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Abstract

We are interested in the motion of non linear systems. In this paper we use
a variation principle and an iteration procedure in order to treat the stability
of free oscillations against small disturbances of the initial conditions. It is
found that approximations to the low lying stability lines can be obtained
using the Rayleigh-Ritz variation principle and that these approximations
can be consistently improved using an iteration procedure. These approxi-
mations are compared with the tabulated values in the special case of the
Mathieu Equation. The results are in general a considerable improvement on
those obtained using the usual Perturbation Theory, and have a much wider
range of validity.

1. Introduction

The equations of motion which arise in non-linear mechanics are frequent-
ly of such a type that an exact solution in terms of tabulated functions is
impossible to obtain. The question of obtaining approximate solutions to
these equations has been discussed in another paper [1]. There it is shown that
a variation principle and iteration methods can be used to obtain excellent
approximations. The equations which determine the stability of a periodic
motion of a non linear system are linear, but usually involve a Hill equation,
and even approximate solutions of this equation are notoriously difficult to
obtain. In this paper we discuss the stability of free vibrations of a non
linear two degree of freedom system.

The first three sections contain no new material. They are devoted to a
brief description of the derivation of the stability criteria, and to an illustra-
tion of their application in a simple non trivial case. These sections introduce
a specific problem and establish the notation.

Two particular methods are introduced for dealing with the problem.
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154 J. N. Lyness and J. M. Blatt [2]

The Rayleigh Ritz Variation principle is used to obtain closer approximations
to the stability lines than is usual. An iteration method based on the variation
principle is described which is capable of finding the low lying stability lines
to any degree of accuracy. This iteration method may be used to obtain
general results about the orientation of these lines. Elementary Group
Theory is used to increase the usefulness of these methods.

As a check, these methods are applied to special systems which give rise
to the Mathieu equation. The results are remarkably accurate; they represent
a considerable improvement on the corresponding results using the usual
perturbation expansion. The variational method is also applied to show the
effect on the stability of the introduction of unsymmetric terms into the
system.

Finally a slightly more general mechanical system is considered. This illu-
strates the general procedure and indicates the circumstances under which
the Duffing approximation can be safely used when dealing with the stability
problems.

Emphasis is laid on the methods and on the clear distinction between
what is approximation and what is exact.

2. The Stability Equations

Let us consider a conservative mechanical system with n degrees of
freedom governed by a Hamiltonian of the form

(2 1) H(nl' ^ 2 . " " ' nn> Xl> X2> " " " Xn) =

*2.kii(xx'-xn)nini + V(x1,xt,--xn)

Here xx • • • xn are a set of generalized coordinates, and nx, n2, • • •, nn are the
corresponding conjugate momenta. In the special case that the kfj are
independent of xt • • • xn, and, in addition, V is a multinomial of degree
two in xx • • • xn, the system is termed linear. In other cases, the system is
termed non linear and the general motion is usually difficult to determine.
Sometimes there is a particular motion or set of possible motions of the system
which is known, although the general motion may or may not be determined.
We shall refer to a one-parameter family of periodic solutions of Hamilton's
equations as a 'mode' of the system. We are interested in finding out the condi-
tions under which such a mode is stable against small perturbations of the
initial conditions.

For reasons of simplicity we restrict ourselves to systems for which it is
possible to choose new canonical coordinates q± • • • qn and momenta p1 • • -pn

so that the mode under consideration is characterised by

(2.2) q1 = p l ^ q 2 = p 2 = - . . = qn_l = pn_x = 0
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[3] The practical use of variation principles 155

This results in certain restrictions on the Hamiltonian. The equations of
motion are

dH 8H

As these are to have (2.2) above as a possible solution we must have

where the prime indicates that qx, • • •, qn_x and j>lt ' • •, pn-X
 a r e s e t equal

to zero; the equations of motion of the mode are derived from
H(o,o,---,o,fin;o,o,---,o,qn).

The general formulation of the conditions under which such a motion is
stable has been given by Poincare" [7] and Whittaker [13]. We summarise
the argument for the convenience of the reader.

The motion can be supposed to be of period T and the required solution
of the equations of motion (2.3) is

9>{* + T)
(2.5) fin = v{t) = y>(t + T)

?1 = Pi = ?2 = ft = • • • = qn-X = Pn-X = 0

We consider an adjacent orbit

qn = <p(t) + Sn(t)

Pn =(2 6)
qt = Si(t). i = l , 2 , - - . , » - l
Pi = *li{t), • = 1 , 2 , • • - , » - 1

where |< and r]t are small. The variables in this orbit satisfy Hamilton's
equations of motion (2.3) with the same function H. We substitute (2.5)
and (2.6) into the equations of motion (2.3), and take the difference. If we
retain only first order quantities we are left with the following equations;
(the prime on the derivatives refers to conditions (2.2), as before):

and

( 2-7 b )

However, the use of (2.4) simplifies these equations. The coefficients are
to be evaluated on the unperturbed orbit, that of (2.4); thus (dH/dq^' = 0
when i ^ n for all values of pn and qn; this yields
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8 I8H\'

and so

<"•> I^V-o
Similarly

/ 8iH V I 82H \' I 82H \f

This means that £„ and r\n can be separated from (2.7) and that in the
equations for f< and ^ (i = 1, • • •, n — 1) the summation goes only from
7 = 1 to / = n — 1.

The nth equations of (2.7) can be combined to give a pair of linear simul-
taneous equations in !„ and r}n with periodic coefficients. These equations
give a stability criterion for the unperturbed motion qn = <p{t). This motion
is governed by the Hamiltonian H(0, 0, • • •, 0, pn; 0, 0, • • •, 0, qn). It is to be
observed that working directly from the potential energy V(0, 0, • • • 0, qn)
we may obtain a stability criterion corresponding to a different and less
rigid definition of stability. (See Stoker [10], p. 219). We do not concern
ourselves here with the nth equations of (2.7).

We shall discuss the other 2w — 2 equations (2.7), which determine the
stability of the mode against small initial perturbations of the coordinates
2 i ' ' " ?n-i» Pi" ' Pn-i- These equations are

(2.9a) ^ = 2

Since <p(t) and y>(t) are periodic, so are any functions of them. The coeffi-
cients appearing in (2.9) are functions of <p{t) and ip(t) and are therefore
periodic. The nature of the solutions of (2.9) determines the stability of the
mode, which therefore depends only on the parameters occurring in
(PHIdptdp,)', {PHIdqtBq,)', {PH/dptdq,)', and <p(t). Discussion of the
actual criterion is deferred to the next section.

In this paper we restrict ourselves to a two degree of freedom system in
which

= c o n s t a n t

In this case (2.9) reduces to
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fh-l (my WHV

which is the Hill equation discussed in Whittaker [12] and Ince [4]; the
quantity in brackets in [2.10] is a known periodic function of time.

