UNIQUENESS OF ENTIRE FUNCTIONS SHARING A VALUE WITH LINEAR DIFFERENTIAL POLYNOMIALS

INDRAJIT LAHIRI ${ }^{\boxtimes}$ and RAJIB MUKHERJEE

(Received 18 May 2011)

Abstract

We study the uniqueness of entire functions sharing a nonzero finite value with linear differential polynomials and improve a result of P . Li.

2010 Mathematics subject classification: primary 30D35.
Keywords and phrases: entire function, linear differential polynomial, value sharing.

1. Introduction, definitions and results

Let f be a nonconstant entire function in the open complex plane \mathbb{C}. We denote by $\bar{E}(a ; f)$ the set of distinct a-points of f. We also respectively denote by $\bar{E}_{1)}(a ; f)$ and $\bar{E}_{(2}(a ; f)$ the sets of distinct simple and multiple a-points of f.

In 1986 Jank et al. [2] proved a uniqueness theorem for entire functions sharing a single value with two derivatives. Their results can be stated as follows.

Theorem A [2]. Let f be a nonconstant entire function and a be a nonzero finite number. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(2)}\right)$, then $f \equiv f^{(1)}$.

In fact, in Theorem A f and $f^{(1)}$ share the value a, counting multiplicities. Considering $f=e^{\omega z}+\omega-1$, where $\omega^{n-1}=1, \omega \neq 1$ and $m \geq 3$ is an integer, and $a=\omega$, we can verify that the second derivative in Theorem A cannot, in general, be replaced by the m th derivative for $m \geq 3$ (see [7]).

In 1995 Zhong [7] generalised Theorem A and proved the following theorem.
Theorem B [7]. Let f be a nonconstant entire function and $a \neq 0$ be a finite number. If f and $f^{(1)}$ share the value a, counting multiplicities, and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(n)}\right) \cap$ $\bar{E}\left(a ; f^{(n+1)}\right)$ for $n \geq 1$, then $f \equiv f^{(n)}$.

For $A \subset \mathbb{C}$, we denote by $N_{A}(r, a ; f)\left(\bar{N}_{A}(r, a ; f)\right)$ the counting function (reduced counting function) of those a-points of f which belong to A.

Recently, Theorem B was improved in the following manner.

[^0]Theorem C [3]. Let f be a nonconstant entire function and a, b be two nonzero finite constants. Suppose further that $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left\{\bar{E}\left(a ; f^{(n)}\right) \cap\right.$ $\left.\bar{E}\left(b ; f^{(n+1)}\right)\right\}$ for $n \geq 1$. If each common zero of $f-a$ and $f^{(1)}-a$ has the same multiplicity and $N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$, then $f=\lambda e^{b z / a}+\left(a b-a^{2}\right) / b$ or $f=\lambda e^{b z / a}+a$, where $\lambda \neq 0$ is a constant.

Throughout the paper, we denote by L a nonconstant linear differential polynomial in f of the form

$$
L=a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)},
$$

where $a_{1}, a_{2}, \ldots, a_{n}, a_{n} \neq 0$, are constants.
In 1999 Li [4] improved and extended Theorem B by considering a linear differential polynomial. He proved the following theorem.

Theorem D [4]. Let f be a nonconstant entire function and $a \neq 0$ be a finite number. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{1}\right)$, then $f \equiv f^{(1)} \equiv L$.

For other results on linear differential polynomials, one may see [5, 6].
In this paper, we improve Theorem D in the following manner.
Theorem 1.1. Let f be a nonconstant entire function and $a \neq 0$ be a finite number. Suppose further that:
(i) $\quad N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=$ $\bar{E}\left(r, f^{(1)}\right) \backslash\left(\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right) ;$
(ii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$; and
(iii) $\bar{E}_{(2}(a ; f) \cap \bar{E}\left(0 ; L^{(1)}\right)=\emptyset$.

Then $L=\alpha e^{z}$ and $f=\alpha e^{z}$ or $f=a+\alpha e^{z}$, where $\alpha \neq 0$ is a constant.
Putting $A=B=\emptyset$ in Theorem 1.1, we get the following result.
Corollary 1.2. Let f be a nonconstant entire function and $a \neq 0$ be a finite number. If $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \subset \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)$, then $L=\alpha e^{z}$ and $f=\alpha e^{z}$ or $f=a+\alpha e^{z}$, where $\alpha \neq 0$ is a constant.

For standard definitions and notation in value distribution theory, we refer the reader to [1]. However, we require the following definitions.

Definition 1.3. Let f and g be two nonconstant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$, we denote by $N(r, a ; f \mid g \neq b)(\bar{N}(r, a ; f \mid g \neq b))$ the counting function (reduced counting function) of those a-points of f which are not the b-points of g.

Definition 1.4. Let f and g be two nonconstant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$, we denote by $N(r, a ; f \mid g=b)(\bar{N}(r, a ; f \mid g=b))$ the counting function (reduced counting function) of those a-points of f which are the b-points of g.

