EXTREMAL PROPERTIES OF HERMITIAN MATRICES. II

M. MARCUS, B. N. MOYLS, AND R. WESTWICK

1. Introduction. Let H be an n-square Hermitian matrix with eigenvalues $h_{1} \geqslant h_{2} \geqslant \ldots \geqslant h_{n}$. Fan (2) showed that

$$
\left\{\begin{array}{l}
\max \sum_{j=1}^{k}\left(H x_{j}, x_{j}\right)=\sum_{j=1}^{k} h_{j}, \tag{1}\\
\min \sum_{j=1}^{k}\left(H x_{j}, x_{j}\right)=\sum_{j=1}^{k} h_{n-k+j}
\end{array}\right.
$$

$k=1,2, \ldots, n$, where the max and min are taken over all sets of k orthonormal (o.n.) vectors in unitary n-space V_{n}. Marcus and McGregor (3) have generalized this result in the case that H is non-negative Hermitian. For vectors $x_{1}, \ldots, x_{r}, r \leqslant n$, in V_{n}, let $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{r}$ denote the Grassmann exterior product of the x_{i}; it is a vector in V_{m}, where

$$
m=\binom{n}{r} .
$$

The r th compound of H is a Hermitian transformation of V_{m} defined by

$$
C_{r}(H) x_{1} \wedge \ldots \wedge x_{r}=H x_{1} \wedge \ldots \wedge H x_{r} .
$$

For $1 \leqslant r \leqslant k \leqslant n$, denote by $Q_{k r}$ the set of $\binom{k}{r}$ distinct sequences $w=$ $\left\{i_{1}, \ldots, i_{r}\right\}$ of integers such that $1 \leqslant i_{1}<\ldots<i_{r} \leqslant k$. For a set of vectors x_{1}, \ldots, x_{k} in V_{n}, set

$$
x_{w}=x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} .
$$

Let

$$
\begin{equation*}
g=g\left(x_{1}, \ldots, x_{k}\right)=\sum_{w \in Q_{k r}}\left(C_{r}(H) x_{w}, x_{w}\right), \tag{2}
\end{equation*}
$$

and let $E_{r}\left(a_{1}, \ldots, a_{k}\right)$ be the r th elementary symmetric function of the numbers a_{1}, \ldots, a_{k}. Marcus and McGregor showed that

$$
\left\{\begin{array}{l}
\max g=E_{r}\left(h_{1}, \ldots, h_{k}\right) \\
\min g=E_{r}\left(h_{n-k+1}, \ldots, h_{n}\right), \tag{3}
\end{array}\right.
$$

where the max and min are taken over all sets of k o.n. vectors x_{1}, \ldots, x_{k} in V_{n}. This result reduces to (1) when $r=1$. In the present note we extend this result to the case where H is an arbitrary Hermitian matrix.

[^0]
2. Results.

Theorem. Let $1 \leqslant r \leqslant k \leqslant n$ and let H be a Hermitian matrix with eigenvalues $h_{1} \geqslant \ldots \geqslant h_{n}$. Then

$$
\left\{\begin{array}{l}
\max g=\max _{o \leqslant s \leqslant k} E_{r}\left(h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}\right)^{*} \tag{4}\\
\min g=\min _{0 \leqslant s \leqslant k} E_{r}\left(h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}\right),
\end{array}\right.
$$

where the max and min of g are taken over all sets of k o.n. vectors x_{1}, \ldots, x_{k} in V_{n}.

Proof. Let $L=L\left(x_{1}, \ldots, x_{k}\right)$ denote the subspace spanned by the o.n. vectors x_{1}, \ldots, x_{k}; and let P be the orthogonal projection of V_{n} into L. Then, since P is Hermitian,

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{k}\right) & =\sum_{w \in Q_{k r}}\left(C_{r}(H) x_{w}, C_{r}(P) x_{w}\right) \\
& =\sum_{w \in Q_{k r}}\left(C_{r}(P H) x_{w}, x_{w}\right) \\
& =\operatorname{trace} \text { of } C_{r}(A) \\
& =E_{r}\left(\lambda_{1}, \ldots, \lambda_{k}\right)
\end{aligned}
$$

where A is the Hermitian transformation $P H$ restricted to L, and $\lambda_{1} \geqslant \ldots \geqslant$ λ_{k} are the eigenvalues of A. It is known ($1, \mathrm{p} .33$) that for $1 \leqslant j \leqslant k$,

$$
\begin{equation*}
h_{j} \geqslant \lambda_{j} \geqslant h_{n-k+j} . \tag{5}
\end{equation*}
$$

Let $R_{k}(h)$ be the set of real k-tuples $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right), \lambda_{1} \geqslant \ldots \geqslant \lambda_{k}$, satisfying the inequalities (5). Thus the values of g are bounded by the extreme values of $E_{r}(\lambda)=E_{r}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ as λ ranges over $R_{k}(h)$. We shall discuss the maximum value of $E_{r}(\lambda)$ in the following lemmas. Corresponding results hold for the minimum. For the moment we restrict ourselves to the case in which the h_{j} are distinct.

