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Abstract. Two coupled bilinear equations are considered, and then two new
coupled differential-difference systems are found. Also two special reductions of
these two systems are studied. By using Hirota’s method, Backlund transformation
and superposition formulae, soliton solutions to these equations are presented.
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1. Introduction. During the past twenty-nine years or so, Hirota’s bilinear
method [1-6] has become a powerful tool to find exact solutions of nonlinear equa-
tions in both continuous and discrete cases. There are two steps in applying Hirota
method, namely, firstly to transform the equations under consideration into bilinear
equations and then use perturbation techniques to solve them. We say that an
equation is a Hirota bilinear equation if it is bilinear with respect to dependent
variables and all the derivatives and differences appearing in the equation can be
expressed in terms of the Hirota bilinear operators DD and bilinear difference
operator exp(8D,) defined by [2-5]

m k
a  a\"[d 9 .
D?Di( aeb = (g — @) (& — 5) (l(Z, t)b(Z , t)':’:z,t’:t

and

exp(8D,)a(n)«b(n) = exp |:8 (% - %)}a(n)b(n/)ln/:n = a(n+ 8)b(n — §)

respectively. Hirota’s method has been successfully applied to search for integrable
equations by testing for 3-soliton, 4-soliton and even N-soliton solutions and Béicklund
transformations. (See, e.g., [6,7].) Recently, it has been shown that several integrable
lattices could be transformed into the following coupled bilinear form [8-12]:

F\(Dy, D:, sinh(ay D), - - -, sinh(c;Dy))f(n) « fn) = 0, (1
F>(Dy, D, sinh(«; Dy,), - - -, sinh(a;D,,))f(n)« f(n) = 0, 2)
where F; (i =1,2) are two even order polynomials in D,, D., sinh(«D,), ... and
sinh(o;D;,), and [ is a given positive integer; the «;,i=1,2,---,/, are [ different

constants, and
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F{0,0,---,0) = 0.

As an example, by the dependent variable transformation

b(n) = (lnﬂn + 5) ,  c(n) —w 3)

fin—3) S+ -’
the so-called Belov-Chaltikian lattice [13]

bi(n) = b(n)(b(n+ 1) — b(n — 1)) — c(n) + c(n — 1), )
c(n) = cm)(b(n +2) — b(n — 1)), (5)

is transformed into the following bilinear form [11]

(D2t — D.eP)f(n) o fln) = 0, ©6)
(D.ePr — D2ePr 4262 — 2ePn)f(n) o fin) = 0. (7)

The purpose of this paper is to search for new integrable differential-difference sys-
tems which can be written in bilinear form of type (1) and (2), and to further study
their integrable properties such as Backlund transformations and soliton solutions.

The paper is organized as follows. In the next section, a new coupled differ-
ential-difference system connected with bilinear equations (6) and (7) is proposed.
As a further reduction, a differential-difference equation is considered. By using
Mathematica, 3-soliton solutions are obtained. Section 3 is devoted to another new
integrable differential-difference system. A Bécklund transformation and the corre-
sponding nonlinear superposition formula are presented. We also consider a reduced
differential-difference equation and obtain soliton solutions. The conclusion and
discussion are given in Section 4.

2. A differential-difference system connected with the Belov-Chaltikian lattice. In
this section, we will consider the bilinear equations (6) and (7). Firstly, we derive a
new differential-difference system (i.e., z flow) from the bilinear form (6) and (7). For
this purpose, we set

fin+2)f(n) _Sfiln+ 1) fi(n)

W= " T er ) A

)

and then from (6) and (7) we can deduce the following system

u-(n) — v(n + D(v(n + 2) + v(n + 1)) + v(n)(v(n) + v(n — 1))

+ eu(i1+2)+u(n+1)+u(n) _ eu(n)+u(i1—l)+u(n—2) -0 (9)
v-(n) — v(m)(v(n + 1) + v(n) + v(n — )(v(n + 1) — v(n — 1))