3. A Particular Two Degree of Freedom System

We consider as examples, the stability of particular motions of a class of
simple two degree of freedom systems. These are all special cases of the system
described below. Three simple non linear springs, two of which are identical,
are connected to two equal masses and two fixed points in a symmetrical
way, as indicated in diagram 1. The masses are constrained to move in the

DIAGRAM I

The simple two degree of freedom system described in Section 3.

straight line which contains the fixed points. We define xx{t) and x2(t)
as the displacement of each mass from its equilibrium position. The potential
energy of the outer spring in terms of its extension u is taken to be

maxu
2 ma2u

3

+

and the corresponding quantity for each inner spring is
2 mA2u

3

H 1
2 3 4

This system has been considered by R. M. Rosenberg and C. P. Atkinson [8]
and the above notation has been taken over from their paper. Where com-
parable, their results agree with ours.

It is clear from the symmetry of the system that if the outer springs are
symmetric, that is if a2 = 0. two simple modes exist. One occurs if the masses
move so that at any time they are symmetrically situated with respect to
the fixed points. This mode is known as the 'out of phase mode' and has the
characteristic that xx + #2 maintains its initial value, zero. The other, or
'in phase' mode, is one in which the distance between the masses remains
constant; it has the property that xx — x2 is zero.

Following the procedure outlined in section 2 we set
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(*l + *«)

" V2

and the Hamiltonian of the system takes the form

(3.1) Hfa, j>2, qlt qt) = |*- + £• + 2 2™*r. fi ft

The non zero values of ar, are:

~2 a21 ~ V2
a20 — ~

a02 = ^ + Ax a03 =

(3.2) = 03
«40 g

a04 = "^ + ^3

a28 = = 4*3

In the case of symmetric outer spings, a2 = 0 and so there are no terms
linear in q2 in (3.1). The Hamiltonian (3.1) then satisfies the conditions of
equation (2.4). If all the springs are symmetric the form of the Hamiltonian
is symmetric under interchange of q1 and q2. In that case, any condition
obtained for the stability of one mode corresponds to a condition for the
other mode.

Application of the analysis outlined in Section 2 leads directly to the pair
of Hill equations

(3.3a) + 2 {a20 + <x.21tp(t) + a22{99(<)}2}|1 = 0

when the equations of the orbit are

(3.4) ? 1 = 0; qt = <p(t)

As remarked above, equation (3.3b) refers to a rather rigid definition of
stability and can be replaced by inspection of the potential energy curve so
as to obtain a more practical criterion. The nature of the solutions of equa-
tion (3.3a) yield additional criteria; in particular if (3.3a) has an unbounded
solution the motion is unstable.
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The solutions of the Hill equations are well known. (See for example
references 4 and 12). If we denote by T' the least period of the coefficient of
| j in (3.3a), two independent solutions are

where gt(t) (i = 1, 2, 3) are periodic functions of 2 of period T', da v is the
Kronecker delta, and ax and cr2 are the roots of the equation

(3.6) a2 — 2/io + 1 = 0.

fi is real and its value depends on the parameters occurring in the coefficient
of | x in equation (3.3a). As these parameters are varied, so p varies leading
to different values of ax and a2) however, in view of (3.6)

(3.7) axa2 = 1

Should a particular value of fi lead to real roots of (3.6) it is clear that one of
the solutions (3.5) is unbounded. But if ax and er2 are complex and distinct
then both have modulus 1 and the solutions (3.5) are bounded. The condition
for real roots is

The transition case, that for which \/i\ is one, is obtained if oc2r takes partic-
ular values. To fix ideas, suppose that we consider a particular value of
a21. If «20

 aJl^L a22 a r e taken as the coordinates of points on a plane, the
transition values of oĉ  and <x22 lie on curves in the plane; these curves divide
regions whose a20 and <x22 give \/i\ > 1 from those regions whose aM and a22

give \/i\ < 1, that is 'unstable' regions from 'stable' regions. We are interested
in determining the location of these boundary lines.

Thus the stability line is obtained by writing down the condition

(3.8) fi = ± 1.

Referring again to equation (3.6) we see that in these cases either

(3.9a) ax = a2 = 1

or

(3.9b) (Tl = <x2= - 1

and these lead to both solutions (3.5) having the same period, either T' or
IT'. Since other values of fi cannot lead to both solutions (3.5) having these
periods we may replace the stability line condition (3.8) by an equivalent
condition, namely that (3.3a) has a periodic solution of period either T' or 2T'.

https://doi.org/10.1017/S1446788700026641 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026641


160 J. N. Lyness and J. M. Blatt [8]

4. Exact Solutions for a Simple Case

In this section we deal with a particular case of the system described in
Section 3. The reason for this choice is that it leads directly to the Mathieu
equation whose solutions have been discussed at length in the literature
(McLachlan [6]).

We choose a case in which both springs are symmetric i.e. a2 = A2 = 0
and in which the out of phase mode is simple harmonic, that is aM = 0.
This can be done by arranging the spring constants to have values satisfying

ax =£ 0 Ax^0 a2 = A2 = 0

• j = — 3 ^

With this choice, the Hamiltonian (3.1) takes the simple form

(4.2) H($x, p 2 , qx, q2) = f- — + w{a20?i ~t~ ao2<?i + a4o?i "H1 a22?i?2}

The out of phase mode (qx = 0, px = 0) has as its Hamiltonian

with the solution

(4.4) q2 = <p(t) = A sin (cot)

where

(4.5) co = \/2aoa = V(at + 2AX)

Substituting these parameters into the Hill equation (3.3b) gives

(4.6) — - + [a + bA2 sin2(o>0] £r = °

where

(4.7) a = 2ct.2O = a1, b = 2a22 = fa3 = - 12^ 3

Equation (4.6) is the Mathieu Equation. This is the simplest non-trivial
case of the Hill equation. Putting cot = 6 in (4.6), one has

Thus the stability of the system depends on the two dimensionless quantities
a/co2 and M2/o>2.
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In view of the discussion at the end of the previous section we are interest-
ed in those solutions f (t) of (4.8) which are periodic with a period of either
T or 2T, where

(4.9) T = \T = —
CD

A solution of (4.6) with either of these periods is known as a Mathieu function
and the corresponding value of ajco2 as its eigenvalue.

