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Abstract

We study the uniqueness of entire functions sharing a nonzero finite value with linear differential
polynomials and improve a result of P. Li.
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1. Introduction, definitions and results

Let f be a nonconstant entire function in the open complex plane C. We denote by
E(a; f) the set of distinct a-points of f. We also respectively denote by Ej)(a; f) and
E(z([l; f) the sets of distinct simple and multiple a-points of f.

In 1986 Jank et al. [2] proved a uniqueness theorem for entire functions sharing a
single value with two derivatives. Their results can be stated as follows.

Tueorem A [2]. Let f be a nonconstant entire function and a be a nonzero finite
number. If E(a; f) = E(a; fV) and E(a; f) € E(a; f®), then f = f.

In fact, in Theorem A f and f") share the value a, counting multiplicities.
Considering f = e“* + w — 1, where "' = 1, w # 1 and m > 3 is an integer, and a = w,
we can verify that the second derivative in Theorem A cannot, in general, be replaced
by the mth derivative for m > 3 (see [7]).

In 1995 Zhong [7] generalised Theorem A and proved the following theorem.

Tueorem B [7]. Let f be a nonconstant entire function and a # 0 be a finite number.
If f and fY share the value a, counting multiplicities, and E(a; f) C E(a; f™) N
E(a; f™D) forn > 1, then f = f™.

For A c C, we denote by Nu(r, a; f) (Nu(r, a; f)) the counting function (reduced
counting function) of those a-points of f which belong to A.
Recently, Theorem B was improved in the following manner.
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Tueorem C [3]. Let f be a nonconstant entire function and a, b be two nonzero finite
constants. Suppose further that A = E(a; f)\E(a; fV) and B = E(a; f")\{E(a; f™) N
E(b; f™D)} for n> 1. If each common zero of f —a and fV —a has the same
multiplicity and Nu(r, a; f) + Np(r, a; fV) = S(r, f), then f = 2% + (ab — a®)/b or
f= AP + a where A # 0 is a constant.

Throughout the paper, we denote by L a nonconstant linear differential polynomial
in f of the form

L=aifV+arf®+- -+ a,f,

where a1, as, . . ., a,, a, # 0, are constants.
In 1999 Li [4] improved and extended Theorem B by considering a linear
differential polynomial. He proved the following theorem.

Tueorem D [4]. Let f be a nonconstant entire function and a # 0 be a finite number.
IfE(a; f) = E(a; f) and E(a; f) € E(a; L) N E(a; L), then f = fV = L.

For other results on linear differential polynomials, one may see [5, 6].
In this paper, we improve Theorem D in the following manner.

TueoreM 1.1. Let f be a nonconstant entire function and a # 0 be a finite number.

Suppose further that:

(i)  Na(r,a; )+ Ng(r,a; fO)=S(r, f), where A=E(a; f)\E(a; fV) and B=
E(r, fO\(E(a; L) N E(a; LV));

(i) Ei(a; f) C E(a; fV) N E(a; LV); and

(il) Eq(a; f) N EQ©; L) =0.

Then L = ae® and f = ae® or f = a + ae*, where a # 0 is a constant.
Putting A = B =0 in Theorem 1.1, we get the following result.

Cororrary 1.2, Let f be a nonconstant entire function and a # 0 be a finite number.
IfE(a; f) € E(a; fV) c E(a; L) N E(a; LY), then L = ae® and f = ae’ or f = a + aé?,
where a # 0 is a constant.

For standard definitions and notation in value distribution theory, we refer the reader
to [1]. However, we require the following definitions.

Dermvition 1.3. Let f and g be two nonconstant meromorphic functions defined in C.
For a,b e CU {00}, we denote by N(r,a; f|g#b) (N(r,a; | g+ b)) the counting
function (reduced counting function) of those a-points of f which are not the b-points
of g.

Dermvition 1.4. Let f and g be two nonconstant meromorphic functions defined in C.
For a,b e CU {0}, we denote by N(r,a; f|g=0b) (N(r,a; f|g=>0)) the counting
function (reduced counting function) of those a-points of f which are the b-points
of g.
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DeriniTioN 1.5. Let f and g be two nonconstant meromorphic functions defined in C.
For a € C U {00} and a positive integer k, we denote by N(r, a; f |> k) (N(r, a; f |<k))
the counting function of those a-points of f whose multiplicities are not less (greater)
than k. By N(r, a; f|=k) and N(r, a; f|< k), we denote the corresponding reduced
counting functions.

The following definition is well known.