Lemma 1. Let $h_{1}>\ldots>h_{n}$ be given real numbers. Let $1 \leqslant r \leqslant k \leqslant n$, and let

$$
\begin{equation*}
\gamma=\max _{\lambda \in R_{k}(h)} E_{r}(\lambda) \tag{6}
\end{equation*}
$$

Then there exists $\mu \in R_{k}(h)$ such that

$$
\begin{equation*}
E_{r}(\mu)=\gamma \tag{7}
\end{equation*}
$$

and $\mu_{1}>\ldots>\mu_{k}$.
Proof. When $r=1$, the unique solution of (7) is: $\mu_{j}=h_{j}, j=1, \ldots, k$. Hence suppose that $2 \leqslant r \leqslant k$.

Let $T_{k j}(h)$ be the set of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in R_{k}(h)$ such that $E_{r}(\lambda)=\gamma$ and $\lambda_{1}>\ldots>\lambda_{j}$. Then $T_{k 1}(h)$ is not void by the continuity of the elemen-

[^1]tary symmetric functions. Let m be the least integer such that $T_{k m}(h)$ is not void. Then m must equal k for, if not, we shall show that there exists $\nu \in$ $T_{k, m+1}(h)$. Suppose then that $\mu \in T_{k m}(h)$, where
\[

$$
\begin{equation*}
\mu_{1}>\ldots>\mu_{m}=\ldots=\mu_{\mathrm{t}}>\mu_{\mathrm{t}+1} \geqslant \ldots \geqslant \mu_{k} \tag{8}
\end{equation*}
$$

\]

From (5) and (8) we have

$$
\begin{equation*}
h_{m}>h_{m+1} \geqslant \mu_{m+1}=\mu_{m}=\mu_{\mathrm{t}-1}=\mu_{\mathrm{t}} \geqslant h_{n-k+\mathbf{t}-1}>h_{n-k+\mathrm{t}} . \tag{9}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
E_{\tau}(\mu) & =\mu_{m} E_{\tau-1}\left(\tilde{\mu}_{m}\right)+E_{r}\left(\tilde{\mu}_{m}\right) \tag{10}\\
& =\mu_{\mathrm{t}} E_{r-1}\left(\tilde{\mu}_{\mathrm{t}}\right)+E_{r}\left(\tilde{\mu}_{\mathrm{t}}\right)
\end{align*}
$$

where $E_{q}\left(\tilde{\mu}_{j}\right)$ means $E_{q}\left(\mu_{1}, \ldots, \mu_{j-1}, \mu_{j+1}, \ldots, \mu_{k}\right)$. (If $r=k, E_{r}\left(\tilde{\mu}_{j}\right)=0$.) Now $E_{r-1}\left(\tilde{\mu}_{m}\right)=E_{r-1}\left(\tilde{\mu}_{\mathrm{t}}\right)=0$. For, if $E_{r}\left(\tilde{\mu}_{m}\right)>0$, then for $\mu^{\prime}=\left(\mu_{1}, \ldots\right.$, $\left.\mu_{m}+\delta, \ldots, \mu_{k}\right)$,

$$
E_{r}\left(\mu^{\prime}\right)=\left(\mu_{m}+\delta\right) E_{r-1}\left(\tilde{\mu}_{m}\right)+E_{r}\left(\bar{\mu}_{m}\right)>E_{\tau}(\tilde{\mu})
$$

for $\delta>0$, and, by (8) and (9), $\mu^{\prime} \in R_{k}(h)$ for δ sufficiently small. This contradicts (6). Similarly, if $E_{r-1}\left(\tilde{\mu}_{\mathrm{t}}\right)<0, E_{r}\left(\mu^{\prime \prime}\right)>E_{\tau}(\mu)$ for $\mu^{\prime \prime}=\left(\mu_{1}, \ldots, \mu_{\mathrm{t}}-\right.$ $\left.\delta, \ldots, \mu_{k}\right)$. Hence $E_{r}(\mu)=E_{r}\left(\tilde{\mu}_{m}\right)$ is independent of μ_{m}. Set $\nu_{j}=\mu_{j}$ for $j \neq m$, and choose $\nu_{m}>\mu_{m}$ so that $\nu_{m}<h_{m}$ and $\nu_{m}<\nu_{m-1}$ (if $m>1$). Then $\nu \in T_{k, m+1}(h)$.