The Mathieu functions are discussed by Whittaker and Watson [12] who
give expansions for the eigenvalues. They have been extensively tabulated
by Goldstein [3]. Their application to non-linear mechanics is discussed by
Stoker. [10]

In Diagram 2, a/co2 is plotted against bA2/a>2. If bA2/a)2 = 0 it is clear that
(4.8) has harmonic solutions for positive «/a>2 and exponential solutions for
negative ajo>2. This means that the positive half of the a/a>2 axis is in a stable
region, and the negative half of the a/co2 axis is in an unstable region. As the
curves denote boundaries between stable and unstable regions, it is clear that
the shaded portions of the diagram represent the stable regions, and the
unshaded portions, the unstable regions.

DIAGRAM 2

The stability diagram for the Mathieu Equation

— - + [a + bA*sin*(Dt]( = 0
at*

The shaded regions correspond to stable motions. The method of using this diagram is discussed
in Section 4. Each stability line has attached to it the values of (9lF 0t) defined in Section 5.

The procedure for using the stability diagram is as follows, and is illustrat-
ed on diagram 2. The values of ajo>2 and bjco2 for the mechanical system
in question can be determined using (4.4), (4.5), and (4.7). They are a2o/a<,2
and A2 • a22/a02 respectively. A line is drawn on the stability diagram.
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parallel to the axis ajcoz = 0 a distance a^/a^ above it. If <x22/a02 is negative,
the point corresponding to an out of phase motion of amplitude A lies to the
left of L on this line. Thus if A is small enough so that |a22^42/a02l < LP>
the motion is stable and if A is larger, the motion is unstable. If a22/<x02 is
positive, the representative point lies to the right of L and if A takes a
small value again the motion is stable. However, increasing A leads succes-
sively to unstable, stable, and unstable motions, the type changing as A
becomes large enough to make the representative point reach M, N, K, etc.

5. Symmetry Properties of the Stability Lines in the Case of General
Springs

The function q>(t) is a periodic solution of the equations of motion for a
particle of mass m moving in the potential V(0, qt). As such it has certain
well known symmetry properties. If the time t is measured from a moment
at which dy\dt = 0, then the path is symmetric under time reversal, that is

(5.1) <p(t) = <p{- t)

There is another distinct point where dq>\dt = 0 and if the time taken for the
particle to reach this point for the first time is denoted by t0 we have, by the
same argument

(5.2) <p(t0 + t ) = <p(t0 - t)

Finally we have the periodicity condition:

(5.3) <p{t) = <p{t + T),

(5.2) and (5.3) result in t0 = \T. These three conditions are also satisfied by
any function of q>(t). It should be pointed out that a particular function of
q>(t) might have more symmetry properties than <p{t), and that q>{t) in a
particular case might have more symmetry properties than the three listed
above. However, these three apply to any <p (t) obtained as a periodic solution
as indicated above. This point is illustrated in Diagram 6.

The Hill equation under consideration can be written in the form

(5.4) fl+{a + c<p{t) + b{q>(t)Y}£ = 0

and this can be written

(5.5)

where A(t) is the operator

(5.6) A(t) = —
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and X = — a. Only discrete values of X, the eigenvalues, lead to solutions
of (5.5) with period T or 2T. As <p(t) has period T, it is apparent that

A (t + T) = A (t) (all t)

We have already defined the least period of A{t) as T',

(5.7) A{t+T')=A{t) (alii)

Hence T is an integral multiple of T'. In view of equation (5.1) we also have
the relation

(5.8) A(- t)=A{t)

The following discussion of the symmetry properties is based on these two
properties (5.7) and (5.8).

Let us suppose that gr(t) is a particular solution of (5.5) with Xr the corre-
sponding value of X. Thus

(5.9) A{t)£r(t) = Xrir(t)

Since A (t) and X are both real, i-r(t) can be taken as real. We may replace t
in (5.9) by — t and using relation (5.8) we may write

(5.10) A(t)£r(-t) =*,£,(-t)

Using (5.9) and (5.10) it follows that gT(t) can be chosen to be either symme-
tric or antisymmetric under time reversal. For if fr(— t) is not already equal
to ± £r{t), £r(t) and fr(— t) are linearly independent solutions of the same
equation. In that case we can use instead the functions gr(t) -\- fr(— t) and
£T{t) — £r(— t), and each of these has definite properties under time reversal.
Thus we may restrict our attention to functions which have the property

(5-11) f,(0 = ejr(-1)

where B1 can take the values + 1 or — 1.
A second and distinct symmetry classification may be obtained by making

use of the periodicity property of A (t). Using (5.7) and (5.8) it can be easily
shown that

Hence we may write

(5.13)

and
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These equations are analogous to equations (5.9) and (5.10) and application
of precisely the same arguments as those above lead to a similar conclusion.
Thus we may restrict ourselves to functions which have the property

(5.15)

where 02 can take the values + 1 or — 1. The values of 0X and 02 which belong
to a particular function £r{t) can be used to classify it. We shall refer to the
pair of values {61, 02) as the "representation" to which gT(t) belongs.

Since l-r{t) is of period T' or 2T' it can be expanded in a Fourier series

(5.16) fr(0 = «0 +
nrt

«r COS — - +
, Ttrt
br Sin —

However, direct inspection shows that, depending on the representation to
which gr(t) belongs, certain terms in the expansion are absent. For example
if 6t = 1, gr(t) = | r (— t) and all the bT vanish; if 02 = 1, a2r+l and b^ are
zero. These properties are summarised in Table 1.

In diagram 2, section 4, each stability line has, next to it, the values
(0X, 02) of the periodic solution from which the line is derived. It is seen that
certain lines touch, and other lines cross, on points along the vertical axis.
These crossings and touchings can be predicted once and for all, without
detailed knowledge of the complete stability diagram. This is done in Section
7 below.

For a rigorous discussion of eigenfunction theory, we refer the reader to
Courant and Hilbert [2]. In particular, the completeness of the functions fr

TABLE 1

Representation

i

i

- i

- i

0.

l

- l

l

- l

2

2

Fourier Expansion

2rnt

(2r + l)nt

(2r + l)nt
6"+1" 7"

2mt

Period

T'

27"

27"

7"

https://doi.org/10.1017/S1446788700026641 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026641


13] The practical use of variation principles 165

used in this paper can be established following the procedure of pages 359
it seq. of this reference. The necessary integral equations in the case of the
Mathieu equation are derived in Whittaker and Watson [12].

>. Approximation Methods for Determining the Stability Lines

There exists a general method for obtaining information about the lowest
:igenvalue A,, of an equation

(6.1) A (t)£r{t) =*,£,{*).

mown as the Rayleigh Ritz variational method. Since gr(t) satisfies the
xmdition

*,(< + 2T) --= w)
t can be shown that these functions form a complete normal orthogonal
iequence in the interval (0, 2T'), that is

[6.2a)

ind we may choose the arbitrary constant multiplying gr(t) such that

[6.2b)

iVe suppose the eigenvalues to be ordered so that Ao ^ Ax ^ A2 • • •
Now let y>(t) be any square integrable function for which A(t)y> exists.