DerniTioN 1.6. Let f be a nonconstant meromorphic function in C. Suppose that
M;[f]= aj(f)no_/(f(l))m,- L (f(p,-))n,,/.j

is a differential monomial in f, where a; is a small function of f. We denote by yu;, =
Zfio nyj and by Iy, = Zfio(l + k)ny; the degree and weight of M;[f], respectively.
The numbers yp = max<j<, yu;, and I'p = max,cjc, 'y, are respectively called the
degree and weight of the differential polynomial P[f]= X, M;[f].

2. Lemmas
In this section, we present some necessary lemmas.

Lemma 2.1. Let f be a nonconstant entire function and a be a nonzero finite complex
number. Then f = L = ae®, where a is a nonzero constant, provided the following hold:

i) m(r,a; f)=S(, f);
(i) En(a; f)C E(a; fO);
(i) Na(r,a; f) = S(r, f), where A = E(a; /)\(E(a; L) N E(a; LY) N E(a; fV)).

Proor. Let o
f-a
A= . 2.1
I @.1)
From the hypothesis, we see that A4 has no simple pole and T'(r, 1) = S(r, ).
From (2.1),
P =S+, 2.2)

where 4; = A and u; = a(1 — A). Differentiating (2.2),

SO = Af + s

where A; and g are meromorphic functions satisfying Az, = /121) + 4 A and pyyq =
" + g for k=1,2,3,.... Also, we see that T(r, ;) + T(r, ) = S (r, f) for k =
1,2,3,....

Now
n

L= s+ Z ay = £ + 7, say. (2.3)
k=1

k=1
Clearly, T(r, &) + T(r, ) = S(r, f). Differentiating (2.3),

L0 =g 4 O 4 p) (2.4)
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Let zp ¢ A be an a-point of f. Then, from (2.3) and (2.4), a&(zo) + n(z9) = a and
aé(20) + a&éM(zo) + n'V(z0) = a.
If a¢ + 1 # a, then

N(r,a; f) < N(r,a; f1< 1) + Na(r, a; f)
S N(r,a;a& +n) +S(r, ) =S, f),

which is impossible because m(r, a; f)=S(r, f). Hence, aé +n=a. Similarly,
aé + aéV + VY = a. This implies that £ = 1 and = 0. So, from (2.3), L = f.

By actual calculation, we see that A, = 2> + A1) and A3 = 23 + 3240 + 2@, We
now verify that, in general,

A=A+ P[], (2.5)

where Pj_;[4] is a differential polynomial in A with constant coefficients such that
vp, <k—1andI'p_, <k. Also, each term of P;_;[1] contains some derivative of A.
Let (2.5) be true. Then

At =AY + 12 = A+ Py [ADD + A0 + Py [A]) = 24 + Pl

noting that differentiation does not increase the degree of a differential polynomial but
increases its weight by 1. So, (2.5) is verified by mathematical induction.
Since ¢ = 1, from (2.5),

n

Z adk + Z a P[] = 1. (2.6)

k=1 k=1

Let zp be a pole of A with multiplicity p >2. Then z, is a pole of };_, ai A
with multiplicity np and it is a pole of }};_, axPi-1[A] with multiplicity at most
(n—1p+1. Since np > (n — 1)p + 1, it follows that zy is a pole of the left-hand side
of (2.6) with multiplicity np, which is impossible. So, A is an entire function. If 4
is transcendental, then by the Clunie lemma we get from (2.6) that T(r, 1) = S (r, 1),
which is a contradiction. If A is a polynomial of degree d > 1, then the left-hand side
of (2.6) is a polynomial of degree nd with leading coefficient a, # 0, which is also a
contradiction. Therefore, A is a constant and, so, from (2.5), A; = AFfork=1,2,3,....

Since £ =1, we see that 3}_, a4 =1. Also, from (2.2), f@ =Af" and so
fY = ale’ and f = ae® + B, where a # 0 and 8 are constants.

Now
n

L= (Z ak/lk)aeAZ = ae®.

k=1

Since f =L, B=0. Since Na(r,a; f)=S(r, f) and N(r,a; f) =T(r, f) + S(r, f), we
see that E(a; f) N E(a; f1)#0. So, f = Af implies that 1= 1. Hence, f = ae’.
This proves the lemma. O
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Lemma 2.2. Let f be a nonconstant entire function and a be a nonzero finite complex
number. Let A = E(a; f)\E(a; f") and B= E(a; f")\(E(a; L) N E(a; L'Y)). If
Na(r,a; ) + Np(r, a; fO) = S(r, f), then N(r, a; fV |2 2) = S(r, f).

