
JFP 13 (1): 145–146, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S095679680300131X Printed in the United Kingdom

Chapter 11

Compiler Pragmas

Some compiler implementations support compiler pragmas, which are used to give additional in-
structions or hints to the compiler, but which do not form part of the Haskell language proper and do
not change a program’s semantics. This chapter summarizes this existing practice. An implementa-
tion is not required to respect any pragma, but the pragma should be ignored if an implementation is
not prepared to handle it. Lexically, pragmas appear as comments, except that the enclosing syntax
is {-# #-}.

11.1 Inlining

���
 � {-# INLINE ����� #-}
���
 � {-# NOINLINE ����� #-}

The INLINE pragma instructs the compiler to inline the specified variables at their use sites. Com-
pilers will often automatically inline simple expressions. This may be prevented by the NOINLINE
pragma.

11.2 Specialization

���
 � {-# SPECIALIZE ����� , � � � , ����� #-} �" � ! �
���� � ���� 

 ����

145

https://doi.org/10.1017/S095679680300131X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300131X


146 CHAPTER 11. COMPILER PRAGMAS

Specialization is used to avoid inefficiencies involved in dispatching overloaded functions. For
example, in

factorial :: Num a => a -> a
factorial 0 = 0
factorial n = n * factorial (n-1)
{-# SPECIALIZE factorial :: Int -> Int,

factorial :: Integer -> Integer #-}

calls to factorial in which the compiler can detect that the parameter is either Int or Integer
will use specialized versions of factorial which do not involve overloaded numeric operations.

https://doi.org/10.1017/S095679680300131X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300131X

