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Abstract

We study the uniqueness of entire functions sharing a nonzero finite value with linear differential
polynomials and improve a result of P. Li.
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1. Introduction, definitions and results

Let f be a nonconstant entire function in the open complex plane C. We denote by
E(a; f ) the set of distinct a-points of f . We also respectively denote by E1)(a; f ) and
E(2(a; f ) the sets of distinct simple and multiple a-points of f .

In 1986 Jank et al. [2] proved a uniqueness theorem for entire functions sharing a
single value with two derivatives. Their results can be stated as follows.

T A [2]. Let f be a nonconstant entire function and a be a nonzero finite
number. If E(a; f ) = E(a; f (1)) and E(a; f ) ⊂ E(a; f (2)), then f ≡ f (1).

In fact, in Theorem A f and f (1) share the value a, counting multiplicities.
Considering f = eωz + ω − 1, whereωn−1 = 1,ω , 1 and m ≥ 3 is an integer, and a = ω,
we can verify that the second derivative in Theorem A cannot, in general, be replaced
by the mth derivative for m ≥ 3 (see [7]).

In 1995 Zhong [7] generalised Theorem A and proved the following theorem.

T B [7]. Let f be a nonconstant entire function and a , 0 be a finite number.
If f and f (1) share the value a, counting multiplicities, and E(a; f ) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n ≥ 1, then f ≡ f (n).

For A ⊂ C, we denote by NA(r, a; f ) (NA(r, a; f )) the counting function (reduced
counting function) of those a-points of f which belong to A.

Recently, Theorem B was improved in the following manner.
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T C [3]. Let f be a nonconstant entire function and a, b be two nonzero finite
constants. Suppose further that A = E(a; f )\E(a; f (1)) and B = E(a; f (1))\{E(a; f (n)) ∩
E(b; f (n+1))} for n ≥ 1. If each common zero of f − a and f (1) − a has the same
multiplicity and NA(r, a; f ) + NB(r, a; f (1)) = S (r, f ), then f = λebz/a + (ab − a2)/b or
f = λebz/a + a, where λ , 0 is a constant.

Throughout the paper, we denote by L a nonconstant linear differential polynomial
in f of the form

L = a1 f (1) + a2 f (2) + · · · + an f (n),

where a1, a2, . . . , an, an , 0, are constants.
In 1999 Li [4] improved and extended Theorem B by considering a linear

differential polynomial. He proved the following theorem.

T D [4]. Let f be a nonconstant entire function and a , 0 be a finite number.
If E(a; f ) = E(a; f (1)) and E(a; f ) ⊂ E(a; L) ∩ E(a; L1), then f ≡ f (1) ≡ L.

For other results on linear differential polynomials, one may see [5, 6].
In this paper, we improve Theorem D in the following manner.

T 1.1. Let f be a nonconstant entire function and a , 0 be a finite number.
Suppose further that:

(i) NA(r, a; f ) + NB(r, a; f (1)) = S (r, f ), where A = E(a; f )\E(a; f (1)) and B =

E(r, f (1))\(E(a; L) ∩ E(a; L(1)));
(ii) E1)(a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)); and
(iii) E(2(a; f ) ∩ E(0; L(1)) = ∅.

Then L = αez and f = αez or f = a + αez, where α , 0 is a constant.

Putting A = B = ∅ in Theorem 1.1, we get the following result.

C 1.2. Let f be a nonconstant entire function and a , 0 be a finite number.
If E(a; f ) ⊂ E(a; f (1)) ⊂ E(a; L) ∩ E(a; L(1)), then L = αez and f = αez or f = a + αez,
where α , 0 is a constant.

For standard definitions and notation in value distribution theory, we refer the reader
to [1]. However, we require the following definitions.

D 1.3. Let f and g be two nonconstant meromorphic functions defined in C.
For a, b ∈ C ∪ {∞}, we denote by N(r, a; f | g , b) (N(r, a; f | g , b)) the counting
function (reduced counting function) of those a-points of f which are not the b-points
of g.