Proor. Let y = (L — fD)/(f —a) and ¢ = (LY = fD)/(f - a). Then

m(r, x) + m(r, §) = S (r, f)

and
N(r, x) + N(r, @) < 2Na(r, a; f) + Np(r, a; f1) = S (1, ).
So,T(r, )+ T(r,¢)=S(r. f).
First, we suppose that L= L and LV = fO. Then LV = L® = f®. Hence, f® =
fU, which shows that £ has no multiple a-points, and so N(r, a; fV [>2) = S(r, f).
Now we suppose that L) # L. Then, by the hypothesis,

_ LD
N, a; fO) < N(r, 1; T) T Ng(r, a; £V

< T(r, 2) +S f)

L 2.7
)i
=N[r =)+ 50
<N(r,0; L) + S(r, f).
Again,
i < ) ool )
=T(r,L) - N(@r,0; L) + S(r, f)
< m(r, f) + m(r, %) N0, L)+ 5(r, f)
<T@ f)—N@rO0; L)Y+ S, f)
and so
N(r,0; L) < N(r, a; f) + S(r, f). (2.8)
Also,
N(r,a; f)=N(r,a; f| fV = a) + Na(r, a; f)
_ (2.9
<N a; fD)+S(r, .
From (2.7), (2.8) and (2.9),
N(r,a; fY=N(@r,a; f) + S(r, f)
and so .
N a; fO f#a) =S, f). (2.10)
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Next we suppose that LD # (U Then, replacing L by fV) in the above argument,
we can prove (2.10).
We now consider the following cases.

Casel. Let y=1.Then L — fV = f —agand so LV — f@ = £ This implies that

[P =¢(f -a. @.11)

Now we suppose that ¢ is nonconstant. Differentiating (2.11) and using it
repeatedly, we get, for n > 2,

=P, Y+ 0u(f - a),

where n
Py ifnisevenand yp: < = — 1,
P, = 2
¢V 4 Pt if s odd and yp, < ——— — 1
and n
¢"* + Q: ifniseven and yg; <5 ~ 1,
Qn = -1
0: if n is odd and yg; < "T -1,
and P;, and Q;, are differential polynomials in ¢ with constant coefficients.
Now
n n
L0 = (3 aPea ) + (Y @it )f - @ (2.12)
k=1 k=1

Let n>2 be even. Then, from (2.12), LV = &V + n(f — a), where & = a,¢"/* +
Pot, n=a,1¢"?*+ 0, and yp, <(n/2) -1, y5, <(n/2)—1. Since LV = f +
&(f —a), we have (1 =&V =@ —-¢)(f—a). If 1 —£=0, then n=0, which is
impossible.

Let n be odd. Then, from (2.12), LD = £fMV 4+ n(f — a), where & = a,_16" V% +
Py, n=a,¢""? + Qpuy and yp <(n—1)/2-1, 5, <(n+1)/2—1. Since L =
Y+ o(f —a), we have (1 =&V = —¢)(f —a). If 1 —£=0, then n=¢ and so
n=1anda; = 1. Hence, L = f\"', which is impossible as y = 1.

Therefore, in general, 1 — ¢ # 0 and so

f(l) n-

f-a 1

Hence, N(r,a; f)=N(r, fV/(f —a)) = N(r, (i — ¢)/(1 —€)) =S (r, f). This shows
that

<

|
e ‘

N(r,a; f) = Na(r,a; f) + N(r,a; f | fV = a)
<N(r,a; )+ S(r, f) (2.13)
=8, f).
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Let
C = (E(a; fV) N E(a; L) N E(a; LY)\E(a; f). (2.14)
By (2.10),
Ne(r, a; fYY <nNe(r, a; fO) =S, f). (2.15)
Hence, by (2.13) and (2.15),
N(r, a; fV) <uN(r, a; f) + Na(r, a; V) + Ne(r, a; fV) =S (r, f). (2.16)

Now we suppose that ¢ is a constant. Then, from (2.11),
f=a+ e’ - d*e s, (2.17)

where c, d are constants and 1* = ¢. Since f is nonconstant, we see that 1 # 0.
If c=0o0rd=0, then N(r,a; f) = S(r, f) and we can deduce (2.16). Let cd # 0.
Then, from (2.17),
f—a=e"¥ce’ - d)(ce' + d) (2.18)

2 2
M _ e, a 2o A
70 —a=e (et - ) + (@0 - 5))

So, I has multiple a-points only if dA=+a/(2cA). Let dA=a/(2cA). Then,
from (2.18),

and

S = a_ . p
NA(r,aaf)_N(n_m’e Z)
= T(r, e + S (r, ')
1
ZET(r’f)—i_S(r’f)?

which is impossible as Ny(r, a; f) = S(r, f). So,dA # a/(2cA). Similarly, we can show
that dA # —a/(2cA). Therefore, f has no multiple a-points and N(r, a; f |>2) =
S(r, ).