+v()[v(n — Dv(n — 2) — v(n + 2)v(n + 1) + e HDFutrDtut)

_ eu(n—1)+u(n—2)+u(n—3)] + (v(n + 2) + v(n + 1) + V(n))eu(n-‘r1)+u(n)+u(n—1)

— (v(n) + v(n — 1) + v(n — 2)) U= DHu=2) — o (10)
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Since this system (9) and (10) shares the same bilinear form with the Belov-Chalti-
kian lattice, we can easily obtain its soliton solutions. For example, we have the
following one-soliton solution of (9) and (10):

u(n) = lnw w(n) :ff(n +1) _ft(”)
fn+ 1) fn+1)  fin)’
Sn) =1 +exp(n), n:P”+qZ+rl+no, (11

with

g=2"2"=1), r=rx"Ye"=1), r==+

and two-soliton solution of (9) and (10):

2 1
) 2 D)
Srn+1) fin+1)  fn)
re Pt — A — dpe ™2 Ae Pt — dye P
=1 m n N+
f) + Al — A ot Al — A2 Al — A ¢ '
ni = pin+qiz +rit + 1,
with
e%l’i — e%]h

qi = )»i_z(ezp‘ — 1), ri = )»i_l(e/”' — 1), )Ll' =+ . 3.
ezpt —e 5Di

Besides, by the same dependent variable transformations as (3), we can derive the
following system from (6) and (7)

b.(n) — b(m)(b(n 4 1) 4+ b(n) + b(n — 1))(b(n + 1) — b(n — 1))

+ b@M)[b(n — 1)b(n —2) — b(n+ 2)b(n+ 1) + c(n+ 1) — c¢(n — 2)]

+ c(m)(b(n+2) + b(n+ 1) + b(n))

—c(m—1)(b(n)+bmn—1)+b(n—2)) =0, (12)
c:(n)+cmecn+2)+cn+1)—cn—1)—c(n—2)]

+ c(m)[b(n — 1)(b(n) + b(n — 1) + b(n — 2))

—b(n+2)(b(n+3)+ b(n+2)+ b(n+ 1))] = 0. (13)

The z-variable appearing in (12) and (13) might be viewed as another time variable
(as in the continuous case) and then the system (12)—(13) obtained would be a
member of the same hierarchy of the Belov-Chaltikian lattice.

Next, we consider a special reduction of the system (9) and (10). Let v(n) = 0, we
have from (9) and (10) the following lattice [12]:

u-(n) + eLl(n+2)+u(n+1)+u(n) _ eu(n)+u(n—1)+u(n—2) —0. (14)
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In the following, we want to search for soliton solutions of the lattice (14). To this

end, set u(n) = ln-’% and then (14) can be tranformed into the following bilinear
form ‘
D_f(n+ 1)ef(n) = h(n + 1)f(n) + h(n)f(n + 1), (15)
D.fin+ 1)efin — 1)+ 2f(n+2)f(n —2) = 2f(n+ 1)f(n — 1)
=h(n+ 1)fin—1)+h(n—1)f(n+1). (16)

It can easily be verified that (15) and (16) have the following one-soliton solution
fin) =1+ Aje" + A2e™,  h(n) =",

where

1
=3 cosh(p) — 2 cosh(2p)’
Ay — 1 y 1 o sinh(p) — sinh(2p)
2cosh(p) — 2cosh(2p) = 2sinh(p) = cosh(4p) — cosh(2p)’
cosh(4p) — cosh(2p)
sinh(p) — sinh(2p)

n= z + 1o,

with p and ny being arbitrary constants. It is noted that in the continuous case the
Kaup-Kupershmidt equation also has a soliton solution of such a kind. We now
proceed to search for 3-soliton solution

f(in) =1+ A1e" + Are™ + Aze™ + 1‘14627]l + 1‘1562?72 + Asé’zn3

+A7€m+nz +Age"‘+"3 +A9enz+n3 +A]Oe2m+rlz —I—A“ez’“”}

+A12e’“+2”2 +A13€2nz+n3 +A14€n1+2n3 +Alsenz+2n3 + Ajgen T

+A1762771+2nz +A1862771+2713 +A1982'72+2n3 +A2062'11+172+713

+A216m+2nz+n3 +A226n1+nz+2n3 +A23e2m+2nz+n3

+A2462m+nz+2r13 +A256m+2nz+2n3 +A2(,ez’7‘+2”2+2”3, (17)
h(n) = Bie" + Bye™ + Bse™ + B4em+772 + Bse"‘+”3