Lemma 2. Under the hypotheses of Lemma 1,

$$
\begin{equation*}
\gamma=\max _{0 \leqslant s \leqslant k} E_{r}\left(h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}\right) . \tag{11}
\end{equation*}
$$

.Proof. Since the lemma is obviously true when $r=1$, and also when $k=n$, suppose that $2 \leqslant r \leqslant k<n$. By Lemma $1, T_{k k}(h)$ is not empty. Let $S_{k q}(h)$, $1 \leqslant q \leqslant k$, be the set of those $\lambda \in T_{k k}(h)$ for which $\lambda_{j}=h_{j}, j=1, \ldots, q$; and let $S_{k 0}(h)$ be the set of $\lambda \in T_{k k}(h)$ for which $\lambda_{1}<h_{1}$. Let s be the largest integer such that $S_{k \dot{s}}(h)$ is not empty. If $s=k$, there is nothing to prove. Otherwise let $\mu \in S_{k s}(h)$. Then

$$
\mu_{j}=h_{n-k+j}, j=s+1, \ldots, k
$$

for, if not, we shall show that there exists $\nu \in S_{k, s+1}(h)$, contradicting the choice of s.

Let t be the least integer greater than s for which $\mu_{\mathrm{t}}>h_{n-k+\mathrm{t}}$. If $t=s+1$, $h_{\mathrm{t}}>\mu_{\mathrm{t}}$ by the maximality of s; while if $t>s+1$

$$
h_{\mathrm{t}} \geqslant h_{n-k+\mathrm{t}-1}=\mu_{\mathrm{t}-1}>\mu_{\mathrm{t}} .
$$

Thus

$$
h_{\mathrm{t}}>\mu_{\mathrm{t}}>h_{n-k+\mathrm{t}} .
$$

It follows that $E_{r-1}\left(\tilde{\mu}_{t}\right)=0$, since otherwise we could vary μ_{t} up or down to increase $E_{r}(\mu)$ (see (10)) while keeping μ in $T_{k k}(h)$.

Thus

$$
\begin{equation*}
E_{r}(\mu)=E_{r}\left(\tilde{\mu}_{t}\right) . \tag{12}
\end{equation*}
$$

Set

$$
\begin{array}{rlrl}
\nu_{j} & =\mu_{j}, j=1, \ldots, s, & (\text { if } s>0) \\
\nu_{s+1} & =h_{s+1}, & & \\
\nu_{j} & =\mu_{j-1}, j=s+2, \ldots, t, & (\text { if } t>s+1) \\
\nu_{j} & =\mu_{j}, j=t+1, \ldots, k, & & (\text { if } k>t) .
\end{array}
$$

In effect, μ_{t} is replaced by h_{s+1}, and the resulting μ_{j} 's are re-indexed to restore the ordering. By (12), $E_{r}(\nu)=E_{r}(\mu)$. It is then a straightforward matter to verify that $\nu \in S_{k, s+1}(h)$. This completes the proof of the lemma.

We are now in a position to complete the proof of the theorem. If the eigenvalues of H are distinct, then for o.n. x_{1}, \ldots, x_{k},

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{k}\right) & \leqslant \max _{\lambda \in R k(h)} E_{r}(\lambda) \\
& =E_{r}\left(h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}\right)
\end{aligned}
$$

for some $s, 0 \leqslant s \leqslant k$. Now g attains this value for o.n. eigenvectors y_{1}, \ldots, y_{k} corresponding to $h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}$, respectively. Thus

$$
\max g=\max _{0 \leqslant s \leqslant k} E_{r}\left(h_{1}, \ldots, h_{s}, h_{n-k+s+1}, \ldots, h_{n}\right) .
$$

A similar result holds for the minimum. That these results remain valid when the eigenvalues of H are not all different follows by a continuity argument.

References

1. R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1 (New York, 1953).
2. Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, I, Proc. N.A.S. (U.S.A.), 35 (1949), 652-5.
3. M. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices, Can. J. Math., 8 (1956), 524-31.

The University of British Columbia

[^0]: Received July 23, 1958. The work of the first author was supported in part by United States National Science Foundation Research Grant NSF-G 5416; that of the second author by the United States Air Force Office of Scientific Research, Air Research and Development Command; that of the third author by the National Research Council of Canada.

[^1]: *If $s=0$ (or k) the initial (or terminal) segment is missing.