D 1.4. Let f and g be two nonconstant meromorphic functions defined in C.
For a, b ∈ C ∪ {∞}, we denote by N(r, a; f | g = b) (N(r, a; f | g = b)) the counting
function (reduced counting function) of those a-points of f which are the b-points
of g.
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D 1.5. Let f and g be two nonconstant meromorphic functions defined in C.
For a ∈ C ∪ {∞} and a positive integer k, we denote by N(r, a; f |≥ k) (N(r, a; f |≤ k))
the counting function of those a-points of f whose multiplicities are not less (greater)
than k. By N(r, a; f |≥ k) and N(r, a; f |≤ k), we denote the corresponding reduced
counting functions.

The following definition is well known.

D 1.6. Let f be a nonconstant meromorphic function in C. Suppose that

M j[ f ] = a j( f )n0 j ( f (1))n1 j · · · ( f (p j))np j j

is a differential monomial in f , where a j is a small function of f . We denote by γM j =∑p j

k=0 nk j and by ΓM j =
∑p j

k=0(1 + k)nk j the degree and weight of M j[ f ], respectively.
The numbers γP = max1≤ j≤n γM j and ΓP = max1≤ j≤n ΓM j are respectively called the
degree and weight of the differential polynomial P[ f ] =

∑n
j=1 M j[ f ].

2. Lemmas

In this section, we present some necessary lemmas.

L 2.1. Let f be a nonconstant entire function and a be a nonzero finite complex
number. Then f = L = αez, where α is a nonzero constant, provided the following hold:

(i) m(r, a; f ) = S (r, f );
(ii) E1)(a; f ) ⊂ E(a; f (1));
(iii) NA(r, a; f ) = S (r, f ), where A = E(a; f )\(E(a; L) ∩ E(a; L(1)) ∩ E(a; f (1))).

P. Let

λ =
f (1) − a
f − a

. (2.1)

From the hypothesis, we see that λ has no simple pole and T (r, λ) = S (r, f ).
From (2.1),

f (1) = λ1 f + µ1, (2.2)

where λ1 = λ and µ1 = a(1 − λ). Differentiating (2.2),

f (k) = λk f + µk,

where λk and µk are meromorphic functions satisfying λk+1 = λ(1)
k + λ1λk and µk+1 =

µ(1)
k + µ1λk for k = 1, 2, 3, . . . . Also, we see that T (r, λk) + T (r, µk) = S (r, f ) for k =

1, 2, 3, . . . .
Now

L =

( n∑
k=1

akλk

)
f +

n∑
k=1

akµk = ξ f + η, say. (2.3)

Clearly, T (r, ξ) + T (r, η) = S (r, f ). Differentiating (2.3),

L(1) = ξ f (1) + ξ(1) f + η(1). (2.4)
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Let z0 < A be an a-point of f . Then, from (2.3) and (2.4), aξ(z0) + η(z0) = a and
aξ(z0) + aξ(1)(z0) + η(1)(z0) = a.

If aξ + η . a, then

N(r, a; f ) ≤ N(r, a; f |≤ 1) + NA(r, a; f )

≤ N(r, a; aξ + η) + S (r, f ) = S (r, f ),

which is impossible because m(r, a; f ) = S (r, f ). Hence, aξ + η ≡ a. Similarly,
aξ + aξ(1) + η(1) ≡ a. This implies that ξ ≡ 1 and η ≡ 0. So, from (2.3), L ≡ f .

By actual calculation, we see that λ2 = λ2 + λ(1) and λ3 = λ3 + 3λλ(1) + λ(2). We
now verify that, in general,

λk = λk + Pk−1[λ], (2.5)

where Pk−1[λ] is a differential polynomial in λ with constant coefficients such that
γPk−1 ≤ k − 1 and ΓPk−1 ≤ k. Also, each term of Pk−1[λ] contains some derivative of λ.