Case II. Let y # 1. We put

D = E(a; f) N E(a; fV) N E(a; L) N E(a; LY). (2.19)
Let 79 € D be a multiple a-point of ). Then clearly y(zo) = 1 and so
Np(r.a; fV122) S N(r, 1; x) = S(r, ), (2.20)

where we denote by Np(r,a; f|>2) (Np(r,a; fV|>2)) the counting function
(reduced counting function) of those multiple a-points of ! which belong to D.
Now, using (2.15) and (2.20),

N(r,a; fV122) < No(r, @ f) + Ne(r, a fO) + Np(r, a; f7 12 2)
< nNp(r,a; fV[>2) =S, f).

This proves the lemma. O
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Levma 2.3. Let f be a nonconstant entire function and a be a nonzero finite number.
Suppose that A = E(a; f)\E(a; fV) and B = E(a; f")\(E(a; L) N E(a; L'V)). Then
¢ =LY = fOY/(f - a) is an entire function provided the following hold:

() Na(ra; f)+ Ba(r,a; fO) = S(r, f;

(i) En(ra f)CE(a; fV) N E(a; LD); and

(i) Eq(a; f) N EQ©; LV) = 0.

Proor. We note that

fP=LY~(f - a). 2.21)
Differentiating (2.21) and using it repeatedly,

O =P+ pelV + qu(f - a),

where P is a differential polynomial in L®» whose coefficients are differential poly-
nomials in ¢ with constant coefficients, py = (=1)¥"1¢*~! + p; and ¢ = (=1)*¢* + Gi.

We note that p; and g, are differential polynomials in ¢ with constant coefficients
whose terms contain some derivatives of ¢. Further, y; <k—2, I <k-1, y5 <
k—T1and Iy <k.

Now .
LW = Z arfED = A+ LD 1+ 5(f - a), (2.22)
k=1
where
A= Z axPiy1,
k=1
£=(1V'ae" + Y (~D'agt + > apin
k=1 =1
and

n—1 n
n= (_1)n+1an¢n+1 + Z(_l)k+1ak¢k+l + Z st
k=1 k=1

Differentiating (2.22) and using (2.21),

L? = AD +£LP + (+ ENLY + @Y - np)(f - @) (2.23)
Eliminating LV from (2.22) and (2.23),
X=Y(f-a), (2.24)
where
X=(1-HL? = (1 =AY +£L7) - €V + A
and

Y=V +nn+ 1 -60" - ng).
Since T'(r, ) =S (r, f), wesee that T(r, &) + T(r, ) + T(r, Y) =S (r, ).
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Let X £ 0. Then, from (2.24),
1 i) =T Y) =5, /).
f—a

Now m(r, X/(fV' — a)) = S (r, f) and, by Lemma 2.2 and (2.15), we get from (2.24)

X f—a
N(l", fT—a) < N(r, Y) + N(I’, fT—(J)
< N(rya; fV 12 2) + Np(r, a; V) + Ne(rya; fV) + S(r, f)
=S, f)

where C is given by (2.14).

Therefore, T(r, X/(fV —a))=S(r, f) and so m(r,a; f)=S(r, f). Hence, by
Lemma 2.1, f = L = @e®, which implies that ¢ = 0.

Let X=0. Under the hypotheses, ¢ has no simple pole. Let zop be a pole
of ¢ with multiplicity ¢ >2. Then z¢ is a pole of p,,; with multiplicity at most
(- Dyp,., +1p,., <@-1Dm—-1)+n=nt—(t—1) <nt. Hence, 7 is a pole of £ with
multiplicity nt. Also, zg is a pole of G, with multiplicity at most (£ — 1)yz,,, + Iz, <
(t—1n+n+1=nt+1<@m+ 1)t. Hence, z9 is a pole of  with multiplicity (n + 1)z.

Since f is an entire function, from (2.22) we see that zy is a pole of A with
multiplicity (n + 1)t. A simple calculation reveals that zg is a pole of £A!) — DA
with multiplicity (n + 1)t + nt + 1. Since

X=(1-§L? — AV + £LP) + EAD — DA) + £LP + 1A

and 2(n + Dt >max{nt, m+ Dt + 1, (n + 1)t + nt + 1, 2nt}, we see that zy is a pole
of X. This is impossible as X =0. Hence, ¢ is an entire function. This proves the
lemma. O

3. Proof of Theorem 1.1

Let ¢ = (LY — fD)/(f — a). Then, by Lemma 2.3, ¢ is an entire function. Also,
T(r, ¢) = m(r, $) = S(r, f). First, we suppose that ¢ # 0. Then

