-5-methylamino-pyrocatechol
sulphate
Strawberry: 2,5-dimethyl-4-methoxy-3
(2H)-furanone sulphate
Walnut: 5-hydroxyindole-3-acetic acid

Andersen et al.(36)

Coffee Morning spot
urine

24 h dietary
recall

ROC AUC= 0⋅95
(High v.
non-consumers)

Atractyligenin glucuronide Rothwell et al.(32)

Banana 24 h urine 24 h dietary
recall

ROC AUC= 0⋅9
(Average AUC of high
v. non- and low v.
non-consumers)

Methoxyeugenol glucuronide and
dopamine sulphate

Vazquez-
Manjarrez
et al.(39)

Sugar-sweetened
beverages

Fasting first
void

4DFD ROC AUC= 0⋅8
(Consumers v.
non-consumers)

Citrulline, formate, isocitrate, taurine Gibbons et al.(40)

Beer Multiple
postprandial
urine
samples

Actual
intake

ROC AUC= 1
(Before and after beer
intake)

(Sum of isocohumulone, isoad/humulones,
tricyclocohumol and tricyclohumol), NMT
sulphate, pGlu-pro and 2-ethyl malate

Gurdeniz et al.(41)

Wine Baseline spot
urine

137-item
FFQ

ROC AUC= 92⋅4%
(Consumers v.
non-consumers)

Tartrate and ethyl glucuronide Vazquez-Fresno
et al.(42)

Whole grain Fasting blood
samples

N/A %misclassification rate
= 9-2⋅1
Agreement: Cohen’s
weighted κ statistic =
0⋅238 = slight/fair
classification
(high v. low
consumers, quartiles)

Total plasma AR Ross et al.(37)

Whole grain bread Baseline spot
urine

137-item
FFQ

ROC AUC= 93⋅1% for
positive mode
ROC AUC= 93⋅7% for
negative mode
(Whole-grain bread v.
non-bread consumers)

HHPAA, HPPA, HMBOA, 3-ICA,
enterolactone, pyrraline, riboflavin
DHPPA, DHPPTA, HMBOA, pyrraline,
3-ferulic acid, dihydroferulic acid,
enterolactone

Garcia-Aloy
et al.(43)

Cocoa Baseline spot
urine

137-item
FFQ

ROC AUC= 92⋅6%
(Consumers v.
non-consumers)

AMMU, DHPV glucronide and sulphate, 3-
and 7-methylxanthine, 3-methyluric acid,
3,7-dimethyluric acid, theobromine,
MHPV

Garcia –Aloy
et al.(44)

42 foods and food
groups

Non-fasted
serum
samples

153-item
FFQ

All ROC AUC values
≥0⋅65
(High v. low
consumers, quintiles)

199 total metabolites identified. 43
metabolites were most discriminative for
each food group.

Wang et al.(38)

ROC, receiver operating characteristic; AUC, area under the curve; 3DFD, 3 d food diary; UPLC-qTOF-MS, ultra-high performance liquid chromatography
quadrupole time of flight MS; 4DFD, 4 d food diary; NMT, N-methyl tyramine; pGlu-pro, pyro-glutamyl proline; N/A, not applicable; AR, alkylresorcinols; HHPAA,
2-hydroxy-N-(2-hydroxyphenyl) acetamide; HPPA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; HMBOA, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one; 3-ICA,
3-indolcarboxylic acid glucuronide; DHPPA, 3-(3,5-dihydroxyphenyl) propanoic acid; DHPPTA, 5-(3,5-dihydroxyphenyl) pentanoic acid; AMMU, 6-amino-5
[N-methylformylamino]-1-methyluracil; MHPV, methoxyhydroxyphenylvalerolactone; DHPV, 5-(3′,4′-dihydroxyphenyl)-valerolactone.
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with a low mean bias of−30⋅2 g between methods. Garcia-
Perez et al. established adose–response relationship between
grape intake and urinary tartaric acid levels and investigated
the ability of tartaric acid to determine grape intake(47). The
agreement between estimated intake and actual intake was
good and a correlation coefficient of R2 0⋅9 was reported.
Overall, these three examples, summarised in Table 2,
provide strong evidence of the potential of food intake
biomarkers to quantify intake of specific foods and dem-
onstrate the importance of assessing dose–response
relationships of identified biomarkers. While these exam-
ples support the potential of biomarkers for quantification
of food intake, there are a number of limitations worth
mentioning. The afore-mentioned studies are reliant on
well-controlled feeding studies to estimate the relation-
ships between biomarkers and intake. Not all biomarkers
will exhibit a linear relationship with intake thus limiting
their potential to predict intake.