We form the expression

[6-4) *=%>

p(t) can be expanded in terms of the set £r(t), i.e.,

vhere the ar are numerical coefficients. Using (6.1), (6.2) and (6.5), it is
:asy to show that (6.4) can be reduced to

[6.6) A =

2 <
since AQ ^ Xr for all r, expression (6.6) is greater than the expression formed
jy replacing Xr by Xo in (6.6). Thus we have
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This relation provides a powerful tool for approximating to the lowest
eigenvalue of equation (6.1). If all the aT except a0 are zero, the equality
sign in (6.7) holds. So if we have an idea about the go(t) of (6.5) we can
choose f{t) so that a0 is appreciably greater than the other ar, thereby
making (6.7) a good approximation. We may use the variational technique:
we choose y(t) with one or more adjustable parameters fit. Then we minimise
expression (6.4) with respect to the /tt. Since the inequality (6.7) holds
whatever the values of f*t, this procedure gives the closest inequality possible
with y>(t) of that particular form.

We use the expression (5.6) for A(t), and X = —a. Inserting these into
(6.4), the inequality (6.7) becomes

(6.8) a

It appears that only the lowest eigenvalue XQ can be found by this method
(i.e. only the first line on the stability diagram). However, as a result of the
symmetry classification of section 5, the eigenvalues and corresponding
eigenfunctions fall into four distinct classes, depending upon the values of
0a and 02; (see table 1.) Let us suppose that the "trial function" ip(t) is chosen
such that it has 0X = -f- 1 and 02 = ~~ *> saY- Then it is easily seen that the
only non-zero coefficients aT in the sum (6.5), and hence also in (6.6), are
such that ir(t) has the same symmetry (0X, 02) as y>(t). Hence we have
the sharper inequality

(6.9) ^

where Xn^a(61, 02) is the lowest eigenvalue for the particular symmetry class
8t, 02 to which the trial function y>(t) belongs.

By choosing trial functions y>{t) of the four possible symmetry types, in
turn, and using (6.8) on each one, we thus obtain variational approximations
to four low lying stability lines on the stability diagram.

The variational method described can be used to obtain closer approxima-
tions to the true eigenvalue Ar by using trial functions of greater flexibility,
that is containing more parameters. The main trouble is that the procedure
for minimising a function with respect to many parameters is cumbersome
(for example see Appendix 1). In view of this we describe an iteration
method, based on the variational method.

We rewrite the equation

(6.10) A£r = kr£r

in a form which leaves the left hand side as a simple differential operator
which is easy to invert; for example, in the case considered in Section 3 we
write the differential equation
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— + r — — a£r

in the form

dt* ' *r

The iteration procedure is based on obtaining a series of successively closer
approximations £[0] £[1], • • • to the true eigenfunction £, and corresponding
approximations to the relation between a and b. However, in this case we
treat b as the dependent variable and the iteration procedure yields succes-
sive approximations 6[0], i[1], • • • to the exact value of b, considered as a
function of a.

We suppose, therefore, that (6.10) above has been written in the form

(6.11) C£r = bBgr

where the equation

has straightforward solutions. The iteration procedure is based on the
following recurrence relations;

(6.12) C#"] = &[•-«££"-« n

Here the expression (y>, %) is defined by

i.e. it is the mean value of the product of rp and % over one period and our
attention is restricted to operators C and B which have the 'Hermitean'
property, that is to say

(6-15) (V>, CX) = fa CV)

where both y> and % are periodic in t with period T, but are otherwise un-
restricted. It is easy to verify, using partial integration if necessary that the
operators used in the following sections have this 'Hermitean' property.

We choose a trial function ft0] belonging to a particular representation and
use (6.13) with n = 0 to evaluate 6[0]. We then solve the differential equation
(6.12) to find f[1]. The constants of integration are chosen so that f[n] belongs
to the same representation as | t0 ] .

This procedure, as remarked above, yields successive approximations
bm(a), 6C1](«) • • • to the exact function b(a). It is convenient to choose
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f[0](a, t) so that the curve bm(a) touches the exact curve b (a) at (0, ar)
when b is plotted against a. It will be shown in a forthcoming publication [5]
that with this choice of gm, 6C1](«), b™(a) • • • all touch the true curve b\a)
at this same point. Moreover bw{a) has (» + 2) point contact with b(a).
That is to say when a = ar the values of 6[n] (a) and its first n + 1 derivatives
are the same as the corresponding values for b (a) and its first n + 1 deriva-
tives when x = ar. This result, which shows the relation between &££ (a) and
b^(a) at (0, ar) is used in the next section to derive a result relating br+(a)
and bT_{a) at this point.

7. The Grossing and Touching of Stability Lines

We now consider a special case of the Hill equation

C(a,t)S(a,t) = b(a)B(t)S{at)
where

and B has a finite Fourier expansion
N

(7.1) B = 2 & cos 2scat
*-o

In the following discussion we assume that all the /?,(s 5̂  2V) are non zero.
(See, however, the remarks in the final paragraph of this section)

The simplest non trivial case of this equation is the Mathieu equation
(4.6) where N = 1 and /?„ = — fa = — ^42/2. We are interested in the
relation satisfied by b and a such that ((a, t) is periodic with period 2^/<M.

As is the case for the Mathieu equation, we see that if b = 0, the equation
becomes

(7-2) J + aS = 0

and if £ is to be periodic with period T' or 2T', a takes one of a series of
values a0, a1, • • • where

ar = co*r2

Except for r = 0, there are two independent solutions £^ and fJ2 corre-
sponding to each aT. We use the classification of section 5 where the sub-
script + or — refers to the value of Bx and the value of 02 is (— l)r. Thus
we have

(7.3a) f°2 = c o s ra)t r> 0

(7.3b) £?} = sin r<at x > 0
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Determination of 6 ^ is straightforward. Using (7.1) and (7.3) we find that 

(7.4) B$?l = 3Q cos rcot + 2 — ( c o s (r + 2 s M + cos (r — 2s)cot\ 
8=1 2 

and that BfjH has precisely the same form with sines replacing cosines 
throughout. For future convenience we define 

(7.5) eT — a — ar = a — eoV a 

and, using this notation 

(7.6) = er?% 

Elementary integration shows 

(7.7) №. cm = K 
and 

(7.8) (I™, B£?l) = № ± pr) 

using the convention 0r = 0 if r > N. 
Substitution of these values into (6.13) gives 

(7.9) 6j«(a) B - U ~ a ' 
(A> ± fa) ± 

Equation (7.9) shows that the curves 6 ^ ( « ) are straight lines through (0, ar) 
and that these lines are identical if r > N, but not otherwise. N o w it is 
remarked above and proved in a forthcoming publication [5] that the zero 
order curve bl^(a) touches the true curve br(a) at a — ar. In view of this we 
have the result that the true curves bT+(a) and b^_(a) touch at (0, aT) if 
r > N as they both touch the same line b^. (a) at this point. Reference to 
diagram 2 shows that this result is borne out in the case of the Mathieu 
equation. Another point to notice which follows from (7.9) is that the 
gradient of 6 ^ (a) at the point (0, aT) is (ff0 ± ^0r) and this is also the 
gradient of b^a). This implies that if the stabil ity lines br+(a) and br_(a) 
touch each other at (0, aT) the gradient is 0O and independent of r while if 
they intersect, the average of their gradients is /?„. 