Let (2.5) be true. Then

λk+1 = λ(1)
k + λ1λk = (λk + Pk−1[λ])(1) + λ(λk + Pk−1[λ]) = λk+1 + Pk[λ],

noting that differentiation does not increase the degree of a differential polynomial but
increases its weight by 1. So, (2.5) is verified by mathematical induction.

Since ξ ≡ 1, from (2.5),

n∑
k=1

akλ
k +

n∑
k=1

akPk−1[λ] ≡ 1. (2.6)

Let z0 be a pole of λ with multiplicity p ≥ 2. Then z0 is a pole of
∑n

k=1 akλ
k

with multiplicity np and it is a pole of
∑n

k=1 akPk−1[λ] with multiplicity at most
(n − 1)p + 1. Since np > (n − 1)p + 1, it follows that z0 is a pole of the left-hand side
of (2.6) with multiplicity np, which is impossible. So, λ is an entire function. If λ
is transcendental, then by the Clunie lemma we get from (2.6) that T (r, λ) = S (r, λ),
which is a contradiction. If λ is a polynomial of degree d ≥ 1, then the left-hand side
of (2.6) is a polynomial of degree nd with leading coefficient an , 0, which is also a
contradiction. Therefore, λ is a constant and, so, from (2.5), λk = λk for k = 1, 2, 3, . . . .

Since ξ ≡ 1, we see that
∑n

k=1 akλ
k = 1. Also, from (2.2), f (2) = λ f (1) and so

f (1) = αλeλz and f = αeλz + β, where α , 0 and β are constants.
Now

L =

( n∑
k=1

akλ
k
)
αeλz = αeλz.

Since f ≡ L, β = 0. Since NA(r, a; f ) = S (r, f ) and N(r, a; f ) = T (r, f ) + S (r, f ), we
see that E(a; f ) ∩ E(a; f (1)) , ∅. So, f (1) = λ f implies that λ = 1. Hence, f = αez.
This proves the lemma. �

https://doi.org/10.1017/S0004972711002966 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002966


[5] Uniqueness of entire functions 299

L 2.2. Let f be a nonconstant entire function and a be a nonzero finite complex
number. Let A = E(a; f )\E(a; f (1)) and B = E(a; f (1))\(E(a; L) ∩ E(a; L(1))). If
NA(r, a; f ) + NB(r, a; f (1)) = S (r, f ), then N(r, a; f (1) |≥ 2) = S (r, f ).

P. Let χ = (L − f (1))/( f − a) and φ = (L(1) − f (1))/( f − a). Then

m(r, χ) + m(r, φ) = S (r, f )

and
N(r, χ) + N(r, φ) ≤ 2(NA(r, a; f ) + NB(r, a; f (1))) = S (r, f ).

So, T (r, χ) + T (r, φ) = S (r, f ).
First, we suppose that L ≡ L(1) and L(1) ≡ f (1). Then L(1) ≡ L(2) ≡ f (2). Hence, f (2) ≡

f (1), which shows that f (1) has no multiple a-points, and so N(r, a; f (1) |≥ 2) = S (r, f ).
Now we suppose that L(1) . L. Then, by the hypothesis,

N(r, a; f (1)) ≤ N
(
r, 1;

L(1)

L

)
+ NB(r, a; f (1))

≤ T
(
r,

L(1)

L

)
+ S (r, f )

= N
(
r,

L(1)

L

)
+ S (r, f )

≤ N(r, 0; L) + S (r, f ).

(2.7)

Again,

m(r, a; f ) ≤ m
(
r,

L
f − a

)
+ m

(
r,

1
L

)
= T (r, L) − N(r, 0; L) + S (r, f )

≤ m(r, f ) + m
(
r,

L
f

)
− N(r, 0; L) + S (r, f )

≤ T (r, f ) − N(r, 0; L) + S (r, f )

and so
N(r, 0; L) ≤ N(r, a; f ) + S (r, f ). (2.8)

Also,
N(r, a; f ) = N(r, a; f | f (1) = a) + NA(r, a; f )

≤ N(r, a; f (1)) + S (r, f ).
(2.9)

From (2.7), (2.8) and (2.9),

N(r, a; f (1)) = N(r, a; f ) + S (r, f )

and so
N(r, a; f (1) | f , a) = S (r, f ). (2.10)
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Next we suppose that L(1) . f (1). Then, replacing L by f (1) in the above argument,
we can prove (2.10).