Defintion 1.5. Let f and g be two nonconstant meromorphic functions defined in \mathbb{C}. For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer k, we denote by $N(r, a ; f \mid \geq k)(N(r, a ; f \mid \leq k))$ the counting function of those a-points of f whose multiplicities are not less (greater) than k. By $\bar{N}(r, a ; f \mid \geq k)$ and $\bar{N}(r, a ; f \mid \leq k)$, we denote the corresponding reduced counting functions.

The following definition is well known.
Definition 1.6. Let f be a nonconstant meromorphic function in \mathbb{C}. Suppose that

$$
M_{j}[f]=a_{j}(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}} \cdots\left(f^{\left(p_{j}\right)}\right)^{n_{p_{j} j}}
$$

is a differential monomial in f, where a_{j} is a small function of f. We denote by $\gamma_{M_{j}}=$ $\sum_{k=0}^{p_{j}} n_{k j}$ and by $\Gamma_{M_{j}}=\sum_{k=0}^{p_{j}}(1+k) n_{k j}$ the degree and weight of $M_{j}[f]$, respectively. The numbers $\gamma_{P}=\max _{1 \leq j \leq n} \gamma_{M_{j}}$ and $\Gamma_{P}=\max _{1 \leq j \leq n} \Gamma_{M_{j}}$ are respectively called the degree and weight of the differential polynomial $P[f]=\sum_{j=1}^{n} M_{j}[f]$.

2. Lemmas

In this section, we present some necessary lemmas.
Lemma 2.1. Let f be a nonconstant entire function and a be a nonzero finite complex number. Then $f=L=\alpha e^{z}$, where α is a nonzero constant, provided the following hold:
(i) $m(r, a ; f)=S(r, f)$;
(ii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right)$;
(iii) $\quad N_{A}(r, a ; f)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash\left(\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right) \cap \bar{E}\left(a ; f^{(1)}\right)\right)$.

Proof. Let

$$
\begin{equation*}
\lambda=\frac{f^{(1)}-a}{f-a} . \tag{2.1}
\end{equation*}
$$

From the hypothesis, we see that λ has no simple pole and $T(r, \lambda)=S(r, f)$. From (2.1),

$$
\begin{equation*}
f^{(1)}=\lambda_{1} f+\mu_{1}, \tag{2.2}
\end{equation*}
$$

where $\lambda_{1}=\lambda$ and $\mu_{1}=a(1-\lambda)$. Differentiating (2.2),

$$
f^{(k)}=\lambda_{k} f+\mu_{k},
$$

where λ_{k} and μ_{k} are meromorphic functions satisfying $\lambda_{k+1}=\lambda_{k}^{(1)}+\lambda_{1} \lambda_{k}$ and $\mu_{k+1}=$ $\mu_{k}^{(1)}+\mu_{1} \lambda_{k}$ for $k=1,2,3, \ldots$. Also, we see that $T\left(r, \lambda_{k}\right)+T\left(r, \mu_{k}\right)=S(r, f)$ for $k=$ $1,2,3, \ldots$.

Now

$$
\begin{equation*}
L=\left(\sum_{k=1}^{n} a_{k} \lambda_{k}\right) f+\sum_{k=1}^{n} a_{k} \mu_{k}=\xi f+\eta, \text { say } . \tag{2.3}
\end{equation*}
$$

Clearly, $T(r, \xi)+T(r, \eta)=S(r, f)$. Differentiating (2.3),

$$
\begin{equation*}
L^{(1)}=\xi f^{(1)}+\xi^{(1)} f+\eta^{(1)} . \tag{2.4}
\end{equation*}
$$

Let $z_{0} \notin A$ be an a-point of f. Then, from (2.3) and (2.4), $a \xi\left(z_{0}\right)+\eta\left(z_{0}\right)=a$ and $a \xi\left(z_{0}\right)+a \xi^{(1)}\left(z_{0}\right)+\eta^{(1)}\left(z_{0}\right)=a$.

If $a \xi+\eta \not \equiv a$, then

$$
\begin{aligned}
N(r, a ; f) & \leq N(r, a ; f \mid \leq 1)+N_{A}(r, a ; f) \\
& \leq N(r, a ; a \xi+\eta)+S(r, f)=S(r, f),
\end{aligned}
$$

which is impossible because $m(r, a ; f)=S(r, f)$. Hence, $a \xi+\eta \equiv a$. Similarly, $a \xi+a \xi^{(1)}+\eta^{(1)} \equiv a$. This implies that $\xi \equiv 1$ and $\eta \equiv 0$. So, from (2.3), $L \equiv f$.