We now generalise the result about the type of contact the curves br+(a) 
and bT_(a) have at the point (0, aT). W e show that this depends on the 
'quotient' k obtained b y dividing r b y N and defined 

(7.10) r = kN + m l^m^N 

We have already shown that if 1 =g r £S N, that is if k = 0 the curves 
br+(a) and bT_(a) cut without touching, that is have one point contact, and 
that if r > N, i.e. k > 1 they touch. 
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We use the recurrence relation (6.12) to find f™. Using (7.4) for
we easily find that

(7.11) g» = cos rcot + •£• 2 ( — c o s (r + 2s)a>t+ — cos (r - 2s)a>t}
2p0 «=i ler+2s er_?, J

The equation for f£] is the same as this with sine replacing cosine throughout.
Since we are interested in the shape of £v±(«) near a = ar the quantity er is a
first order small quantity in this region. It is straightforward but tedious to
verify the following results about the form of fJSj. If we write

r+2nN

(7.i2) $ 2 = 2 «.±fS

where l^.1 are given by (1-3), then «J± is clearly zero unless \r — s\ is even.
If r > 2^^ , a,+ = a,_ for all s. Otherwise <x,+ can differ from a,_ by terms
of order er

k, k being defined in equation (7.10). It also follows that

(&], B?$) - (|W, 5fW) = 0 2« ^ A
= 0(er*) 2M ^ k + 1

(#?, fi^"1]) - (^ ] , Bf[r1]) = 0 2« ^ A - 1
= 0(er*) 2n^k

Using the recurrence relations (6.12) and (6.13), it is easy to show that

(£[n] BS[n~1])

or

Now each term in the product for b^ is either the same as the corresponding
term in the product for #T] or differs from it by terms of order er*. Moreover,
if r > N that is k 2g 1, we have from (7.9) that

b% = b = A- .

Thus we see that the difference i ^ — 6[
r*̂  is of order e*+1. Now when

a = aT, er — 0. This gives the result that the expression b[£!(a) — b™(a)
and its first k derivatives at a = aT are zero, establishing that the curves
&$(«) and &£](«) have * + 1 point contact with each other at (0, ar).

As mentioned above the nth iteration curve b:£ has n + 2 point contact
with the true curve 6r± at (0, ar); so by taking an n greater than k we see
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that the true curve br+(a) has k + 1 point contact with &,_(«) at (0, ar).
This situation is illustrated in diagrams 2, 7b and 3 in the cases where

N = 1, 2 and 3 respectively.
In the foregoing discussion we assumed that all the ft, (s < N) were non

zero. Lifting this restriction has the effect of increasing the degree of contact
in particular cases, but cannot decrease it. Thus in general all the results

DIAGRAM 3

Schematic Stability Diagram for the case N = 3.

This diagram indicates schematically the positions of the stable and unstable regions
corresponding to a Hill equation of the following form

(it* 2T') =

•where
N

0, cos 2ra><; <o — —•
T'

and N = 3.
The shaded areas indicate the stable regions. Attached to each line are the values of r, 6, and

0,. As noted in the text, the pairs of lines with r = 1, 2 and 3 cut on the a/cu» axis, the average
gradient at the point of intersection being /?,>• Pairs of lines with r = 4, 5 and 6 touch each
other, those with r = 7, 8 and 9 touch and cut each other and so on.

The diagram is not drawn to scale. In fact the intersections on the a jot* axis are at
<»/<»« = 0, 1, 4, 9, . . .
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referring to the degree of contact of particular pairs of curves should be inter-
preted in this sense; namely the degree of contact may be greater than that
stated, but is not less. x)

8. Test of the Variational Method

We now consider the problem for which we listed the exact solutions in
Section 4, this time using the Rayleigh Ritz variational principle. This will
give us some indication about how accurate this method is before going on
and using it in cases where the exact solution has not been tabulated.

In the previous section we showed that an approximation to a stability
line is obtained by inserting a trial function y>, belonging to a particular
representation (6lt 02), into the inequality (6.7). We start with the represen-
tation (0lf 02) = (-f- 1, + 1) and use the simplest trial function belonging
to this representation, namely y> = 1. Substituting this into (6.7) gives

No variation is possible as the trial function contains no variable parameter.
This result is in fact the same as is obtained using perturbation theory to
first order.

We next choose as a trial function the next simplest function of this repre-
sentation, that is

(8.2) ip = 1 + fi cos (2wt)

After carrying out the integrations in (6.4) we obtain

This can be written

(8.4)

and the smallest value of a/co2 is required. In Appendix I it is shown that the
extremum values of this expression are

a A - 2a0b2 - 2a2b0 ± V(a161 - 2a0b2 - 2a2b0)* - {a\ -

a\ — 4a0a2

Substitution for ait bt, of the constants occurring in (8.3) gives
1 The authors are indebted to the referee for drawing their attention to this point.
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DIAGRAM

DIAGRAM

The lowest stability line for the Mathieu Equation. The full line is obtained from the exact
values tabulated by Goldstein [3]. The broken lines are approximations obtained using:

(i) First order Perturbation Theory
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ibA*
2 co«

(ii) Second order Perturbation Theory

a x

(iii) Eighth order Perturbation Theory (Equation 8.6)

(iv) The Variation Method

a ! bA*

(8.5) < _ x !
ft)2

The curves obtained by replacing the inequalities in (8.1) and (8.5) by
equalities are plotted in Diagrams 4 (a) and 4(b), together with the exact
curve, and the curves obtained using perturbation theory.