L0 — f0)
m(r, f) = m(r, a+ T) <m(r, fOY+S(r, ) <m(r, )+ S )

and so T(r, f) = T(r, fV) + S(r, f).
Differentiating f = a + (L) — f(V)/¢,

(o= e
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Since ¢ is entire, we have 1 + (1/¢) £ 0 and so

fo 1 (( 1 )(1) LM (1 )L(2) - f@ )

O _q " 1+(1)<1> T _q 0 _q

¢

¢
¢

This implies that m(r, fV/(f — a)) = S (r, f) and so m(r, a; fV) = S(r, f).
Again, by Lemma 2.2 and (2.10),

N(r,a; fO)=N(r,a; fO)+ S, f) = N(rya; fV| f = a) + S, f).
Therefore,

m(r,a; ) =T(r, f)— N, a; f)+S(r, f)
= T(r, f) = N(r.a: /) + S(r. f)
= N@r,a, fV) = N@r,a; f) + S, f)
=N(r,a; fV| f=a) - N(r,a; f) + 5(r, f)
<S8 f).
So, by Lemma 2.1, f = L = aé’.

Let ¢=0. Then LV = fU and so L= f +d, where d is a constant. Let =
(L= LYY/(f - a). Then m(r, ) = S(r, f) and

N(r, ) < Na(r, a; f) + Ng(r, a; f1) =S, £).

If 79 € D, then clearly L (zg) — (1 — ¢(z9))L1V(z9) = 0, where D is given by (2.19). We
put g = (L? — (1 =)L) /(fV — a) and g; = (LP - (1 =)L) /(f - a).
Then m(r, g1) + m(r, g2) = S(r, f). Also, by Lemma 2.2 and (2.15),

N(r, g1) < Ng(r, a; fV) + Ne(r, a; f) + N(r, a; fV 122) =S (r, f)

and
N(r, g2) < Na(r, a; ) + Np(r, a; f1) = S (r, f),

where C is given by (2.14). Therefore, T(r, g1) + T(r, g22) =S, f).

Let L@ — (1 —y)LY £ 0. Then m(r, (fV - a)/(f — a)) = m(r, g2/g1) = S (r, f) and
so m(r, a; f) =S (r, f). Hence, by Lemma 2.1, L = ae®, where a # 0 is a constant. So,
L=L"Y =L® and y = 0, which contradicts the supposition that L® — (1 — y)L" 0.
Therefore, L® — (1 — )LV is indeed identically zero, that is,

L?P -1 -y =0. 3.1
Let ¢ # 0. Differentiating L — LV = y(f — a),

LY - 1@ =yO(f = a) + gD, (3.2)
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Eliminating L® from (3.1) and (3.2),

WLV =y O - @) +yf . (3.3)

Since f is nonconstant and LV = f, from (3.2) we have ¢V =0 and so ¢ is a
constant.
First, we suppose that a + d = 0. Then

L-LO g
L R

andso fV/(f —a) =1 — ¢ = c, say, a constant. Integrating, f = a + Ke®*, where K # 0
is a constant. Since f is nonconstant, we see that ¢ # 0. Now

LY = i ar f&D = (i akck) = (i akck)L(').

k=1 k=1 k=1

Since LV = fM £ 0, we get 3}, axc* = 1. So,

n n
L= kZ_; Clkf(k) = (kz_l: akck)KeL'z —Ke“ and L= f(l) = Kee®.

Since E(a; f) = 0, we have, in view of (2.15),
N(r, a; fV) < Np(r, a; fO) + Ne(r, a; fO) + Np(r, a; fO) = S(r, f),

where C and D are respectively given by (2.14) and (2.19); this is a contradiction.
Therefore, a + d # 0.

Now
11 (f+d_1)_ 1 ( L _1)
f-a a+d\f-a Ca+d\f-a

implies that m(r, a; f) = S (7, f). So, by Lemma 2.1, L = @e®, where a # 0 is a constant.
This contradicts our assumption that ¢ # 0. Therefore, indeed, ¥ = 0 and so L = LD,
Hence, L = ae®, where a # 0 is a constant.

If N(r,a; f)#S(r, f), by the hypotheses, we get d =0 and so f=L. Hence,
f=L=aé.

Let N(r,a; f)=S(r, f). Since f=L—-d=ae* —d, we get d=—a. Therefore,
f =a+ ae®. This proves the theorem.

4. An open question

__Is it possible to replace the hypothesis (i) of Theorem 1.1 by Nu(r, a; f) +
Np(r,a; fV)=S(r, f)?
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