By actual calculation, we see that $\lambda_{2}=\lambda^{2}+\lambda^{(1)}$ and $\lambda_{3}=\lambda^{3}+3 \lambda \lambda^{(1)}+\lambda^{(2)}$. We now verify that, in general,

$$
\begin{equation*}
\lambda_{k}=\lambda^{k}+P_{k-1}[\lambda] \tag{2.5}
\end{equation*}
$$

where $P_{k-1}[\lambda]$ is a differential polynomial in λ with constant coefficients such that $\gamma_{P_{k-1}} \leq k-1$ and $\Gamma_{P_{k-1}} \leq k$. Also, each term of $P_{k-1}[\lambda]$ contains some derivative of λ.

Let (2.5) be true. Then

$$
\lambda_{k+1}=\lambda_{k}^{(1)}+\lambda_{1} \lambda_{k}=\left(\lambda^{k}+P_{k-1}[\lambda]\right)^{(1)}+\lambda\left(\lambda^{k}+P_{k-1}[\lambda]\right)=\lambda^{k+1}+P_{k}[\lambda],
$$

noting that differentiation does not increase the degree of a differential polynomial but increases its weight by 1 . So, (2.5) is verified by mathematical induction.

Since $\xi \equiv 1$, from (2.5),

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \lambda^{k}+\sum_{k=1}^{n} a_{k} P_{k-1}[\lambda] \equiv 1 \tag{2.6}
\end{equation*}
$$

Let z_{0} be a pole of λ with multiplicity $p \geq 2$. Then z_{0} is a pole of $\sum_{k=1}^{n} a_{k} \lambda^{k}$ with multiplicity $n p$ and it is a pole of $\sum_{k=1}^{n} a_{k} P_{k-1}[\lambda]$ with multiplicity at most $(n-1) p+1$. Since $n p>(n-1) p+1$, it follows that z_{0} is a pole of the left-hand side of (2.6) with multiplicity $n p$, which is impossible. So, λ is an entire function. If λ is transcendental, then by the Clunie lemma we get from (2.6) that $T(r, \lambda)=S(r, \lambda)$, which is a contradiction. If λ is a polynomial of degree $d \geq 1$, then the left-hand side of (2.6) is a polynomial of degree $n d$ with leading coefficient $a_{n} \neq 0$, which is also a contradiction. Therefore, λ is a constant and, so, from (2.5), $\lambda_{k}=\lambda^{k}$ for $k=1,2,3, \ldots$

Since $\xi \equiv 1$, we see that $\sum_{k=1}^{n} a_{k} \lambda^{k}=1$. Also, from (2.2), $f^{(2)}=\lambda f^{(1)}$ and so $f^{(1)}=\alpha \lambda e^{\lambda z}$ and $f=\alpha e^{\lambda z}+\beta$, where $\alpha \neq 0$ and β are constants.

Now

$$
L=\left(\sum_{k=1}^{n} a_{k} \lambda^{k}\right) \alpha e^{\lambda z}=\alpha e^{\lambda z}
$$

Since $f \equiv L, \beta=0$. Since $N_{A}(r, a ; f)=S(r, f)$ and $N(r, a ; f)=T(r, f)+S(r, f)$, we see that $\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \neq \emptyset$. So, $f^{(1)}=\lambda f$ implies that $\lambda=1$. Hence, $f=\alpha e^{z}$. This proves the lemma.

Lemma 2.2. Let f be a nonconstant entire function and a be a nonzero finite complex number. Let $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left(\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right)$. If $N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$, then $N\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)$.
Proof. Let $\chi=\left(L-f^{(1)}\right) /(f-a)$ and $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$. Then

$$
m(r, \chi)+m(r, \phi)=S(r, f)
$$

and

$$
N(r, \chi)+N(r, \phi) \leq 2\left(N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)\right)=S(r, f) .
$$

So, $T(r, \chi)+T(r, \phi)=S(r, f)$.
First, we suppose that $L \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(1)}$. Then $L^{(1)} \equiv L^{(2)} \equiv f^{(2)}$. Hence, $f^{(2)} \equiv$ $f^{(1)}$, which shows that $f^{(1)}$ has no multiple a-points, and so $N\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)$.

Now we suppose that $L^{(1)} \not \equiv L$. Then, by the hypothesis,

$$
\begin{align*}
\bar{N}\left(r, a ; f^{(1)}\right) & \leq N\left(r, 1 ; \frac{L^{(1)}}{L}\right)+N_{B}\left(r, a ; f^{(1)}\right) \\
& \leq T\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \tag{2.7}\\
& =N\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \\
& \leq N(r, 0 ; L)+S(r, f) .
\end{align*}
$$

Again,

$$
\begin{aligned}
m(r, a ; f) & \leq m\left(r, \frac{L}{f-a}\right)+m\left(r, \frac{1}{L}\right) \\
& =T(r, L)-N(r, 0 ; L)+S(r, f) \\
& \leq m(r, f)+m\left(r, \frac{L}{f}\right)-N(r, 0 ; L)+S(r, f) \\
& \leq T(r, f)-N(r, 0 ; L)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N(r, 0 ; L) \leq N(r, a ; f)+S(r, f) \tag{2.8}
\end{equation*}
$$