Developing calibration equations to correct dietary data

Another application of food intake biomarkers is the
development of calibration equations that can correct
self-reported intake data. Previously, this approach has
been applied to nutrient data from the women’s health
initiative and was used to develop biomarker-calibrated
equations which uncovered disease associations that
were not identified in uncalibrated data(48). Work from
our research group implemented a similar approach
using food intake biomarker data to develop calibration
equations utilising self-reported intakes and biomarker-
derived estimates of citrus intakes from the National
Adult Nutrition Survey(49). Statistical transformations
were performed on the data to achieve optimal calibra-
tion specifications, which were then applied to correct
for the error in self-reported intake data and achieve a
more accurate and objective measure of true intake.
This work is very promising, demonstrating the utility
of food intake biomarkers in nutrition research, however
further investigation is required. Application of this
method to other food intake biomarkers would enable
the correction of self-reported data in large epidemio-
logical studies and improve dietary assessment. This
research also developed a framework for determining
the amount of biomarker data that would be required
to correct for self-reported error in epidemiological stud-
ies, as it is not always feasible to collect biofluids from all
subjects(49). Results indicated that biomarker data from

approximately 20–30% of subjects would be sufficient
to correct for errors. This important finding will allow
improvement in the accuracy of dietary intake estima-
tion, especially in larger study sample sizes.

Biomarker-based classification of dietary patterns

Analysis of dietary patterns allows researchers to gain a
broader insight into dietary intake and habits as opposed
to a focus on specific foods. Dietary pattern analysis
encompasses the quantities, proportion, variety and
combination of foods/beverages consumed as well as
the frequency of consumption(50). The ability of metabo-
lomics and food intake biomarkers to classify dietary
patterns or monitor adherence to pre-defined diets has
been investigated using a range of different study designs
(Table 3). Application of interventions studies has
elegantly demonstrated that metabolomic profiles can
distinguish different dietary patterns. Untargeted meta-
bolomic profiles were employed to distinguish between
two Nordic dietary patterns used in an intervention
study; the new Nordic diet or an average Danish
diet(51). A multivariate model was established using urin-
ary metabolome profiles, which classified the two dietary
patterns with a low misclassification error rate (19 %).
A follow-up paper, using a classification model built on
plasma metabolic profiles, was capable of assessing diet-
ary pattern compliance between new Nordic diet and
average Danish diet (average ROC AUC for positive
and negative mode = 0⋅88 and 0⋅74, respectively)(52).
Similarly, a plasma metabolome-based dietary pattern
classification model was performed by Esko et al. on
data from a feeding study(53). Three different diets with
varying macronutrient compositions (low fat (60 %
carbohydrate, 20 % fat, 40 % protein), low glycaemic
index (40 % carbohydrate, 40 % fat, 20 % protein) and
very low carbohydrate (10 % carbohydrate, 60 % fat
and 30 % protein)) were distinguishable using this
model. The models were able to identify which dietary
pattern participants were following in 95 % of cases in
the test set(53). In a separate intervention study, a fasting
serum metabolite panel was identified that could distin-
guish between participants consuming a ‘dietary
approaches to stop hypertension’ diet, a fruit and vege-
table diet or a control diet. Predictability of the model
was examined in a test set reporting a C statistic
(AUC) of 0⋅961 indicating good ability to classify
individuals into the dietary pattern followed(54). Using

Table 2. Summary of studies using food intake biomarkers to quantify intake

Food/food
group Biofluid

Dietary
assessment

Quantification
method

Performance
measurement Biomarkers Reference

Citrus Fasting first void
urine

4DFD Calibration curve Bland Altman
(bias = 4⋅3 g)

Proline betaine Gibbons et al.(45)

Chicken Fasting first void
urine

4DFD Calibration curve Bland Altman Guanidoacetate Yin et al.(46)

Grapes 24 h urine Actual intake Calibration curve Correlation
coefficient r2 0⋅9

Tartaric acid Garcia-Perez
et al.(47)

4DFD, 4 d food diary.
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Table 3. Using food intake biomarkers for the study of dietary patterns

Dietary
pattern

Classification
method Performance analysis

Validation
population Biomarkers Reference

New Nordic v.
average
Danish diet

PLS-DA between
two diets

Misclassification rate for
two dietary patterns in
validation set (N 139) =
19%

Randomly selected
samples from
training set

Selected 67 metabolite markers of
individual foods

Andersen
et al.(51)

New Nordic v.
average
Danish diet

PLS-DA between
two diets

ROC AUC positive
mode = 0⋅88
negative mode = 0⋅74

Test set: same
population as
training set
(30:70%)

NND = pipecolic acid betaine (whole
grain), TMAO and prolyl
hydroxyproline (fish intake), higher
PUFA PC
ADD = theobromine (chocolate) and
proline betaine (citrus), amino acid
metabolites (indolelactic acid and
hydroxy-3-methylbutyrate) and fat
metabolites (butyryl carnitine)