TABLE 2

Representation

H

Trial Function

1

1 + ft cos 2cot

cos cot

cos eo< + ii cos 3a><

sin cot

sin co< + /* sin 3cu(

s in 2a>t

sin 2cot + /i sin 4co<

a

a

a

a

a

a

a

a

Resulting Inequality 1 X

^ -\X + 2 - 2 V l + 3
J

^ - i-y + i

^ - f AT + 5 - 4 V l - J

^ - f* + 1

^ - ^ + 10 - 6 Vl + ,

The inequalities obtained for the four lowest stability lines of the Mathieu equation:

— + (o + bA*sin*tat)S = 0
dt*

These equalities are listed in Appendix II in the e, d notation (Stoker).
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It is interesting to compare this approximate result with the results
obtained using Perturbation Theory. Carrying out the usual perturbation
procedure (McLachlan [6]) it is possible to obtain an expansion, the first
terms of which are:

V
j -U 4-1 —

8e>V
(8-6) /bA*\a

_i_ 68687 iOA \ I

The corresponding expansion of (8.5) is

Since (8.6) is in a sense an exact expansion, it might be inferred that (8.5)
is a worse approximation than (8.6), the expansion of (8.5) differing from
the true expansion by terms of order (M2/<o8)4. Reference to Diagrams 4 (a)
and 4(b) indicates that such an inference is misleading. In the region
\bA2/w2\ < + 6, both approximations are excellent and it is probably true
to say that (8.6) is closer to the exact curve. However, with 6 < |M2/o>2|
< 160, the variation method approximation is reasonable while (8.6) gives
an entirely false picture.

The reason for this state of affairs is not far to seek. The variation method
involves considering a particular value of bA'/w* and finding the best
function fr of a simple type. In the perturbation expansion, a more compli-
cated function fr is used, which is arranged to be correct for small bA'/a)*;
large powers of bAa/a>2 are neglected. It is clear that such a procedure is
valid only for small bA'/co*.

The variation iteration method is also used to find the same stability
line for the Mathieu equation. In this case we treat equation (6.11)

(8.8) Cir = bB£r

where

(8.9) C=t+*
and

A*
(8.10) B = — (— 1 + cos 2o>t)

2

We are interested in the stability line passing through the origin, that is
with aT = 0. The trial function used is

(8.11) #> = 1
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and the zero order eigenvalue bm(a) is given by

(8.12) \A2b™ = — a = — e0

Remembering that sr = a — a>2r2, we find without much difficulty that the
first order approximations are

(8.13) 4 1 ] = 1 — -cos2cot
2

(8.14) 1 " * M 1 2

and that the second order approximations are

(8.15)

*(i+S)
e2 \ e2/

— £ o ( ]

(8.16) ' '"""

e0

cos 2a>t -j cos 4co<
2e2£4

eo\ e0 , 1 e0

These functions are of the form indicated in equation (7.12), the coefficients
of cos 2rcot being of order er

0. The curves b^{a), b^(a) and b{^(a) are illus-
trated in diagram 5.

These curves have various striking characteristics which are worthy oi
further discussion. One feature is the closeness of these approximations to the
true curve in the region where a/co2 is negative; in fact when bA^jm2 is 160,
the true value of a/a>2 differs from the second order approximation by only
2£ percent. However, when a/m2 is positive a completely different behaviour
is evident. &{,1](a) so to speak turns on its tracks, crosses the a\m2 axis and
then recrosses it at (0, ajco2) touching the stability curve b2+(a) at this
point. Thereafter it does not seem to follow any stability line at all closely.
The curve 6[,2](«) does the same sort of thing twice. In fact in general
b\?\a) crosses the ajo>2 axis 2w + 1 times touching each of the curves bo(a),
b2_p{a) • • • b2n+(a) at the points where they cross this axis. This behaviour is
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-10

20

10

1 1 • N
v ^ IO bA"

DIAGRAM 5

The curves bjf* for « = 0, 1, 2 given by equations (8.12), (8.14) and (8.16) are shown by
broken lines. The curve to which b\f' tends as n -> 00 is shown by the full line. This line is the
locus of the b,± of smallest absolute magnitude for which (0,,0,) = (+ 1, + 1).

apparent after inspection of the form of the function f£n]. If we consider the
region near (0, «2r/w

2) where r ^ n, we can treat e2r as a small quantity.
Writing

n
lnn] = Y a,, cos

(e2r small)

we see that the largest term is a2r. Moreover the ratio
a2(r±j>> 1

a2(r±j>±l) e2r

Thus in this region, so long as n ^ r, the function |^n] is essentially cos
i.e. the function ^X- ^ m s function gives rise to a curve 62H- which touches
the true curve b2r+ at (0, a^/a)2) as shown in section 7. So the curve b^
also has this property.

It can be shown (Schwinger [9], Svartholm [11]) that using this iteration
procedure 6j.±(a) tends to the eigenvalue b (a) of the smallest absolute value,
which corresponds to the same representation as &£±(a). The limit curve
therefore consists of sections of the different curves br±(a). There are only
four such limit curves corresponding to the four representations respectively.
The one corresponding to (dlt 0a) = (+ 1, -f- 1) is illustrated in diagram 5.

It is apparent that this procedure indicates accurately the positions of the
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lowest stability line when bA2lco2 is positive, but when bA2/co2 is negative,
only a short section of this stability line can be found.

9. Another Example

In this section we deal with a second particular case of the system described
in section 3. We choose this case so that, again, the out of phase mode is
simple harmonic, but now we allow the springs to be unsymmetric, i.e.
a2 ^ 0. This can be done by choosing a mechanical system for which

9 1 )

A±^ 0; a2 =
These lead to a Hamiltonian

(9.2) H(j>lt j>t, qi,qi) + + 2
zm zm r> ̂ i

in which the non zero ar, are given by (3.2). It is important to note that, as a
result of (9.1) <x02 is not zero and <x03 and aM are zero. Because of this the out
of phase mode {qx = fix = 0) has the Hamiltonian

(9.3) H(0, p2, 0, q2) = p - + m^ql

with the solution
(9.4) q2{t) = q>(t) = A sin cot

where a> = V2a02 = V(ai + 2-^i)- Putting this into the Hill equation
(3.3b) gives

d£
(9.5) —y + {a + bA2 sin2cot + cA sin cot) £r = 0

where a and b have the same values as before (see (4.7)) and c, the term which
introduces the lack of symmetry, takes the value

(9.6) c = 2a21 = -v/2fl2

The period of (a + bA2 sin2cot + cA sin cot) is clearly the same as that of
sin cot, viz. 2TT/<U. SO in this case the period of the solution £r(t) is T' or 2T'
where

2n
(9.7) T = T = —

CO

This is in contrast to the state of affairs in sections 4 and 8 where co is related
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to T' by (4.9). This difference is illustrated in diagram 6. Reference to this
diagram shows precisely how the introduction of the term cA sin (at into (9.5)
affect the period 7". Putting A(t) in terms of its Fourier expansion of
period 2T' we have

55

i T 31

VI

X

w
C T ' 'i

I

• • i »
DIAGRAM 6

Examples of the function Aw(t) which occurs in the operator

A«>(t) = ap(t) + b{<p(t)}*.