Also,

$$
\begin{align*}
N(r, a ; f) & =N\left(r, a ; f \mid f^{(1)}=a\right)+N_{A}(r, a ; f) \\
& \leq \bar{N}\left(r, a ; f^{(1)}\right)+S(r, f) \tag{2.9}
\end{align*}
$$

From (2.7), (2.8) and (2.9),

$$
\bar{N}\left(r, a ; f^{(1)}\right)=N(r, a ; f)+S(r, f)
$$

and so

$$
\begin{equation*}
\bar{N}\left(r, a ; f^{(1)} \mid f \neq a\right)=S(r, f) \tag{2.10}
\end{equation*}
$$

Next we suppose that $L^{(1)} \not \equiv f^{(1)}$. Then, replacing L by $f^{(1)}$ in the above argument, we can prove (2.10).

We now consider the following cases.
Case I. Let $\chi \equiv 1$. Then $L-f^{(1)} \equiv f-a$ and so $L^{(1)}-f^{(2)} \equiv f^{(1)}$. This implies that

$$
\begin{equation*}
f^{(2)} \equiv \phi(f-a) . \tag{2.11}
\end{equation*}
$$

Now we suppose that ϕ is nonconstant. Differentiating (2.11) and using it repeatedly, we get, for $n \geq 2$,

$$
f^{(n)}=P_{n} f^{(1)}+Q_{n}(f-a)
$$

where

$$
P_{n}= \begin{cases}P_{n}^{*} & \text { if } n \text { is even and } \gamma_{P_{n}^{*}} \leq \frac{n}{2}-1 \\ \phi^{(n-1) / 2}+P_{n}^{*} & \text { if } n \text { is odd and } \gamma_{P_{n}^{*}} \leq \frac{n-1}{2}-1\end{cases}
$$

and

$$
Q_{n}= \begin{cases}\phi^{n / 2}+Q_{n}^{*} & \text { if } n \text { is even and } \gamma_{Q_{n}^{*}} \leq \frac{n}{2}-1 \\ Q_{n}^{*} & \text { if } n \text { is odd and } \gamma_{Q_{n}^{*}} \leq \frac{n-1}{2}-1\end{cases}
$$

and P_{n}^{*} and Q_{n}^{*} are differential polynomials in ϕ with constant coefficients.
Now

$$
\begin{equation*}
L^{(1)}=\left(\sum_{k=1}^{n} a_{k} P_{k+1}\right) f^{(1)}+\left(\sum_{k=1}^{n} a_{k} Q_{k+1}\right)(f-a) . \tag{2.12}
\end{equation*}
$$

Let $n \geq 2$ be even. Then, from (2.12), $L^{(1)}=\xi f^{(1)}+\eta(f-a)$, where $\xi=a_{n} \phi^{n / 2}+$ $\tilde{P}_{n+1}, \eta=a_{n-1} \phi^{n / 2}+\tilde{Q}_{n}$ and $\gamma_{\tilde{P}_{n+1}} \leq(n / 2)-1, \gamma_{\tilde{Q}_{n}} \leq(n / 2)-1$. Since $L^{(1)}=f^{(1)}+$ $\phi(f-a)$, we have $(1-\xi) f^{(1)}=(\eta-\phi)(f-a)$. If $1-\xi \equiv 0$, then $n=0$, which is impossible.

Let n be odd. Then, from (2.12), $L^{(1)}=\xi f^{(1)}+\eta(f-a)$, where $\xi=a_{n-1} \phi^{(n-1) / 2}+$ $\tilde{P}_{n}, \eta=a_{n} \phi^{(n+1) / 2}+\tilde{Q}_{n+1}$ and $\gamma_{\tilde{P}_{n}} \leq(n-1) / 2-1, \gamma_{\tilde{Q}_{n+1}} \leq(n+1) / 2-1$. Since $L^{(1)}=$ $f^{(1)}+\phi(f-a)$, we have $(1-\xi) f^{(1)}=(\eta-\phi)(f-a)$. If $1-\xi \equiv 0$, then $\eta \equiv \phi$ and so $n=1$ and $a_{1}=1$. Hence, $L=f^{(1)}$, which is impossible as $\chi \equiv 1$.

Therefore, in general, $1-\xi \not \equiv 0$ and so

$$
\frac{f^{(1)}}{f-a}=\frac{\eta-\phi}{1-\xi}
$$

Hence, $\bar{N}(r, a ; f)=N\left(r, f^{(1)} /(f-a)\right)=N(r,(\eta-\phi) /(1-\xi))=S(r, f)$. This shows that

$$
\begin{align*}
N(r, a ; f) & =N_{A}(r, a ; f)+N\left(r, a ; f \mid f^{(1)}=a\right) \\
& \leq \bar{N}(r, a ; f)+S(r, f) \tag{2.13}\\
& =S(r, f) .
\end{align*}
$$

Let

$$
\begin{equation*}
C=\left(\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right) \backslash \bar{E}(a ; f) \tag{2.14}
\end{equation*}
$$