+ B6enz+n3 +B7ez'“+”2 +BgeZWl+n3 4 Bge'“”'"

4 310627724-'73 +Bllen1+2ﬂ3 + Blzer]z+2n3 +Bl3e'll+’)2+773

+ 81462’“+”2+"3 +Blsen1+2nz+n3 +Bl6em+nz+2n3

2 2 2 2 2 2
+ Bjqe ni+2m+n3 + Bise ni+m+2n3 +B19€m+ m+ R (18)

where
xj‘ + xi’4 — x% — xi’2
-2

i

el = x;

0
c=pin+qiz+1°, L
Ni = pi qi n; qi X — xi_l — x% e

with p; and 1 being arbitrary parameters (i = 1, 2, 3). Without loss of generality, we
set B| = B, = B3 = 1. Substituting them into (15) and (16) and by using Mathema-
tica [15], we get the coefficients listed in an Appendix.
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3. Another new integrable differential-difference system. In this section, we

propose the coupled bilinear equations

(D2 — D.eP)fin)efin) = 0,
(D.eP" + D2ePr — 2ePr 4 2)f(n)of(n) = 0,

(19)
(20)

which are very similar to (6) and (7). It can be shown that by the dependent variable
transformation u(n) = (In f(n)), we can deduce the following t—flow from (19) and

(20)

(u(n + 1) + u(n) + u(n — 1)), + (u(n + 1) — u(@)(w(n + 1) — ui(n))
+ (u(n) — u(n — D)u(n) — u(n — D) + (u(n + 1) — u(n — D)(u,(n + 1)

— (= 1)+ 2u(n) — u(n — 1) — u(n + 1) + (u(n + 1) + u(n — 1) — 2u(n))

X (um~+ 1)+ um@) +un — 1), + wn+1) +u@n — 1) — 2u(n))
x [(u(n + 1) = u(n = 1)’ = (u(n + 1) — u(m)(u(n) — u(n — 1))] = 0,

(e2y)

which is nothing but the lattice proposed in [12] under the rescaling transformation
t—>2t, u(n)— %u(n). We now deduce a new system, i.e. z—flow from (19) and (20).

In this regard, we set

woy =D D i)
fomy fr D) S

From (19) and (20) we can deduce the following system

v(n)

u-(n+1) + u-(n) + u-(n — 1) + v(n)(v(n + 1) + v(n) + v(n — 1))
+ eu(n)—u(n+1) + eu(n—])—u(n) _2 = 07

(v(n -+ 1) +v(n) + v(n — 1), + v(n — D)= D740 — (5  1)e =40
+ () + 1) + v(n) + v(n = 1)) = (W + 1) + v(n) + v(n — 1))
x [Qu(n + 1) + u(n)), — 2(1 — =4ty = 0.
We have the following results for the bilinear equations (19) and (20):
PROPOSITION 1. A Bdcklund transformation for (19) and (20) is
(D,e%D” + Ao 4 ,ue%D”)f(n).g(n) =0,
(Dze%D" - )\_ID,e_%D" — )\_I/LG_%D” - a)e%D")f(n).g(n) =0,
[—Dze’% fowet + Z/AD,e’%D”
+ ule P 4 D2 4 9P — 2e 3P0 f(n) e g(n) = 0

where A, i, w and 0 are arbitrary constants.