It is apparent that the period f of A*1' («) or of A (t) depends on whether or not c = 0.
Different periods for fr(<) are responsible for the difference illustrated in diagrams 7 (a) and
7(b). <0, T and T' are defined in equations (5.2), (5.3) and (5.7).

(9.8)
A(t) = bA* sin2eo< + cA sin cot

2nt

dt2

2nt 4nt d
= \bA* + cA cos — - &A* cos — + —

In the notation of section 4, the Fourier Coefficients |8B are zero for n > 2
and hence N = 2. The orientation of the stability lines is shown in diagram
7(b).

We now carry out exactly the same analysis as we carried out in the
previous section. But, as a result of the different period, the functions
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TABLE 3 

[28] 

The inequalities obtained for four low lying stability lines of the Hill equation 

— + (a + bA* sin«eo< + cA sin cot)£ = 0 

Trial Function 

1 + ft cos cot 

COS -gCO* 

Resulting Inequality \X = — ; Y — ^J 
Limit of Inequality when 

V = 0 

- . £ - 1 * cu» 2 

cos \iot + (I cos ^wt 

sin -̂co* 

1 3 

sin ^tot + n sin -gCO* 

sin co< 

sin tu< + fi sin 2coi 

-^-(l^ + i^+i 
or 

- , £ - {\X+\Y) +1 - V(I +ly)S + (!Y+i*)2 

^ ^ - ( l ^ - l ^ + l 
CO* 

- ^ - ( ^ - l ^ ) + i - V ( i - i y ) S + ( - 2 V + ^ 

is-l^ + i - V i + V 

- ^ - l * + i 
co* 

^ - f x + f - M T ^ ^ + T ^ 

to' 2 * 

a 

fr(2) belonging to t h e var ious r ep resen ta t ions (0 X , 0 a ) a re n o t exac t ly t h e 
s a m e as in sect ion 8. F o r ins tance , w i th reference t o t ab l e 1 a n d using (9.7) 
above t h e funct ions of r ep resen ta t ion (0 1 ( 0 2 ) = (*> 1 ) 3 X 6 

(9.9) flo + 2 a2r c o s r m t -

T h e t w o m o s t e l e m e n t a r y t r i a l funct ions of th i s r ep re sen ta t ion used a re 
y> = 1 as in t h e prev ious case a n d 

(9.10) y> = 1 + ¡1 cos cot 

in con t ras t t o t h e cor responding t r ia l funct ion (8.2) of t h e p rev ious case. 
I n t ab le 3 a r e p resen ted t h e resul t s of ca r ry ing o u t t h e va r i a t iona l p roce­

dure . T h e inequal i t ies in co lumn 2 a re a p p r o x i m a t i o n s t o s t ab i l i t y l ines. 
I n co lumn 3 a r e shown t h e resul t of p u t t i n g c = 0 in these inequal i t ies , i.e. 
removing t h e l ack of s y m m e t r y . I t is in t e res t ing t o s t u d y t h e cor respondence 
be tween these s t ab i l i ty l ines a n d t h e l ines in t a b l e 2. T h e l ine cor responding 
to t h e represen ta t ion ( 1 , 1 ) becomes a l ine l is ted in t ab l e 2 cor responding t o 
t h e s y m m e t r i c case (i.e., also (1 , 1)). Howeve r , t h e t w o lines cor responding 
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to the representations ( + 1, — 1) and (— 1, + 1) become, on removal of
the asymmetric term, the same line and this line does not appear at all in
table 2. The positions of these lines are shown diagramatically in Diagrams
7 (a) and 7(b). These diagrams indicate that the effect of the asymmetry in the
spring is to introduce additional unstable regions, not merely to displace
slightly the boundaries of the existing regions.

7(0)
DIAGRAM 7

Both diagrams indicate the location of stability lines (near the a/co* axis) of the equation

—- + (a + bA' cos'cot + cA cos to/)| = 0
dt%

where £ satisfies periodic boundary conditions.

In (7a) c = 0 and f (t + —)= £(<)
to/

In 7(b) c ^ 0 and | (t + —) = £(<)

10. A General Case

In the two previous sections we dealt with very special cases of the
system described in section 3. It should be emphasised that the only approx-
imation in those cases is introduced as a result of not knowing the exact
positions of the stability lines, and we have at our disposal methods for
increasing the closeness of the approximation if this is desired. We also know
that the exact line lies below any variational approximation to it when plot-
ted as in the diagrams. This is because the variational approximation gives a
definite inequality, and not only an approximate equality (see equation
(6.8)).

In practice, however, it is unlikely that the mechanical system is one of
these special cases, unless it is specially constructed to be one.

In this section we illustrate the general procedure by considering the
problem of section 3 with the springs symmetric, i.e., a2 = A% = 0, but
dropping the restriction introduced in section 4 that aJ8 = — A3. However,
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for simplicity we restrict ourselves in what follows to the case in which
002 and OCJQ are both positive. The generalisation is straightforward. If the
springs are normal ax and Ax are positive and so are <x02 and a^. The Hamil-
tonian takes the form

(10.1) Hfa, pt, ft. ft,) = ^L + | *

and the out of phase motion is governed by the Hamiltonian

(10.2) H{0, p%, 0, ft,) = A + wao2?2 + w a M ? 4

The motion resulting from this Hamiltonian can be expressed in terms of
Jacobian elliptic functions as follows:

(10.3a) -£-=«. [#(*) ( 1 - ^ ) ] a04 > 0

(10.3b) ± = sn [K(k) ^ ] a,,, < 0

where

Here iiC(*) is the complete Elliptic Function Jj'2(l - kzsm2d)-ll2dd, A is the
amplitude of the motion and the period T is given by

±
(The upper or lower sign is taken according as oĉ  is greater than or less than
zero respectively.)
This solution can be expanded in terms of a Fourier series, of which the
first two significant terms are

(10.5) q2(t) = A{(1 + e) sin <at + e sin Scot}

where e = k*/1(5. If we make the substitutions

(10.6) Y = 200, \-j

we arrive at the amplitude-frequency relations in a dimensionless form
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(10.7)
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(±Y)™=-K(k)
71
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where k takes the values given by (10.4a) and (10.4b), namely

(10.8a) r 1

(10.8b) k

2 + X/Y
— 1

l+X/Y
aM<0

DIAGRAM 8

The amplitude-frequency relation for the motion governed by the Hamiltonian

Here X 2a04 —

H(0,p,,0,qt)

and V = —?.

The broken line R' PQ' is the Duffing Approximation (10.9) and the full line SPQ the
exact relation, obtained from (10.7) and (10.8).