By (2.10),

$$
\begin{equation*}
N_{C}\left(r, a ; f^{(1)}\right) \leq n \bar{N}_{C}\left(r, a ; f^{(1)}\right)=S(r, f) \tag{2.15}
\end{equation*}
$$

Hence, by (2.13) and (2.15),

$$
\begin{equation*}
N\left(r, a ; f^{(1)}\right) \leq n N(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)+N_{C}\left(r, a ; f^{(1)}\right)=S(r, f) . \tag{2.16}
\end{equation*}
$$

Now we suppose that ϕ is a constant. Then, from (2.11),

$$
\begin{equation*}
f=a+c^{2} e^{\lambda^{2} z}-d^{2} e^{-\lambda^{2} z} \tag{2.17}
\end{equation*}
$$

where c, d are constants and $\lambda^{4}=\phi$. Since f is nonconstant, we see that $\lambda \neq 0$.
If $c=0$ or $d=0$, then $N(r, a ; f)=S(r, f)$ and we can deduce (2.16). Let $c d \neq 0$. Then, from (2.17),

$$
\begin{equation*}
f-a=e^{-\lambda^{2} z}\left(c e^{\lambda^{2} z}-d\right)\left(c e^{\lambda^{2} z}+d\right) \tag{2.18}
\end{equation*}
$$

and

$$
f^{(1)}-a=e^{-\lambda^{2} z}\left(\left(c \lambda e^{\lambda^{2} z}-\frac{a}{2 c \lambda}\right)^{2}+\left(d^{2} \lambda^{2}-\frac{a^{2}}{4 c^{2} \lambda^{2}}\right)\right)
$$

So, $f^{(1)}$ has multiple a-points only if $d \lambda= \pm a /(2 c \lambda)$. Let $d \lambda=a /(2 c \lambda)$. Then, from (2.18),

$$
\begin{aligned}
N_{A}(r, a ; f) & =N\left(r,-\frac{a}{2 c^{2} \lambda^{2}} ; e^{\lambda^{2} z}\right) \\
& =T\left(r, e^{\lambda^{2} z}\right)+S\left(r, e^{\lambda^{2} z}\right) \\
& =\frac{1}{2} T(r, f)+S(r, f),
\end{aligned}
$$

which is impossible as $N_{A}(r, a ; f)=S(r, f)$. So, $d \lambda \neq a /(2 c \lambda)$. Similarly, we can show that $d \lambda \neq-a /(2 c \lambda)$. Therefore, $f^{(1)}$ has no multiple a-points and $N\left(r, a ; f^{(1)} \mid \geq 2\right)=$ $S(r, f)$.
Case II. Let $\chi \not \equiv 1$. We put

$$
\begin{equation*}
D=\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right) . \tag{2.19}
\end{equation*}
$$

Let $z_{0} \in D$ be a multiple a-point of $f^{(1)}$. Then clearly $\chi\left(z_{0}\right)=1$ and so

$$
\begin{equation*}
\bar{N}_{D}\left(r, a ; f^{(1)} \mid \geq 2\right) \leq N(r, 1 ; \chi)=S(r, f), \tag{2.20}
\end{equation*}
$$

where we denote by $N_{D}\left(r, a ; f^{(1)} \mid \geq 2\right)\left(\bar{N}_{D}\left(r, a ; f^{(1)} \mid \geq 2\right)\right.$) the counting function (reduced counting function) of those multiple a-points of $f^{(1)}$ which belong to D.

Now, using (2.15) and (2.20),

$$
\begin{aligned}
N\left(r, a ; f^{(1)} \mid \geq 2\right) & \leq N_{B}\left(r, a ; f^{(1)}\right)+N_{C}\left(r, a ; f^{(1)}\right)+N_{D}\left(r, a ; f^{(1)} \mid \geq 2\right) \\
& \leq n \bar{N}_{D}\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f) .
\end{aligned}
$$

This proves the lemma.

Lemma 2.3. Let f be a nonconstant entire function and a be a nonzero finite number. Suppose that $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left(\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right)$. Then $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$ is an entire function provided the following hold:
(i) $\quad N_{A}(r, a ; f)+B_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$;
(ii) $\bar{E}_{1)}(r, a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$; and
(iii) $\bar{E}_{(2}(a ; f) \cap \bar{E}\left(0 ; L^{(1)}\right)=\emptyset$.

Proof. We note that

$$
\begin{equation*}
f^{(1)}=L^{(1)}-\phi(f-a) \tag{2.21}
\end{equation*}
$$

Differentiating (2.21) and using it repeatedly,

$$
f^{(k)}=P_{k}+p_{k} L^{(1)}+q_{k}(f-a),
$$

where P_{k} is a differential polynomial in $L^{(2)}$ whose coefficients are differential polynomials in ϕ with constant coefficients, $p_{k}=(-1)^{k-1} \phi^{k-1}+\tilde{p}_{k}$ and $q_{k}=(-1)^{k} \phi^{k}+\tilde{q}_{k}$.