We now consider the following cases.

Case I. Let χ ≡ 1. Then L − f (1) ≡ f − a and so L(1) − f (2) ≡ f (1). This implies that

f (2) ≡ φ( f − a). (2.11)

Now we suppose that φ is nonconstant. Differentiating (2.11) and using it
repeatedly, we get, for n ≥ 2,

f (n) = Pn f (1) + Qn( f − a),

where

Pn =


P∗n if n is even and γP∗n ≤

n
2
− 1,

φ(n−1)/2 + P∗n if n is odd and γP∗n ≤
n − 1

2
− 1

and

Qn =


φn/2 + Q∗n if n is even and γQ∗n ≤

n
2
− 1,

Q∗n if n is odd and γQ∗n ≤
n − 1

2
− 1,

and P∗n and Q∗n are differential polynomials in φ with constant coefficients.
Now

L(1) =

( n∑
k=1

akPk+1

)
f (1) +

( n∑
k=1

akQk+1

)
( f − a). (2.12)

Let n ≥ 2 be even. Then, from (2.12), L(1) = ξ f (1) + η( f − a), where ξ = anφ
n/2 +

P̃n+1, η = an−1φ
n/2 + Q̃n and γP̃n+1

≤ (n/2) − 1, γQ̃n
≤ (n/2) − 1. Since L(1) = f (1) +

φ( f − a), we have (1 − ξ) f (1) = (η − φ)( f − a). If 1 − ξ ≡ 0, then n = 0, which is
impossible.

Let n be odd. Then, from (2.12), L(1) = ξ f (1) + η( f − a), where ξ = an−1φ
(n−1)/2 +

P̃n, η = anφ
(n+1)/2 + Q̃n+1 and γP̃n

≤ (n − 1)/2 − 1, γQ̃n+1
≤ (n + 1)/2 − 1. Since L(1) =

f (1) + φ( f − a), we have (1 − ξ) f (1) = (η − φ)( f − a). If 1 − ξ ≡ 0, then η ≡ φ and so
n = 1 and a1 = 1. Hence, L = f (1), which is impossible as χ ≡ 1.

Therefore, in general, 1 − ξ . 0 and so

f (1)

f − a
=
η − φ

1 − ξ
.

Hence, N(r, a; f ) = N(r, f (1)/( f − a)) = N(r, (η − φ)/(1 − ξ)) = S (r, f ). This shows
that

N(r, a; f ) = NA(r, a; f ) + N(r, a; f | f (1) = a)

≤ N(r, a; f ) + S (r, f )

= S (r, f ).

(2.13)
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Let
C = (E(a; f (1)) ∩ E(a; L) ∩ E(a; L(1)))\E(a; f ). (2.14)

By (2.10),
NC(r, a; f (1)) ≤ nNC(r, a; f (1)) = S (r, f ). (2.15)

Hence, by (2.13) and (2.15),

N(r, a; f (1)) ≤ nN(r, a; f ) + NB(r, a; f (1)) + NC(r, a; f (1)) = S (r, f ). (2.16)

Now we suppose that φ is a constant. Then, from (2.11),

f = a + c2eλ
2z − d2e−λ

2z, (2.17)

where c, d are constants and λ4 = φ. Since f is nonconstant, we see that λ , 0.
If c = 0 or d = 0, then N(r, a; f ) = S (r, f ) and we can deduce (2.16). Let cd , 0.

Then, from (2.17),
f − a = e−λ

2z(ceλ
2z − d)(ceλ

2z + d) (2.18)

and

f (1) − a = e−λ
2z
((

cλeλ
2z −

a
2cλ

)2

+

(
d2λ2 −

a2

4c2λ2

))
.