If aM > 0, the representative point lies on the section PQ, the point P representing zero
amplitude and Q the limit of infinite amplitude. The numerical values are OQ' = % and
OQ = 0.6966. Thus the Duffing approximation is a close one, even ior inigVi amplitudes.

If aM < 0, the representative point lies on the section of the curve to the left of P. In this
case V(0, qt) has an upper limit V^,* and the amplitude has an upper limit Amtz. For the
motion to be possible, the representative point lies to the right of the straight line OR'. The
true curve approaches this line asymptotically whereas the Duffing approximation (broken
line) intersects it. For a particular amplitude, the representative point T, and its approxima-
tion in the Duffing equation, T', are collinear with the origin. The point R' corresponds to
A = AmUi in the Duffing Approximation.

For small amplitudes (10.7) and (10.8) can be replaced by the well known
Duffing approximation [6]

(10.9) X + f Y = 1

The amplitude frequency relations (10.7) and (10.8) are plotted in diagram 8
together with the approximation (10.9).

Substitution of q2(t) given by (10.5) into the Hill Equation (3.3b) gives
the equation
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dg
xi0.10) —j + [a + bA2{(\ + s) sin a>t + e sin 3cot}2]£r = 0

The period of the term in curly brackets is n\<n and so the period of £r(t) is
nju> or 2?r/«j as is the case in the Mathieu Equation considered in sections 4 and
8. In fact (10.10) differs from the Mathieu equation only by terms in e,
and as the period is the same, we may expect the stability to differ from that
of diagram 2 by terms of order e only. This is what in fact happens. Using
a trial function y> = 1, there results the stability line

a bA2

(10.11) ~ _ j (i + 2 e

and using y = 1 + p cos 2a)t, we find, after applying the variational
technique

(10.12)

Not only is the stability diagram different, but also a slightly different
technique is required for its use. The examples discussed in Sections 4, 8 and
9 all had the property that the amplitude A was independent of the fre-
quency a. In the more general case this is no longer true. The exact relation
between these quantities is indicated in equations (10.7) and (10.8) and an
approximate one in equation (10.9). These are illustrated on diagram 8.
However, for any particular mechanical system, the representative point
can cover only part of this curve. Which part this is depends only on the
sign of aM. (We recall that we are restricting ourselves to the case in which
ao2 > 0). If a,̂  is positive, inspection shows that the representative point lies
on the section PQ. If a04 is negative, this point lies on the section to the left
of P. In this case the amplitude cannot increase indefinitely since V(0, q2)
has a maximum at q2 — V — aO2/2ao4. We call this value of q2, Amax, and
it is clear that if q2 ever attains a value greater than A max, then q% continues
to increase indefinitely. The restriction

(10-13) A 2 < ^

can be written, using (10.6),

(10.14) X>— 2Y

The amplitude frequency relations given by (10.7) and (10.8) obey this
inequality, and are actually asymptotic to the line
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(10.15)
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X = -2Y

185

as is illustrated in Diagram 8. The Duffing approximation does not conform
to this restriction and breaks down for amplitudes near to Amax. This is
discussed in the caption of Diagram 8. It is clear from inspection of this
diagram that, with this one exception, the Duffing approximation is very
good.

Now using the defining relations of a and b, equations (4.7) and the defi-
nition of X and Y, equation (10.6), we see that

(10.16)

Thus if we make a trivial change of scale, the whole of diagram 8 can be
transferred bodily onto a stability diagram; the former X and Y axes are
now ajct)2 and bA2/a>2 axes. The situation is illustrated in diagram 9. The use

= ^ ( * 4 ) and X = ?"(±

DIAGRAM 9

The Stability Diagram for the equation

= 0

where <p(t) is the solution of amplitude A of the motion governed by the Hamiltonian

H(i>. q) = — + "

The representative point lies on the line PS. When the amplitude is small, it is near P and as
the amplitude is increased it moves away from P, approaching infinity as A approaches Ama.
The line PR is the Duffing approximation (10.9). Use of this Approximation can lead to quali-
tatively wrong results about the stability. In the case illustrated in the diagram, increasing
the amplitude leads to a change in stability as the representative point reaches T, U, V. W,
and so on. Use of the Duffing Approximation implies that the representative point moves
directly to R as A is increased to Amtx and there is apparently no change in stability at all.
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of this diagram differs from that of diagram 2, for example, in that the
representative point is confined to the curve PS instead of to the horizontal
line QK of diagram 2. Reference to diagram 9 shows that error about the
stability of the system can easily occur unless the amplitude frequency
relation is known accurately.

APPENDIX I
The minimum of g(jj) (Equation 8.4)

We derive here an expression for the minimum of g{jt) where g(jx) is given
by

(Al) gip) = (a0 + alfi

This can be written

(A2) K g M - b0) + (alg(jx) - bj/i + (a, gfa) - b2)f = 0

We suppose that when fi = /x0, g(ji) takes an extremum value or

(A3) g > 0 ) = 0

Multiplying (A2) by fi, differentiating with respect to /* and putting y, = fx0,
leads to, in view of (A3),

and subtracting this from the expression obtained from (A3) by multiplying
by 3 and putting fi = p0 gives

(A4) 2(ao^(,«o) - 60) + fagito) - bjp, = 0

We can find another independent expression for jx0 by differentiating (A2)
and putting fi — /i0. This is

(A5) (*igfa>) ~ *i) + {<*zgM ~ h)Po = 0

Eliminating /i0 from (A4) and (A5) gives the quadratic relation for g(ju0)

- b0), (alg{fi0) - bj) =

~ h), 2(a2gCa0) - b2)

Expanding this determinant gives the following expression for the two
extremum values of

If the variational method is used with two parameters A and /i it is possible,
using the same procedure, to obtain a 4 x 4 determinant of the same type
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as that in (A6), which gives a quartic forg^,,, Ao). Similarly an iV-parameter
trial function gives an equation of degree 2^ for g ^ . Because it is difficult
to deal with equations like this it is usually more convenient to use the
iteration technique of the second part of section 7.

APPENDIX II

Notation for eigenvalues of Mathieu Equation

References mentioned in the text discuss this equation in different forms.
For the convenience of the reader these are listed here

di
Whittaker (Ref. 12) --^ + (a + I6q sin 2z)f = 0

dz

d2u
Stoker (Ref. 10) —- + (<5 + s cos z) u = 0

ctz

d£
This paper —| + (a + bA2 suvW)f = 0

McLachlan [6] uses the same notation as Whittaker [12] but with — 2q
replacing lQq. (This is the same as that used by Mathieu). The relations
between the various parameters is as follows

a—16q = 4(<5 — e) = a/co2

32q =8e =

In the notation of Stoker [Reference 10], the equations of stability lines
listed in Table 2 are

<* = * - *(1

- i - l(i +
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