We note that \tilde{p}_{k} and \tilde{q}_{k} are differential polynomials in ϕ with constant coefficients whose terms contain some derivatives of ϕ. Further, $\gamma_{\tilde{p}_{k}} \leq k-2, \Gamma_{\tilde{p}_{k}} \leq k-1, \gamma_{\tilde{q}_{k}} \leq$ $k-1$ and $\Gamma_{\tilde{q}_{k}} \leq k$.

Now

$$
\begin{equation*}
L^{(1)}=\sum_{k=1}^{n} a_{k} f^{(k+1)}=A+\xi L^{(1)}+\eta(f-a), \tag{2.22}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\sum_{k=1}^{n} a_{k} P_{k+1}, \\
\xi=(-1)^{n} a_{n} \phi^{n}+\sum_{k=1}^{n}(-1)^{k} a_{k} \phi^{k}+\sum_{k=1}^{n} a_{k} \tilde{p}_{k+1}
\end{gathered}
$$

and

$$
\eta=(-1)^{n+1} a_{n} \phi^{n+1}+\sum_{k=1}^{n-1}(-1)^{k+1} a_{k} \phi^{k+1}+\sum_{k=1}^{n} a_{k} \tilde{q}_{k+1} .
$$

Differentiating (2.22) and using (2.21),

$$
\begin{equation*}
L^{(2)}=A^{(1)}+\xi L^{(2)}+\left(\eta+\xi^{(1)}\right) L^{(1)}+\left(\eta^{(1)}-\eta \phi\right)(f-a) . \tag{2.23}
\end{equation*}
$$

Eliminating $L^{(1)}$ from (2.22) and (2.23),

$$
\begin{equation*}
X=Y(f-a) \tag{2.24}
\end{equation*}
$$

where

$$
X=(1-\xi) L^{(2)}-(1-\xi)\left(A^{(1)}+\xi L^{(2)}\right)-\left(\xi^{(1)}+\eta\right) A
$$

and

$$
Y=\left(\xi^{(1)}+\eta\right) \eta+(1-\xi)\left(\eta^{(1)}-\eta \phi\right) .
$$

Since $T(r, \phi)=S(r, f)$, we see that $T(r, \xi)+T(r, \eta)+T(r, Y)=S(r, f)$.

Let $X \not \equiv 0$. Then, from (2.24),

$$
T\left(r, \frac{X}{f-a}\right)=T(r, Y)=S(r, f)
$$

Now $m\left(r, X /\left(f^{(1)}-a\right)\right)=S(r, f)$ and, by Lemma 2.2 and (2.15), we get from (2.24)

$$
\begin{aligned}
N\left(r, \frac{X}{f^{(1)}-a}\right) & \leq N(r, Y)+N\left(r, \frac{f-a}{f^{(1)}-a}\right) \\
& \leq N\left(r, a ; f^{(1)} \mid \geq 2\right)+N_{B}\left(r, a ; f^{(1)}\right)+N_{C}\left(r, a ; f^{(1)}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

where C is given by (2.14).
Therefore, $T\left(r, X /\left(f^{(1)}-a\right)\right)=S(r, f)$ and so $m(r, a ; f)=S(r, f)$. Hence, by Lemma 2.1, $f=L=\alpha e^{z}$, which implies that $\phi \equiv 0$.

Let $X \equiv 0$. Under the hypotheses, ϕ has no simple pole. Let z_{0} be a pole of ϕ with multiplicity $t \geq 2$. Then z_{0} is a pole of \tilde{p}_{n+1} with multiplicity at most $(t-1) \gamma_{\tilde{p}_{n+1}}+\Gamma_{\tilde{p}_{n+1}} \leq(t-1)(n-1)+n=n t-(t-1)<n t$. Hence, z_{0} is a pole of ξ with multiplicity $n t$. Also, z_{0} is a pole of \tilde{q}_{n+1} with multiplicity at $\operatorname{most}(t-1) \gamma_{\tilde{q}_{n+1}}+\Gamma_{\tilde{q}_{n+1}} \leq$ $(t-1) n+n+1=n t+1<(n+1) t$. Hence, z_{0} is a pole of η with multiplicity $(n+1) t$.

Since f is an entire function, from (2.22) we see that z_{0} is a pole of A with multiplicity $(n+1) t$. A simple calculation reveals that z_{0} is a pole of $\xi A^{(1)}-\xi^{(1)} A$ with multiplicity $(n+1) t+n t+1$. Since

$$
X=(1-\xi) L^{(2)}-\left(A^{(1)}+\xi L^{(2)}\right)+\left(\xi A^{(1)}-\xi^{(1)} A\right)+\xi^{2} L^{(2)}+\eta A
$$

and $2(n+1) t>\max \{n t,(n+1) t+1,(n+1) t+n t+1,2 n t\}$, we see that z_{0} is a pole of X. This is impossible as $X \equiv 0$. Hence, ϕ is an entire function. This proves the lemma.