So, f (1) has multiple a-points only if dλ = ±a/(2cλ). Let dλ = a/(2cλ). Then,
from (2.18),

NA(r, a; f ) = N
(
r, −

a
2c2λ2

; eλ
2z
)

= T (r, eλ
2z) + S (r, eλ

2z)

=
1
2

T (r, f ) + S (r, f ),

which is impossible as NA(r, a; f ) = S (r, f ). So, dλ , a/(2cλ). Similarly, we can show
that dλ , −a/(2cλ). Therefore, f (1) has no multiple a-points and N(r, a; f (1) |≥ 2) =

S (r, f ).

Case II. Let χ . 1. We put

D = E(a; f ) ∩ E(a; f (1)) ∩ E(a; L) ∩ E(a; L(1)). (2.19)

Let z0 ∈ D be a multiple a-point of f (1). Then clearly χ(z0) = 1 and so

ND(r, a; f (1) |≥ 2) ≤ N(r, 1; χ) = S (r, f ), (2.20)

where we denote by ND(r, a; f (1) |≥ 2) (ND(r, a; f (1) |≥ 2)) the counting function
(reduced counting function) of those multiple a-points of f (1) which belong to D.

Now, using (2.15) and (2.20),

N(r, a; f (1) |≥ 2) ≤ NB(r, a; f (1)) + NC(r, a; f (1)) + ND(r, a; f (1) |≥ 2)

≤ nND(r, a; f (1) |≥ 2) = S (r, f ).

This proves the lemma. �
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L 2.3. Let f be a nonconstant entire function and a be a nonzero finite number.
Suppose that A = E(a; f )\E(a; f (1)) and B = E(a; f (1))\(E(a; L) ∩ E(a; L(1))). Then
φ = (L(1) − f (1))/( f − a) is an entire function provided the following hold:

(i) NA(r, a; f ) + BB(r, a; f (1)) = S (r, f );
(ii) E1)(r, a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)); and
(iii) E(2(a; f ) ∩ E(0; L(1)) = ∅.

P. We note that
f (1) = L(1) − φ( f − a). (2.21)

Differentiating (2.21) and using it repeatedly,

f (k) = Pk + pkL(1) + qk( f − a),

where Pk is a differential polynomial in L(2) whose coefficients are differential poly-
nomials in φ with constant coefficients, pk = (−1)k−1φk−1 + p̃k and qk = (−1)kφk + q̃k.

We note that p̃k and q̃k are differential polynomials in φ with constant coefficients
whose terms contain some derivatives of φ. Further, γ p̃k ≤ k − 2, Γp̃k ≤ k − 1, γq̃k ≤

k − 1 and Γq̃k ≤ k.
Now

L(1) =

n∑
k=1

ak f (k+1) = A + ξL(1) + η( f − a), (2.22)

where

A =

n∑
k=1

akPk+1,

ξ = (−1)nanφ
n +

n∑
k=1

(−1)kakφ
k +

n∑
k=1

ak p̃k+1

and

η = (−1)n+1anφ
n+1 +

n−1∑
k=1

(−1)k+1akφ
k+1 +

n∑
k=1

akq̃k+1.

Differentiating (2.22) and using (2.21),

L(2) = A(1) + ξL(2) + (η + ξ(1))L(1) + (η(1) − ηφ)( f − a). (2.23)

Eliminating L(1) from (2.22) and (2.23),

X = Y( f − a), (2.24)

where
X = (1 − ξ)L(2) − (1 − ξ)(A(1) + ξL(2)) − (ξ(1) + η)A

and
Y = (ξ(1) + η)η + (1 − ξ)(η(1) − ηφ).

Since T (r, φ) = S (r, f ), we see that T (r, ξ) + T (r, η) + T (r, Y) = S (r, f ).
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Let X . 0. Then, from (2.24),

T
(
r,

X
f − a

)
= T (r, Y) = S (r, f ).