Acar et al.(52)

Low fat, low
CHO and
low GI diets

Bayesian network
classification
models

95% of withheld data
classified correctly

Same samples as
used to build the
model

Identified 152 differential metabolites
including DAG and TAG, BCAA, and
markers reflecting metabolic status

Esko et al.(53)

Healthy and
unhealthy
diets

Two-step cluster
analysis

94% of validation
population correctly
classified

Separate healthy
eating intervention
population
(NutriTech study
N 49)

Healthy cluster had higher levels of
hippurate, betaine, anserine,
N-phenylacetylglutamine,
3-hydroxybutyrate, citrate,
tryptophan and 2-aminoadipate
Unhealthy cluster had higher levels of
creatinine, glycylproline,
N-acetylglutamate and theophylline

Gibbons
et al.(60)

Four diets:
variable
adherence to
WHO
guidelines

MCCV-PLS-DA Used models based on
diets 1 and 4 urinary
profiles to predict
consumption of diets 2
and 3 (Skilling’s-Mack
test P = 7⋅21 × 10−9).
Significant
associations between
diet scores and urinary
metabolite profiles in
external validation
populations (P <
0⋅0001 for both)

Internal validation
and two separate
external validation
populations
(INTERMAP UK
cohort, N 225 and
a Danish cohort,
N 66)

Specific metabolites known to be
associated with healthy eating foods:
hippurate (F&V), 4-hydroxyhippurate
(fruits) and
S-methyl-L-cysteine-sulfoxide
(cruciferous vegetables)

Garcia-Perez
et al.(55)

DASH diet
F&V diet
Control diet

PLS-DA between
DASH and each of
other two diets

C statistic = 0⋅961
between DASH diet
and control diet

Test set: same
population as
training set
(33:66%)

10 most influential metabolites:
N-methylproline, stachydrine,
tryptophan betaine, theobromine,
7-methylurate, chiroinositol,
3-methylxanthine, methyl
glucopyranoside (α and β),
β-cryptoxanthin and
7-methylxanthine

Rebholz
et al.(54)

aMED
AHEI-2010
DASH
HEI-2015

OPLS-DA between
highest (Q5) and
lowest (Q1)
quintile for each
dietary pattern
score

ROC AUC for top 10
most discriminating
metabolites between
Q5 and Q1:
aMED= 0⋅77
AHEI-2010 = 0⋅86
DASH= 0⋅86HEI-2015
= 0⋅76

Test set from the
same population
as training set
(50:50%)

aMED: 2 sphingomyelins,
hydroxy-CMPF, DHA, EPA, γ- and
β-tocopherol
AHEI-2010: hydroxy-CMPF, CMPF,
DHA, sphingomyelin, EPA, carotene
diol
DASH: β-cryptoxanthin,
sphingomyelin, γ- and β-tocopherol,
galactonate, hydroxy-CMPF
HEI-2015: DHA, EPA,
hydroxy-CMPF, carotene diol,
β-cryptoxanthin, ergothioneine

McCullough
et al.(58)
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a controlled intervention, Garcia-Perez et al. developed a
model based on urinary metabolomics data that could
classify individuals into dietary patterns. The four diets
were based on the WHO healthy eating guidelines for
the prevention of non-communicable diseases(55). The
model was validated in two separate population groups.
Collectively, these studies provide strong evidence for
biomarker-based metabolomic profiling to classify and
monitor adherence to dietary patterns.

Further evidence is also available from studies
performed using cross-sectional data. A recent study
demonstrated the ability of 1H NMR profiles to distin-
guish dietary habits related to varying degrees of meat
consumption/avoidance(56). Serum metabolite profiles
were capable of correctly classifying 97⋅5% of meat
eaters compared to non-meat eaters (ROC AUC= 1)
and, inversely, 92⋅5% of vegans compared to non-vegans
(ROC AUC= 0⋅98). Work has emerged to support the
potential measurement of adherence to pre-defined diet-
ary patterns such as the Mediterranean diet through
metabolomic profiles(57,58,59). Macias et al. identified
fasting plasma metabolites capable of discriminating
between low and high Mediterranean diet
score and their correlations with food intakes (ROC
AUC= 0⋅74)(57). In a study of postmenopausal women
in the US, metabolite levels in serum samples were
capable of predicting low and high adherence to four

healthy diet scores (the alternate Mediterranean diet
score, alternate healthy eating index-2010, dietary
approaches to stop hypertension diet and the healthy eat-
ing index-2015)(58). Examining a test dataset revealed
that the serum metabolites discriminated between high
and low quintiles of adherence to the four different
healthy dietary pattern scores (ROC AUC≥ 0⋅76 for
each diet score individually)(58). Additionally, a fasting
plasma metabolite score was correlated with adherence
to Mediterranean diet (Spearman’s P= 0⋅42) in a UK
population(59). Overall, these studies add to the evidence
base supporting the relationship between metabolites and
dietary patterns.