3. Proof of Theorem 1.1

Let $\phi=\left(L^{(1)}-f^{(1)}\right) /(f-a)$. Then, by Lemma 2.3, ϕ is an entire function. Also, $T(r, \phi)=m(r, \phi)=S(r, f)$. First, we suppose that $\phi \not \equiv 0$. Then

$$
m(r, f)=m\left(r, a+\frac{L^{(1)}-f^{(1)}}{\phi}\right) \leq m\left(r, f^{(1)}\right)+S(r, f) \leq m(r, f)+S(r, f)
$$

and so $T(r, f)=T\left(r, f^{(1)}\right)+S(r, f)$.
Differentiating $f=a+\left(L^{(1)}-f^{(1)}\right) / \phi$,

$$
\left(1+\left(\frac{1}{\phi}\right)^{(1)}\right) f^{(1)}=\left(\frac{1}{\phi}\right)^{(1)} L^{(1)}+\frac{1}{\phi}\left(L^{(2)}-f^{(2)}\right)
$$

Since ϕ is entire, we have $1+(1 / \phi)^{(1)} \not \equiv 0$ and so

$$
\frac{f^{(1)}}{f^{(1)}-a}=\frac{1}{1+\left(\frac{1}{\phi}\right)^{(1)}}\left(\left(\frac{1}{\phi}\right)^{(1)} \frac{L^{(1)}}{f^{(1)}-a}+\left(\frac{1}{\phi}\right) \frac{L^{(2)}-f^{(2)}}{f^{(1)}-a}\right) .
$$

This implies that $m\left(r, f^{(1)} /\left(f^{(1)}-a\right)\right)=S(r, f)$ and so $m\left(r, a ; f^{(1)}\right)=S(r, f)$.
Again, by Lemma 2.2 and (2.10),

$$
N\left(r, a ; f^{(1)}\right)=\bar{N}\left(r, a ; f^{(1)}\right)+S(r, f)=\bar{N}\left(r, a ; f^{(1)} \mid f=a\right)+S(r, f) .
$$

Therefore,

$$
\begin{aligned}
m(r, a ; f) & =T(r, f)-N(r, a ; f)+S(r, f) \\
& =T\left(r, f^{(1)}\right)-N(r, a ; f)+S(r, f) \\
& =N\left(r, a ; f^{(1)}\right)-N(r, a ; f)+S(r, f) \\
& =\bar{N}\left(r, a ; f^{(1)} \mid f=a\right)-N(r, a ; f)+S(r, f) \\
& \leq S(r, f)
\end{aligned}
$$

So, by Lemma 2.1, $f=L=\alpha e^{z}$.
Let $\phi \equiv 0$. Then $L^{(1)} \equiv f^{(1)}$ and so $L=f+d$, where d is a constant. Let $\psi=$ $\left(L-L^{(1)}\right) /(f-a)$. Then $m(r, \psi)=S(r, f)$ and

$$
N(r, \psi) \leq N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)
$$

If $z_{0} \in D$, then clearly $L^{(2)}\left(z_{0}\right)-\left(1-\psi\left(z_{0}\right)\right) L^{(1)}\left(z_{0}\right)=0$, where D is given by (2.19). We put $g_{1}=\left(L^{(2)}-(1-\psi) L^{(1)}\right) /\left(f^{(1)}-a\right)$ and $g_{2}=\left(L^{(2)}-(1-\psi) L^{(1)}\right) /(f-a)$.

Then $m\left(r, g_{1}\right)+m\left(r, g_{2}\right)=S(r, f)$. Also, by Lemma 2.2 and (2.15),

$$
N\left(r, g_{1}\right) \leq N_{B}\left(r, a ; f^{(1)}\right)+N_{C}\left(r, a ; f^{(1)}\right)+N\left(r, a ; f^{(1)} \mid \geq 2\right)=S(r, f)
$$

and

$$
N\left(r, g_{2}\right) \leq N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f),
$$

where C is given by (2.14). Therefore, $T\left(r, g_{1}\right)+T\left(r, g_{2}\right)=S(r, f)$.
Let $L^{(2)}-(1-\psi) L^{(1)} \not \equiv 0$. Then $m\left(r,\left(f^{(1)}-a\right) /(f-a)\right)=m\left(r, g_{2} / g_{1}\right)=S(r, f)$ and so $m(r, a ; f)=S(r, f)$. Hence, by Lemma 2.1, $L=\alpha e^{z}$, where $\alpha \neq 0$ is a constant. So, $L \equiv L^{(1)} \equiv L^{(2)}$ and $\psi \equiv 0$, which contradicts the supposition that $L^{(2)}-(1-\psi) L^{(1)} \not \equiv 0$. Therefore, $L^{(2)}-(1-\psi) L^{(1)}$ is indeed identically zero, that is,

$$
\begin{equation*}
L^{(2)}-(1-\psi) L^{(1)} \equiv 0 \tag{3.1}
\end{equation*}
$$