Now m(r, X/( f (1) − a)) = S (r, f ) and, by Lemma 2.2 and (2.15), we get from (2.24)

N
(
r,

X
f (1) − a

)
≤ N(r, Y) + N

(
r,

f − a
f (1) − a

)
≤ N(r, a; f (1) |≥ 2) + NB(r, a; f (1)) + NC(r, a; f (1)) + S (r, f )

= S (r, f ),

where C is given by (2.14).
Therefore, T (r, X/( f (1) − a)) = S (r, f ) and so m(r, a; f ) = S (r, f ). Hence, by

Lemma 2.1, f = L = αez, which implies that φ ≡ 0.
Let X ≡ 0. Under the hypotheses, φ has no simple pole. Let z0 be a pole

of φ with multiplicity t ≥ 2. Then z0 is a pole of p̃n+1 with multiplicity at most
(t − 1)γp̃n+1 + Γ p̃n+1 ≤ (t − 1)(n − 1) + n = nt − (t − 1) < nt. Hence, z0 is a pole of ξ with
multiplicity nt. Also, z0 is a pole of q̃n+1 with multiplicity at most (t − 1)γq̃n+1 + Γq̃n+1 ≤

(t − 1)n + n + 1 = nt + 1 < (n + 1)t. Hence, z0 is a pole of η with multiplicity (n + 1)t.
Since f is an entire function, from (2.22) we see that z0 is a pole of A with

multiplicity (n + 1)t. A simple calculation reveals that z0 is a pole of ξA(1) − ξ(1)A
with multiplicity (n + 1)t + nt + 1. Since

X = (1 − ξ)L(2) − (A(1) + ξL(2)) + (ξA(1) − ξ(1)A) + ξ2L(2) + ηA

and 2(n + 1)t > max{nt, (n + 1)t + 1, (n + 1)t + nt + 1, 2nt}, we see that z0 is a pole
of X. This is impossible as X ≡ 0. Hence, φ is an entire function. This proves the
lemma. �

3. Proof of Theorem 1.1

Let φ = (L(1) − f (1))/( f − a). Then, by Lemma 2.3, φ is an entire function. Also,
T (r, φ) = m(r, φ) = S (r, f ). First, we suppose that φ . 0. Then

m(r, f ) = m
(
r, a +

L(1) − f (1)

φ

)
≤ m(r, f (1)) + S (r, f ) ≤ m(r, f ) + S (r, f )

and so T (r, f ) = T (r, f (1)) + S (r, f ).
Differentiating f = a + (L(1) − f (1))/φ,(

1 +

(1
φ

)(1))
f (1) =

(1
φ

)(1)

L(1) +
1
φ

(L(2) − f (2)).
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Since φ is entire, we have 1 + (1/φ)(1) . 0 and so

f (1)

f (1) − a
=

1

1 +

(
1
φ

)(1)

((1
φ

)(1) L(1)

f (1) − a
+

(1
φ

)L(2) − f (2)

f (1) − a

)
.

This implies that m(r, f (1)/( f (1) − a)) = S (r, f ) and so m(r, a; f (1)) = S (r, f ).
Again, by Lemma 2.2 and (2.10),

N(r, a; f (1)) = N(r, a; f (1)) + S (r, f ) = N(r, a; f (1) | f = a) + S (r, f ).

Therefore,

m(r, a; f ) = T (r, f ) − N(r, a; f ) + S (r, f )

= T (r, f (1)) − N(r, a; f ) + S (r, f )

= N(r, a; f (1)) − N(r, a; f ) + S (r, f )

= N(r, a; f (1) | f = a) − N(r, a; f ) + S (r, f )

≤ S (r, f ).

So, by Lemma 2.1, f = L = αez.
Let φ ≡ 0. Then L(1) ≡ f (1) and so L = f + d, where d is a constant. Let ψ =

(L − L(1))/( f − a). Then m(r, ψ) = S (r, f ) and

N(r, ψ) ≤ NA(r, a; f ) + NB(r, a; f (1)) = S (r, f ).