Finally, evidence has also emerged to support the abil-
ity of a biomarkers-based approach to determine de novo
dietary patterns and classify individuals into these.
Research from our group identified two distinct dietary
patterns (a healthy and unhealthy pattern) using only
urinary metabolomic profiles (n 567). Using this model
in an independent study revealed that 94 % of subjects
were correctly classified into the correct dietary pattern
group(60). A recent study used reduced rank regression
to identify dietary patterns reflecting metabolites that
were pre-selected to be associated with a disease(61).
The approach identified three dietary patterns and repre-
sents an interesting approach for examining disease-
related metabolites and dietary patterns.

Table 3. (Cont.)

Dietary
pattern

Classification
method

Performance analysis Validation
population

Biomarkers Reference

Meat eating
and
avoidance

OPLS-DA between
meat eaters v.
non-eaters and
vegans v.
non-vegans

ROC AUC;
Meat eaters v.
non-eaters = 1
(classified 97⋅5%
correctly)
Vegans v. non-vegans
= 0⋅98 (classified 92⋅5
% correctly)

Classification of diet
in same population

Serum metabolites higher in
meat-eaters and non-vegans:
branched chain amino acids,
3-hydroxyisobutyrate and lysine
Higher in vegans and non-meat
eaters: creatine, glycine, glutamate,
trimethylamine and 2-aminobutyrate

Lindqvist
et al.(56)

Med diet PLS-DA between
low and high MDS

ROC AUC of citric acid
and pyruvate = 0⋅74

Did not validate Top five discriminative metabolites:
citric acid, myo-inositol, pyruvic acid,
mannose and betaine

Macias
et al.(57)

Med diet Backwards
stepwise
regression
between
metabolite score
and MDS

Spearman’s correlation
between metabolite
score and MDS
(P = 0⋅42)

Test set from the
same population
as training set
(50:50%)

Nuts, cereals and red/processed meat
contributed to acylcarnitines
Fruit intake and amino acids/amines
Fish intakes and phospholipid
concentrations

Tong et al.(59)

De novo
infant
pre-T1D
infant dietary
patterns

Reduced
regression
analysis

NA NA Dietary pattern 1: PC (34:2)
Dietary pattern 2: SM (d41:2), GlcCer
(d41:1) and PC (p-32:0) or PC (o-32:1)
Dietary pattern 3: (protective for a
type 1 diabetes related autoantibody
response), PC (34:3) and PC (p-32:0)
or PC (o-32:1) and lower
concentrations of SM (d41:2)

Johnson
et al.(61)

PLS-DA, partial least squares discriminant analysis; ADD, average Danish diet; NND, new Nordic diet; ROC, receiver operating characteristics; AUC, area under
the curve; TMAO, trimethylamine oxide; CHO, carbohydrate; GI, glycaemic index; DAG, diacylglycerols; BCAA, branched chain amino acids; DASH, dietary
advice to stop hypertension; MCCV, Monte Carlo cross-validation; F&V, fruit and vegetables; aMED, alternate Mediterranean diet score; AHEI-2010, alternate
healthy eating index; HEI-2015, healthy eating index; OPLS-DA, orthogonal partial least squared discriminant analysis; CMPF,
3-carboxy-4-methyl-5-propyl-2-furanpropanoate; Med diet, Mediterranean; MDS, Mediterranean diet score; NA, not applicable; PC, phosphatidylcholine; SM,
sphingomyelin; GlcCer, glucosylceramides.
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Collectively, the emerging data from both intervention
and cross-sectional studies support the concept that
metabolomic-based food intake biomarker models
could be used to identify dietary patterns and to further
examine the relationship between dietary patterns and
health outcomes in larger epidemiological studies.

Future outlook

While the majority of work to date has focused on the
identification of new biomarkers of intake there are
promising examples of how these biomarkers could be
used in nutrition research. The current limitations in
applications of food intake biomarkers stem from the
limited number of robust biomarkers already demon-
strated in the literature; therefore, future work in this
area needs to focus on identifying specific and sensitive
food intake biomarkers and validating them according
to recently outlined criteria(35). Food intake biomarkers
have the potential to improve the accuracy of dietary
assessment methods. Biomarkers can be used for the cor-
rection of measurement error in dietary data collection
using statistical transformations. Metabolomic profiles
can be used to classify adherence to dietary patterns
and habits in large sample sizes and monitor compliance
to study protocols or medically prescribed diets. This
improved dietary information can help to unravel the
impact and interactions of dietary components in meta-
bolic processes and pathways, as well as elucidating the
relationship between diet and disease outcome.
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