Let $\psi \not \equiv 0$. Differentiating $L-L^{(1)} \equiv \psi(f-a)$,

$$
\begin{equation*}
L^{(1)}-L^{(2)} \equiv \psi^{(1)}(f-a)+\psi f^{(1)} \tag{3.2}
\end{equation*}
$$

Eliminating $L^{(2)}$ from (3.1) and (3.2),

$$
\begin{equation*}
\psi L^{(1)} \equiv \psi^{(1)}(f-a)+\psi f^{(1)} \tag{3.3}
\end{equation*}
$$

Since f is nonconstant and $L^{(1)} \equiv f^{(1)}$, from (3.2) we have $\psi^{(1)} \equiv 0$ and so ψ is a constant.

First, we suppose that $a+d=0$. Then

$$
\psi=\frac{L-L^{(1)}}{f-a}=1-\frac{L^{(1)}}{f-a}=1-\frac{f^{(1)}}{f-a}
$$

and so $f^{(1)} /(f-a)=1-\psi=c$, say, a constant. Integrating, $f=a+K e^{c z}$, where $K \neq 0$ is a constant. Since f is nonconstant, we see that $c \neq 0$. Now

$$
L^{(1)}=\sum_{k=1}^{n} a_{k} f^{(k+1)}=\left(\sum_{k=1}^{n} a_{k} c^{k}\right) f^{(1)}=\left(\sum_{k=1}^{n} a_{k} c^{k}\right) L^{(1)}
$$

Since $L^{(1)} \equiv f^{(1)} \not \equiv 0$, we get $\sum_{k=1}^{n} a_{k} c^{k}=1$. So,

$$
L=\sum_{k=1}^{n} a_{k} f^{(k)}=\left(\sum_{k=1}^{n} a_{k} c^{k}\right) K e^{c z}=K e^{c z} \quad \text { and } \quad L^{(1)} \equiv f^{(1)} \equiv K c e^{c z}
$$

Since $\bar{E}(a ; f)=\emptyset$, we have, in view of (2.15),

$$
N\left(r, a ; f^{(1)}\right) \leq N_{B}\left(r, a ; f^{(1)}\right)+N_{C}\left(r, a ; f^{(1)}\right)+N_{D}\left(r, a ; f^{(1)}\right)=S(r, f),
$$

where C and D are respectively given by (2.14) and (2.19); this is a contradiction. Therefore, $a+d \neq 0$.

Now

$$
\frac{1}{f-a}=\frac{1}{a+d}\left(\frac{f+d}{f-a}-1\right)=\frac{1}{a+d}\left(\frac{L}{f-a}-1\right)
$$

implies that $m(r, a ; f)=S(r, f)$. So, by Lemma 2.1, $L=\alpha e^{z}$, where $\alpha \neq 0$ is a constant. This contradicts our assumption that $\psi \not \equiv 0$. Therefore, indeed, $\psi \equiv 0$ and so $L \equiv L^{(1)}$. Hence, $L=\alpha e^{z}$, where $\alpha \neq 0$ is a constant.

If $N(r, a ; f) \neq S(r, f)$, by the hypotheses, we get $d=0$ and so $f \equiv L$. Hence, $f=L=\alpha e^{z}$.

Let $N(r, a ; f)=S(r, f)$. Since $f=L-d=\alpha e^{z}-d$, we get $d=-a$. Therefore, $f=a+\alpha e^{z}$. This proves the theorem.

4. An open question

Is it possible to replace the hypothesis (i) of Theorem 1.1 by $\bar{N}_{A}(r, a ; f)+$ $\bar{N}_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$?

References

[1] W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).
[2] G. Jank, E. Mues and L. Volkmann, 'Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen', Complex Var. Theory Appl. 6 (1986), 51-71.
[3] I. Lahiri and G. K. Ghosh, 'Entire functions sharing values with their derivatives', Analysis (Munich) 31 (2011), 47-59.
[4] P. Li, 'Entire functions that share one value with their linear differential polynomials', Kodai Math. J. 22 (1999), 446-457.
[5] P. Li, 'Value sharing on entire functions and their linear differential polynomials', J. China Univ. Sci. Tech. 29(4) (1999), 387-393.
[6] W. Wang and P. Li, 'Unicity of entire functions and their linear differential polynomials', Complex Var. Elliptic Equ. 49(11) (2004), 821-832.
[7] H. Zhong, 'Entire functions that share one value with their derivatives', Kodai Math. J. 18 (1995), 250-259.

INDRAJIT LAHIRI, Department of Mathematics, University of Kalyani, West Bengal 741235, India
e-mail: ilahiri@hotmail.com
RAJIB MUKHERJEE, Department of Mathematics, Krishnanath College, Baharampur, West Bengal 742101, India
e-mail: rajib_raju786@yahoo.com

[^0]: (c) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