If z0 ∈ D, then clearly L(2)(z0) − (1 − ψ(z0))L(1)(z0) = 0, where D is given by (2.19). We
put g1 = (L(2) − (1 − ψ)L(1))/( f (1) − a) and g2 = (L(2) − (1 − ψ)L(1))/( f − a).

Then m(r, g1) + m(r, g2) = S (r, f ). Also, by Lemma 2.2 and (2.15),

N(r, g1) ≤ NB(r, a; f (1)) + NC(r, a; f (1)) + N(r, a; f (1) |≥ 2) = S (r, f )

and
N(r, g2) ≤ NA(r, a; f ) + NB(r, a; f (1)) = S (r, f ),

where C is given by (2.14). Therefore, T (r, g1) + T (r, g2) = S (r, f ).
Let L(2) − (1 − ψ)L(1) . 0. Then m(r, ( f (1) − a)/( f − a)) = m(r, g2/g1) = S (r, f ) and

so m(r, a; f ) = S (r, f ). Hence, by Lemma 2.1, L = αez, where α , 0 is a constant. So,
L ≡ L(1) ≡ L(2) and ψ ≡ 0, which contradicts the supposition that L(2) − (1 − ψ)L(1) . 0.
Therefore, L(2) − (1 − ψ)L(1) is indeed identically zero, that is,

L(2) − (1 − ψ)L(1) ≡ 0. (3.1)

Let ψ . 0. Differentiating L − L(1) ≡ ψ( f − a),

L(1) − L(2) ≡ ψ(1)( f − a) + ψ f (1). (3.2)
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Eliminating L(2) from (3.1) and (3.2),

ψL(1) ≡ ψ(1)( f − a) + ψ f (1). (3.3)

Since f is nonconstant and L(1) ≡ f (1), from (3.2) we have ψ(1) ≡ 0 and so ψ is a
constant.

First, we suppose that a + d = 0. Then

ψ =
L − L(1)

f − a
= 1 −

L(1)

f − a
= 1 −

f (1)

f − a

and so f (1)/( f − a) = 1 − ψ = c, say, a constant. Integrating, f = a + Kecz, where K , 0
is a constant. Since f is nonconstant, we see that c , 0. Now

L(1) =

n∑
k=1

ak f (k+1) =

( n∑
k=1

akck
)

f (1) =

( n∑
k=1

akck
)
L(1).

Since L(1) ≡ f (1) . 0, we get
∑n

k=1 akck = 1. So,

L =

n∑
k=1

ak f (k) =

( n∑
k=1

akck
)
Kecz = Kecz and L(1) ≡ f (1) ≡ Kcecz.

Since E(a; f ) = ∅, we have, in view of (2.15),

N(r, a; f (1)) ≤ NB(r, a; f (1)) + NC(r, a; f (1)) + ND(r, a; f (1)) = S (r, f ),

where C and D are respectively given by (2.14) and (2.19); this is a contradiction.
Therefore, a + d , 0.

Now
1

f − a
=

1
a + d

( f + d
f − a

− 1
)

=
1

a + d

( L
f − a

− 1
)

implies that m(r, a; f ) = S (r, f ). So, by Lemma 2.1, L = αez, where α , 0 is a constant.
This contradicts our assumption that ψ . 0. Therefore, indeed, ψ ≡ 0 and so L ≡ L(1).
Hence, L = αez, where α , 0 is a constant.

If N(r, a; f ) , S (r, f ), by the hypotheses, we get d = 0 and so f ≡ L. Hence,
f = L = αez.

Let N(r, a; f ) = S (r, f ). Since f = L − d = αez − d, we get d = −a. Therefore,
f = a + αez. This proves the theorem.

4. An open question

Is it possible to replace the hypothesis (i) of Theorem 1.1 by NA(r, a; f ) +

NB(r, a; f (1)) = S (r, f )?
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