(22)

(23)

24
(25)

(26)

PROPOSITION 2. Let fy be a solution of equations (19) and (20) and suppose that
fi(i =1,2) are solutions of (19) and (20) which are related to fy under the BT

is i, @i, Ui

0.
equations (24)—(26) with parameters (A;, Wi, w;, 0;), ie., fo ¢ — )ﬁ (i=1,2),

MM #0,/;#0(j=0,1,2). Then fi1o defined by
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exp( 300 sinfiz = srexo(~122) ~ssesp(32u) o 7

is a new solution which is related to fi and f under the BT(24)-(26) with para-
meters (Ay, 2, w2, 02), (A1, L1, w1, 0)) respectively. Here k is a nonzero constant.

These results can be proved by using Hirota’s bilinear operator identities. We do
not give the details of the proof. Instead by using the Béicklund transformation (24)—
(26) and superposition formula (27), we write down the one-soliton solution of (19)
and (20)

fin)=14exp(n), n=pn+qt+rz+n°,
with
g=2"1=1), r=1"%?’—-1), r=4Ve¥+er+1,

and two-soliton solutions of (19) and (20)

, e Pt — Ay Al — Ape™ P2 e P — hre™2
n) =1 e e
Sum) + A — X2 + Al — Ao A — A2
ni = pin+ qit + iz + 1},

e’ll+’]2’

with
Gi=x'E =), r=r7E 1), A=HVer fen 41

Next, we consider a special reduction of the system (22) and (23). Let v(n) = 0, we
have from (22) and (23) the following lattice [14]:

u-(n+ 1) + 1(n) + u-(n — 1) + "D 4 puim—utntl) _ 5 — . (28)
In the following we also search for soliton solutions of the lattice (28). To this end
set u(n) = ln>% and equation (28) can be transformed into the bilinear form
D f(n + 1)ef(n) = h(n + 1)f(n) + h(n)f(n + 1), (29)
D.f(n+ 1)efin — 1) = 2f(n + 1)fin — 1) + 2f*(n)

=—hn+ D)fin—1)—h(n— 1)fin+1). (30)
It can be easily verified that (29) and (30) have the following one-soliton solution

fin) =1+ Aje" + 4™, h(n) = ¢,

where
_ 1+ 2cosh(p)
'~ 2cosh(p) — 2
1 + 2 cosh(p) 1 sinh(p) + sinh(2p)
2= Jcosh(p) — 2 *2sinh(p) © coshp)—1 °
cosh(2p) — 1
=P GihG) + sinh2p) -
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with p and 5o being arbitrary constants. By using Hirota’s method, we can also
obtain 3-soliton solutions [14].

4. Conclusion and discussion. In summary, we have considered two coupled
bilinear equations. As a result, two new coupled differential-difference systems are
found. The first new system shares the same bilinear equations with the Belov-
Chaltikian lattice while the second new system shares the same bilinear equations
with the lattice proposed in [12]. We have also considered two special reductions of
these two systems. By using the Hirota method, soliton solutions of the two reduced
equations are obtained with the assistance of Mathematica. It is noted that these
two reduced equations exhibit soliton solutions of the Kaup-Kupershmidt equation
type. Since integrable systems share many common integrable properties, it would
be interesting to study some other integrable properties of these new systems found
in the paper. Besides, one could start to think about the construction of the Belov-
Chaltikian hierarchy in view of the fact that (12)—(13) is a member of the same
hierarchy of the Belov-Chaltikian lattice.
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5. Appendix. The coefficients of the 3-soliton solution (17) and (18).

x2

A~: ! .:1,2,3,
X —x? ¢ )

5
i o
G D+ 0k a
A7 = 4142012,  As = 4143013, A9 = A243013,

(i 4 2)(1 = 07 — X7x7 + x7%) + x] + x) — 4 + xPxg 4 ]
Q= (xix; — DX(1 4 x; 4 x; + 33 + x2x; + XiX7 4 x7x}

(i,j=12,3),
Ao = ArA4Pr2, Ay = A3AsP13, A = A14s5Pr,
Az = A3AsPy,  Awg = A14eP13,  Ais = A2AePos,
(x; — xj)z(x% + x% + xi + X+ xPx; + x,x_% =+ 3x:x;)

- (xix; — 1)2(1 + x4 x5+ 3xx; + x?xj + xjsz + x%sz
Ay = AgAsP2,, Ay = AsA6P3;, Ay = AsAgP3;,
Az = A2A3A44P12 P30,  Ax = A1 A3AsP1aP3 013,  Axn = A1A2A¢ P13 P23 01,
Ary = A3AsAsPTP13Py, Az = Ay AsAcP13P12Py,  Ars = A1AsAsP33PiaPis,
Asg = AsAsAgP1, PP, . Bs= Ry, Bs=Ri3, Bs= Ry,

ol 1,2,3).

Ai+3 =

’

(17] = 17 27 3)7

i

https://doi.org/10.1017/50017089501000052 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501000052

50 XING-BIAO HU AND HON-WAH TAM

Rij = —(xi = X)) (xi + X+ x; + 2, + 3x7; + 3x7 + X3 + 3x7 7
+ 3xij3 + 3xfxf + xtx; + xix;-1
+ x5 x50+ x5 + 60X + xx)/
[(xi = (5 = DXL+ x4+ 20+ v+ x7)
x (14 x; 4 x; + 3xx; + x7x; + xix]2 + x?x]2 ], (,j=1,2,3),
B; = A4Pr2, Bs = A4P13, By = AsPa, By = AsPx,
By = A¢P13, Bio = AgPx, By = A4P12P13Bs,
Bis = AsP12P»3Bs, Big = AgP13P33Bs, Bi7 = A4AsP1, P3P,
Bis = A4AcP1P1nPy, Big = AsAgP3P1aPis,
Ao = {Pa(pr + p2 + p3)[—A1 Ao P1(—p1 + p2 + p3) — A2AsP1(p1 — p2 + p3)
— A3A47P1(p1 + p2 — p3) + (Ag + Bs A1) P2(—p1 + p2 + p3)
+ (As + B5sA2) P2 (p1 — pa + p3) + (A7 + BaA3)Pa(p1 + p2 — p3)]
— Py(p1 + pa + p3)[—A1 A9 P3(—p1 + p2 + p3) — A2 AgP3(p1 — p2 + p3)
— A3A7P3(p1 + p2 — p3) + (A9 + Be A1) Pa(—p1 + p2 + p3)
+ (As + BsA2) Pa(p1 — p2 + p3) + (A7 + BaA3)Pa(p1 + p2 — p3)l}
/IP1(p1 + p2 + p3)Pa(p1 + p2 + p3) — Pa(p1 + p2 + p3) P3(p1 + p2 + p3)]
Bis = {P3(p1 + p2 + p3)[—A1 A9 Pi(—p1 + p2 + p3) — A2AsPi(p1 — p2 + p3)
— A3A47P1(p1 + p2 — p3) + (A9 + Bs A1) P2(—p1 + p2 + p3)
+ (As + BsA2) P2(p1 — pa + p3) + (A7 + BaA3)Pa(p1 + p2 — p3)]
— Pi(p1 + pa + p3)[=A1 A9 P3(—p1 + p2 + p3) — A2 AgP3(p1 — p2 + p3)
— A3A7P3(p1 + p2 — p3) + (Ao + Be A1) Pa(—p1 + p2 + p3)
+ (As + BsA2)Pa(p1 — p2 + p3) + (A7 + BaA3) Pa(p1 + p2 — p3)]}
/[P\(py + p2 + p3)Pa(p1 + p2 + p3) — Pa(p1 + p2 + p3) P3(p1 + p2 + p3)]

where

3 3 3
P_/(ZUJL’) = Pj(ZGiPi, ZUiq:), (j=1,23,4)
i=1 g g

(X X
Pi(x,y)=y smh(i), Py(x, y) = cosh (5)
P;3(x, y) = ysinh(x) + 2cosh(2x) — 2cosh(x), P4(x, y) = cosh(x), o; = *1.
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